Search results for: least square support vector machine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11512

Search results for: least square support vector machine

9772 Stress Analysis of Vertebra Using Photoelastic and Finite Element Methods

Authors: Jamal A. Hassan, Ali Q. Abdulrazzaq, Sadiq J. Abass

Abstract:

In this study, both the photoelastic, as well as the finite element methods, are used to study the stress distribution within human vertebra (L4) under forces similar to those that occur during normal life. Two & three dimensional models of vertebra were created by the software AutoCAD. The coordinates obtained were fed into a computer numerical control (CNC) tensile machine to fabricate the models from photoelastic sheets. Completed models were placed in a transmission polariscope and loaded with static force (up to 1500N). Stresses can be quantified and localized by counting the number of fringes. In both methods the Principle stresses were calculated at different regions. The results noticed that the maximum von-mises stress on the area of the extreme superior vertebral body surface and the facet surface with high normal stress (σ) and shear stress (τ). The facets and other posterior elements have a load-bearing function to help support the weight of the upper body and anything that it carries, and are also acted upon by spinal muscle forces. The numerical FE results have been compared with the experimental method using photoelasticity which shows good agreement between experimental and simulation results.

Keywords: photoelasticity, stress, load, finite element

Procedia PDF Downloads 286
9771 Efficient Manageability and Intelligent Classification of Web Browsing History Using Machine Learning

Authors: Suraj Gururaj, Sumantha Udupa U.

Abstract:

Browsing the Web has emerged as the de facto activity performed on the Internet. Although browsing gets tracked, the manageability aspect of Web browsing history is very poor. In this paper, we have a workable solution implemented by using machine learning and natural language processing techniques for efficient manageability of user’s browsing history. The significance of adding such a capability to a Web browser is that it ensures efficient and quick information retrieval from browsing history, which currently is very challenging. Our solution guarantees that any important websites visited in the past can be easily accessible because of the intelligent and automatic classification. In a nutshell, our solution-based paper provides an implementation as a browser extension by intelligently classifying the browsing history into most relevant category automatically without any user’s intervention. This guarantees no information is lost and increases productivity by saving time spent revisiting websites that were of much importance.

Keywords: adhoc retrieval, Chrome extension, supervised learning, tile, Web personalization

Procedia PDF Downloads 376
9770 Machine Learning Facing Behavioral Noise Problem in an Imbalanced Data Using One Side Behavioral Noise Reduction: Application to a Fraud Detection

Authors: Salma El Hajjami, Jamal Malki, Alain Bouju, Mohammed Berrada

Abstract:

With the expansion of machine learning and data mining in the context of Big Data analytics, the common problem that affects data is class imbalance. It refers to an imbalanced distribution of instances belonging to each class. This problem is present in many real world applications such as fraud detection, network intrusion detection, medical diagnostics, etc. In these cases, data instances labeled negatively are significantly more numerous than the instances labeled positively. When this difference is too large, the learning system may face difficulty when tackling this problem, since it is initially designed to work in relatively balanced class distribution scenarios. Another important problem, which usually accompanies these imbalanced data, is the overlapping instances between the two classes. It is commonly referred to as noise or overlapping data. In this article, we propose an approach called: One Side Behavioral Noise Reduction (OSBNR). This approach presents a way to deal with the problem of class imbalance in the presence of a high noise level. OSBNR is based on two steps. Firstly, a cluster analysis is applied to groups similar instances from the minority class into several behavior clusters. Secondly, we select and eliminate the instances of the majority class, considered as behavioral noise, which overlap with behavior clusters of the minority class. The results of experiments carried out on a representative public dataset confirm that the proposed approach is efficient for the treatment of class imbalances in the presence of noise.

Keywords: machine learning, imbalanced data, data mining, big data

Procedia PDF Downloads 130
9769 Study of the Use of Artificial Neural Networks in Islamic Finance

Authors: Kaoutar Abbahaddou, Mohammed Salah Chiadmi

Abstract:

The need to find a relevant way to predict the next-day price of a stock index is a real concern for many financial stakeholders and researchers. We have known across years the proliferation of several methods. Nevertheless, among all these methods, the most controversial one is a machine learning algorithm that claims to be reliable, namely neural networks. Thus, the purpose of this article is to study the prediction power of neural networks in the particular case of Islamic finance as it is an under-looked area. In this article, we will first briefly present a review of the literature regarding neural networks and Islamic finance. Next, we present the architecture and principles of artificial neural networks most commonly used in finance. Then, we will show its empirical application on two Islamic stock indexes. The accuracy rate would be used to measure the performance of the algorithm in predicting the right price the next day. As a result, we can conclude that artificial neural networks are a reliable method to predict the next-day price for Islamic indices as it is claimed for conventional ones.

Keywords: Islamic finance, stock price prediction, artificial neural networks, machine learning

Procedia PDF Downloads 237
9768 Psychosocial Support in Disaster Situations in the Philippines and Indonesia: A Critical Literature Review

Authors: Fuad Hamsyah

Abstract:

Since last two decades, major disasters have happened in the Philippines and Indonesia as two countries that are located in the pacific ring of fire territory. While in Southeast Asian countries, the process of psychosocial support provision is facing various constraints such as limited number of mental health professionals and the limited knowledge about the provision of psychosocial support for disaster survivors. Yet after the tsunami disaster in 2004, many Asian countries begin to develop policies about the provision of psychosocial interventions as an effort for future disasters preparedness. In addition, mental health professionals have to consider the local cultural values and beliefs in order to provide people with effective psychosocial support since cultural values and beliefs play a significant role in the diversity of psychological distress that forms symptoms formation, and people’s way to seek for psychological assistance. This study is a critical literature review on 130 relevant selected documents and literatures. IASC MHPSS guideline is used as the research framework in doing critical analysis. The purpose of this study is to conduct a critical analysis on the mental health and psychosocial support provision in the Philippines and Indonesia with three main objectives: 1) To describe strengths, weaknesses, and challenges in the process of psychosocial supports given by public and private organizations in emergency settings of disaster in the Philippines and Indonesia, 2) To compare psychosocial support practices between the Philippines and Indonesia, and to identify the good practices among these countries, 3) To learn how cultural values influence the implementation of psychosocial supports in emergency settings of disaster. This research indicated that almost every function from IASC MHPSS guidelines has been implemented effectively in the Philippines and Indonesia, yet not in every detail of IASC MHPSS guidelines. Several similarities and differences are indicated in this study also based on the IASC MHPSS guidelines as the analysis framework. Further, both countries have some good practices that can be useful as an example of a comprehensive psychosocial support implementation. Apart from the IASC MHPSS guideline, cultural values and beliefs in the Philippines such as kanya-kanya syndrome, pakikipakapwa, utang na loob, bahala na, pagkaya are indicated as several cultural values that have strong influences towards people’s attitude and behavior in disaster situations. While in Indonesia, several cultural values such as sabar and nrimo become two important attitudes to cope disaster situations.

Keywords: disaster, Indonesia, psychosocial support, Philippines

Procedia PDF Downloads 395
9767 Identification and Analysis of Supports Required for Teachers Moving to Remote Teaching and Learning during Disasters and Pandemics

Authors: Susan Catapano, Meredith Jones, Carol McNulty

Abstract:

Analysis of one state’s collaborative effort to support teachers, in both public and private schools, as they moved from face-to-face teaching to remote teaching during the Covid pandemic to identify lessons learned and materials put into place to support teachers and families. Surveys were created, distributed, and analyzed throughout the three months of remote teaching, documents and lesson plans were developed, and training materials were created. All data collected and materials developed were analyzed to identify supports teachers used and needed for successful remote teaching. Researchers found most teachers easily moved to online teaching; however, many families did not have access to technology, so teachers needed to develop non-technology-based access and support for remote teaching. Teachers also reported the need to prepare to teach remotely as part of their teaching training, so they were prepared in the future. Finally, data indicated teachers were able to establish stronger relationships with families than usual as a result of remote teaching. The lessons learned and support developed are part of the state’s ongoing policy for online teaching in the event of disasters and pandemics in the future.

Keywords: remote learning, teacher education, pandemic, families

Procedia PDF Downloads 161
9766 A Generalized Framework for Adaptive Machine Learning Deployments in Algorithmic Trading

Authors: Robert Caulk

Abstract:

A generalized framework for adaptive machine learning deployments in algorithmic trading is introduced, tested, and released as open-source code. The presented software aims to test the hypothesis that recent data contains enough information to form a probabilistically favorable short-term price prediction. Further, the framework contains various adaptive machine learning techniques that are geared toward generating profit during strong trends and minimizing losses during trend changes. Results demonstrate that this adaptive machine learning approach is capable of capturing trends and generating profit. The presentation also discusses the importance of defining the parameter space associated with the dynamic training data-set and using the parameter space to identify and remove outliers from prediction data points. Meanwhile, the generalized architecture enables common users to exploit the powerful machinery while focusing on high-level feature engineering and model testing. The presentation also highlights common strengths and weaknesses associated with the presented technique and presents a broad range of well-tested starting points for feature set construction, target setting, and statistical methods for enforcing risk management and maintaining probabilistically favorable entry and exit points. The presentation also describes the end-to-end data processing tools associated with FreqAI, including automatic data fetching, data aggregation, feature engineering, safe and robust data pre-processing, outlier detection, custom machine learning and statistical tools, data post-processing, and adaptive training backtest emulation, and deployment of adaptive training in live environments. Finally, the generalized user interface is also discussed in the presentation. Feature engineering is simplified so that users can seed their feature sets with common indicator libraries (e.g. TA-lib, pandas-ta). The user also feeds data expansion parameters to fill out a large feature set for the model, which can contain as many as 10,000+ features. The presentation describes the various object-oriented programming techniques employed to make FreqAI agnostic to third-party libraries and external data sources. In other words, the back-end is constructed in such a way that users can leverage a broad range of common regression libraries (Catboost, LightGBM, Sklearn, etc) as well as common Neural Network libraries (TensorFlow, PyTorch) without worrying about the logistical complexities associated with data handling and API interactions. The presentation finishes by drawing conclusions about the most important parameters associated with a live deployment of the adaptive learning framework and provides the road map for future development in FreqAI.

Keywords: machine learning, market trend detection, open-source, adaptive learning, parameter space exploration

Procedia PDF Downloads 89
9765 Player Experience: A Research on Cross-Platform Supported Games

Authors: Salih Akkemik

Abstract:

User Experience has a characterized perspective based on two fundamentals: the usage process and the product. Digital games can be considered as a special interactive system. This system has a very specific purpose and this is to make the player feel good while playing. At this point, Player Experience (PX) and User Experience (UX) are similar. UX focuses on the user feels good, PX focuses on the player feels good. The most important difference between the two is the action taken. These are actions of using and playing. In this study, the player experience will be examined primarily. PX may differ on different platforms. Nowadays, companies are releasing the successful and high-income games that they have developed with cross-platform support. Cross-platform is the most common expression that an application can run on different operating systems, in other words, be developed to support different operating systems. In terms of digital games, cross-platform support means that a game can be played on a computer, console or mobile device environment, more specifically, the game developed is designed and programmed to be played in the same way on at least two different platforms, such as Windows, MacOS, Linux, iOS, Android, Orbis OS or Xbox OS. Different platforms also accommodate different player groups, profiles and preferences. This study aims to examine these different player profiles in terms of player experience and to determine the effects of cross-platform support on player experience.

Keywords: cross-platform, digital games, player experience, user experience

Procedia PDF Downloads 206
9764 Combined Machine That Fertilizes Evenly under Plowing on Slopes and Planning an Experiment

Authors: Qurbanov Huseyn Nuraddin

Abstract:

The results of scientific research on a machine that pours an equal amount of mineral fertilizer under the soil to increase the productivity of grain in mountain farming and obtain quality grain are substantiated. The average yield of the crop depends on the nature of the distribution of fertilizers in the soil. Therefore, the study of effective energy-saving methods for the application of mineral fertilizers is the actual task of modern agriculture. Depending on the type and variety of plants in mountain farming, there is an optimal norm of mineral fertilizers. Applying an equal amount of fertilizer to the soil is one of the conditions that increase the efficiency of the field. One of the main agro-technical indicators of the work of mineral fertilizing machines is to ensure equal distribution of mineral fertilizers in the field. Taking into account the above-mentioned issues, a combined plough has been improved in our laboratory.

Keywords: combined plough, mineral fertilizers, sprinkle fluently, fertilizer rate, cereals

Procedia PDF Downloads 73
9763 A Review of Intelligent Fire Management Systems to Reduce Wildfires

Authors: Nomfundo Ngombane, Topside E. Mathonsi

Abstract:

Remote sensing and satellite imaging have been widely used to detect wildfires; nevertheless, the technologies present some limitations in terms of early wildfire detection as the technologies are greatly influenced by weather conditions and can miss small fires. The fires need to have spread a few kilometers for the technologies to provide accurate detection. The South African Advanced Fire Information System uses MODIS (Moderate Resolution Imaging Spectroradiometer) as satellite imaging. MODIS has limitations as it can exclude small fires and can fall short in validating fire vulnerability. Thus in the future, a Machine Learning algorithm will be designed and implemented for the early detection of wildfires. A simulator will be used to evaluate the effectiveness of the proposed solution, and the results of the simulation will be presented.

Keywords: moderate resolution imaging spectroradiometer, advanced fire information system, machine learning algorithm, detection of wildfires

Procedia PDF Downloads 78
9762 Effect of Co-Parenting Support on Duration of Exclusive Breastfeeding in a Developing Nation: A Randomised Controlled Trial

Authors: Phomid Techi, L. N. Padmasini, Mohan Mathew

Abstract:

Objective: To evaluate the effectiveness of co-parent support on the duration of exclusive breastfeeding by a randomized control trial. Introduction: The current rates of exclusive breastfeeding for 6 months in India is 46% (NFHS3 2008.). The purpose of the study is to evaluate the effectiveness of co-parenting support on duration of exclusive breastfeeding in primi mothers. Design: RCT: Willing parents of healthy TAGA babies born in our hospital were explained about the study purpose and randomly assigned to either trial or control group. The control group was given the usual care. The intervention group received usual care and in addition the trial intervention. Follow-up data was collected at the end of 6 mon. Intervention: Face to face 30-minute discussion in post partum unit on breast feeding benefits, techniques, and problem-solving information followed up by phone calls to mother every 4 weeks to answer questions/concerns. Outcome measures: Duration of exclusive breastfeeding Baseline demographic variables were measured. Results: After obtaining IEC approval a total of 100 couples were recruited, 100 is each group. In the intervention group, the rate of exclusive breastfeeding was 97.2% while in the control group it was 64% (p-value 0.00). Conclusion: Co-parenting support has an important role in promoting exclusive breastfeeding.

Keywords: co-parenting, exclusive breastfeeding, developing nation, randomised control trial

Procedia PDF Downloads 240
9761 Nontraditional Online Student Perceptions of Student Success Conditions

Authors: Carrie Prendergast, Lisa Bortman

Abstract:

The focus of this presentation will be on non-traditional (adult) students as they seek their Bachelors’ degrees online. This presentation will specifically examine nontraditional online student perceptions of Tinto’s success conditions: expectations, support, assessment, and engagement. Expectations include those of the student, the faculty and the institution. Support includes academic, social, and financial support. Feedback and assessment encompasses feedback in the classroom, upon entry, and on an institutional level. The fourth success condition is involvement or engagement of students with their peers and faculty in both academic and social contexts. This program will review and discuss a rich, detailed description of the lived experience of the nontraditional online student to add to the paucity of research on this understudied population and guide higher education professionals in supporting this growing population of students.

Keywords: adult students, online education, student success, vincent tinto

Procedia PDF Downloads 373
9760 The Effect of Support Program Based on The Health Belief Model on Reproductive Health Behavior in Women with Orthopedic Disabled

Authors: Eda Yakit Ak, Ergül Aslan

Abstract:

The study was conducted using the quasi-experimental design to determine the influence of the nursing support program prepared according to the Health Belief Model on reproductive health behaviors of orthopedically disabled women in the physical therapy and rehabilitation clinic at a university hospital between August 2019-October, 2020. The research sample included 50 women (35 in the control group and 15 in the experimental group with orthopedic disability). A 3-week nursing support program was applied to the experimental group of women. To collect the data, Introductory Information Form and Scale for Determining the Protective Attitudes of Married Women towards Reproductive Health (SDPAMW) were applied. The evaluation was made with a follow-up form for four months. In the first evaluation, the total SDPAMW scores were 119.93±20.59 for the experimental group and 122.20±16.71 for the control group. In the final evaluation, the total SDPAMW scores were 144.27±11.95 for the experimental group and 118.00±16.43 for the control group. The difference between the groups regarding the first and final evaluations for the total SDPAMW scores was statistically significant (p<0.01). In the experimental group, between the first and final evaluations regarding the sub-dimensions of SDPAMW, an increase was found in the behavior of seeing the doctor on reproductive health issues, protection from reproductive organ and breast cancer, general health behaviors to protect reproductive health, and protection from genital tract infections (p<0.05). Consequently, the nursing support program based on the Health Belief Model applied to orthopedically disabled women positively affected reproductive health behaviors.

Keywords: orthopedically disabled, woman, reproductive health, nursing support program, health belief model

Procedia PDF Downloads 148
9759 Decision Support System for a Pilot Flash Flood Early Warning System in Central Chile

Authors: D. Pinto, L. Castro, M. L. Cruzat, S. Barros, J. Gironás, C. Oberli, M. Torres, C. Escauriaza, A. Cipriano

Abstract:

Flash floods, together with landslides, are a common natural threat for people living in mountainous regions and foothills. One way to deal with this constant menace is the use of Early Warning Systems, which have become a very important mitigation strategy for natural disasters. In this work, we present our proposal for a pilot Flash Flood Early Warning System for Santiago, Chile, the first stage of a more ambitious project that in a future stage shall also include early warning of landslides. To give a context for our approach, we first analyze three existing Flash Flood Early Warning Systems, focusing on their general architectures. We then present our proposed system, with main focus on the decision support system, a system that integrates empirical models and fuzzy expert systems to achieve reliable risk estimations.

Keywords: decision support systems, early warning systems, flash flood, natural hazard

Procedia PDF Downloads 373
9758 Usage the Point Analysis Algorithm (SANN) on Drought Analysis

Authors: Khosro Shafie Motlaghi, Amir Reza Salemian

Abstract:

In arid and semi-arid regions like our country Evapotranspiration is the greatestportion of water resource. Therefor knowlege of its changing and other climate parameters plays an important role for planning, development, and management of water resource. In this search the Trend of long changing of Evapotranspiration (ET0), average temprature, monthly rainfall were tested. To dose, all synoptic station s in iran were divided according to the climate with Domarton climate. The present research was done in semi-arid climate of Iran, and in which 14 synoptic with 30 years period of statistics were investigated with 3 methods of minimum square error, Mann Kendoll, and Vald-Volfoytz Evapotranspiration was calculated by using the method of FAO-Penman. The results of investigation in periods of statistic has shown that the process Evapotranspiration parameter of 24 percent of stations is positive, and for 2 percent is negative, and for 47 percent. It was without any Trend. Similary for 22 percent of stations was positive the Trend of parameter of temperature for 19 percent , the trend was negative and for 64 percent, it was without any Trend. The results of rainfall trend has shown that the amount of rainfall in most stations was not considered as a meaningful trend. The result of Mann-kendoll method similar to minimum square error method. regarding the acquired result was can admit that in future years Some regions will face increase of temperature and Evapotranspiration.

Keywords: analysis, algorithm, SANN, ET0

Procedia PDF Downloads 296
9757 Design and Modeling of Light Duty Trencher

Authors: Yegetaneh T. Dejenu, Delesa Kejela, Abdulak Alemu

Abstract:

From the earliest time of humankind, the trenches were used for water to flow along and for soldiers to hide in during enemy attacks. Now a day due to civilization, the needs of the human being become endless, and the living condition becomes sophisticated. The unbalance between the needs and resource obligates them to find the way to manage this condition. The attempt to use the scares resource in very efficient and effective way makes the trench an endeavor practice in the world in all countries. A trencher is a construction equipment used to dig trenches, especially for laying pipes or cables, installing drainage, irrigation, installing fencing, and in preparation for trench warfare. It is a machine used to make a ditch by cutting the soil ground and effectively used in agricultural irrigation. The most common types of trencher are wheel trencher, chain trencher, micro trencher, portable trencher. In Ethiopia people have been trenching the ditch for many purposes and the tools they are using are Pickaxe, Shovel and some are using Micro Excavators. The adverse effect of using traditional equipment is, time and energy consuming, less productive, difficult and more man power is required. Hence it is necessary to design and produce low price, and simple machine to narrow this gap. Our objective is to design and model a light duty trencher that is used for trenching the ground or soil for making ditch and used for agricultural, ground cabling, ground piping, and drainage system. The designed machine trenches, maximum of 1-meter depth, 30 cm width, and the required length. The working mechanism is fully hydraulic, and the engine with 12.7 hp will provide suitable power for the pump that delivers 23 l/min at 1500 rpm to drive hydraulic motors and actuators.

Keywords: hydraulics, modelling, trenching, ditch

Procedia PDF Downloads 215
9756 Pre-Experimental Research to Investigate the Retention of Basic and Advanced Life Support Measures Knowledge and Skills by Qualified Nurses Following a Course in Professional Development in a Tertiary Teaching Hospital

Authors: Ram Sharan Mehta, Gayanandra Malla, Anita Gurung, Anu Aryal, Divya Labh, Hricha Neupane

Abstract:

Objectives: Lack of resuscitation skills of nurses and doctors in basic life support (BLS) and advanced life support (ALS) has been identified as a contributing factor to poor outcomes of cardiac arrest victims. The objective of this study was to examine retention of life support measures (BLS/ALS) knowledge and skills of nurses following education intervention programme. Materials and Methods: Pre-experimental research design was used to conduct the study among the nurses working in medical units of B.P Koirala Institute of Health Sciences, where CPR is very commonly performed. Using convenient sampling technique total of 20 nurses agreed to participate and give consent were included in the study. The theoretical, demonstration and re-demonstration were arranged involving the trained doctors and nurses during the three hours educational session. Post-test was carried out after two week of education intervention programme. The 2010 BLS & ALS guidelines were used as guide for the study contents. The collected data were analyzed using SPSS-15 software. Results: It was found that there is significant increase in knowledge after education intervention in the components of life support measures (BLS/ALS) i.e. ratio of chest compression to ventilation in BLS (P=0.001), correct sequence of CPR (p <0.001), rate of chest compression in ALS (P=0.001), the depth of chest compression in adult CPR (p<0.001), and position of chest compression in CPR (P=0.016). Nurses were well appreciated the programme and request to continue in future for all the nurses. Conclusions: At recent BLS/ALS courses (2010), a significant number of nurses remain without any such training. Action is needed to ensure all nurses receive BLS training and practice this skill regularly in order to retain their knowledge.

Keywords: pre-experimental, basic and advance life support, nurses, sampling technique

Procedia PDF Downloads 254
9755 A Collaborative Platform for Multilingual Ontology Development

Authors: Ahmed Tawfik, Fausto Giunchiglia, Vincenzo Maltese

Abstract:

Ontologies provide a common understanding of a specific domain of interest that can be communicated between people and used as background knowledge for automated reasoning in a wide range of applications. In this paper we address the design of multilingual ontologies following well-defined knowledge engineering methodologies with the support of novel collaborative development approaches. In particular, we present a collaborative platform which allows ontologies to be developed incrementally in multiple languages. This is made possible via an appropriate mapping between language independent concepts and one lexicalization per language (or a lexical gap in case such lexicalization does not exist). The collaborative platform has been designed to support the development of the Universal Knowledge Core, a multilingual ontology currently in English, Italian, Chinese, Mongolian, Hindi, and Bangladeshi. Its design follows a workflow-based development methodology that models resources as a set of collaborative objects and assigns customizable workflows to build and maintain each collaborative object in a community driven manner, with extensive support of modern web 2.0 social and collaborative features.

Keywords: knowledge diversity, knowledge representation, ontology, development

Procedia PDF Downloads 392
9754 Syndromic Surveillance Framework Using Tweets Data Analytics

Authors: David Ming Liu, Benjamin Hirsch, Bashir Aden

Abstract:

Syndromic surveillance is to detect or predict disease outbreaks through the analysis of medical sources of data. Using social media data like tweets to do syndromic surveillance becomes more and more popular with the aid of open platform to collect data and the advantage of microblogging text and mobile geographic location features. In this paper, a Syndromic Surveillance Framework is presented with machine learning kernel using tweets data analytics. Influenza and the three cities Abu Dhabi, Al Ain and Dubai of United Arabic Emirates are used as the test disease and trial areas. Hospital cases data provided by the Health Authority of Abu Dhabi (HAAD) are used for the correlation purpose. In our model, Latent Dirichlet allocation (LDA) engine is adapted to do supervised learning classification and N-Fold cross validation confusion matrix are given as the simulation results with overall system recall 85.595% performance achieved.

Keywords: Syndromic surveillance, Tweets, Machine Learning, data mining, Latent Dirichlet allocation (LDA), Influenza

Procedia PDF Downloads 116
9753 A Data-Driven Platform for Studying the Liquid Plug Splitting Ratio

Authors: Ehsan Atefi, Michael Grigware

Abstract:

Respiratory failure secondary to surfactant deficiency resulting from respiratory distress syndrome is considered one major cause of morbidity in preterm infants. Surfactant replacement treatment (SRT) is considered an effective treatment for this disease. Here, we introduce an AI-mediated approach for estimating the distribution of surfactant in the lung airway of a newborn infant during SRT. Our approach implements machine learning to precisely estimate the splitting ratio of a liquid drop during bifurcation at different injection velocities and patient orientations. This technique can be used to calculate the surfactant residue remaining on the airway wall during the surfactant injection process. Our model works by minimizing the pressure drop difference between the two airway branches at each generation, subject to mass and momentum conservation. Our platform can be used to generate feedback for immediately adjusting the velocity of injection and patient orientation during SRT.

Keywords: respiratory failure, surfactant deficiency, surfactant replacement, machine learning

Procedia PDF Downloads 126
9752 A Review of Research on Pre-training Technology for Natural Language Processing

Authors: Moquan Gong

Abstract:

In recent years, with the rapid development of deep learning, pre-training technology for natural language processing has made great progress. The early field of natural language processing has long used word vector methods such as Word2Vec to encode text. These word vector methods can also be regarded as static pre-training techniques. However, this context-free text representation brings very limited improvement to subsequent natural language processing tasks and cannot solve the problem of word polysemy. ELMo proposes a context-sensitive text representation method that can effectively handle polysemy problems. Since then, pre-training language models such as GPT and BERT have been proposed one after another. Among them, the BERT model has significantly improved its performance on many typical downstream tasks, greatly promoting the technological development in the field of natural language processing, and has since entered the field of natural language processing. The era of dynamic pre-training technology. Since then, a large number of pre-trained language models based on BERT and XLNet have continued to emerge, and pre-training technology has become an indispensable mainstream technology in the field of natural language processing. This article first gives an overview of pre-training technology and its development history, and introduces in detail the classic pre-training technology in the field of natural language processing, including early static pre-training technology and classic dynamic pre-training technology; and then briefly sorts out a series of enlightening technologies. Pre-training technology, including improved models based on BERT and XLNet; on this basis, analyze the problems faced by current pre-training technology research; finally, look forward to the future development trend of pre-training technology.

Keywords: natural language processing, pre-training, language model, word vectors

Procedia PDF Downloads 57
9751 Perspectives of charitable organisations on the impact of the COVID-19 pandemic on family carers of people with profound and multiple intellectual disabilities.

Authors: Mark Linden, Trisha Forbes, Michael Brown, Lynne Marsh, Maria Truesdale, Stuart Todd, Nathan Hughes

Abstract:

Background The COVID-19 pandemic resulted in a reduction of health care services for many family carers of people with profound and multiple intellectual disabilities (PMID). Due to lack of services, family carers turned to charities for support during the pandemic. We explored the views of charity workers across the UK and Ireland who supported family carers during the COVID-19 pandemic and explored their views on effective online support programmes for family carers. Methods This was a qualitative study using online focus groups with participants (n = 24) from five charities across the UK and Ireland. Questions focused on challenges, supports, coping and resources which helped during lockdown restrictions. Focus groups were audio recorded, transcribed verbatim, and analysed through thematic analysis. Findings Four themes were identified (i) ‘mental and emotional health’, (ii) ‘they who shout the loudest’ (fighting for services), (iii) ‘lack of trust in statutory services’ and (iv) ‘creating an online support programme’. Mental and emotional health emerged as the most prominent theme and included three subthemes named as ‘isolation’, ‘fear of COVID-19’ and ‘the exhaustion of caring’. Conclusions The withdrawal of many services during the COVID-19 pandemic further isolated and placed strain on family carers. Even after the end of the pandemic family cares continue to report on the struggle to receive adequate support. There is a critical need to design services, including online support programmes, in partnership with family carers which adequately address their needs.

Keywords: intellectual disability, family carers, COVID-19, charities

Procedia PDF Downloads 74
9750 Exploring Artificial Intelligence as a Transformative Tool for Urban Management

Authors: R. R. Govind

Abstract:

In the digital age, artificial intelligence (AI) is having a significant impact on the rapid changes that cities are experiencing. This study explores the profound impact of AI on urban morphology, especially with regard to promoting friendly design choices. It addresses a significant research gap by examining the real-world effects of integrating AI into urban design and management. The main objective is to outline a framework for integrating AI to transform urban settings. The study employs an urban design framework to effectively navigate complicated urban environments, emphasize the need for urban management, and provide efficient planning and design strategies. Taking Gangtok's informal settlements as a focal point, the study employs AI methodologies such as machine learning, predictive analytics, and generative AI to tackle issues of 'urban informality'. The insights garnered not only offer valuable perspectives but also unveil AI's transformative potential in addressing contemporary urban challenges.

Keywords: urban design, artificial intelligence, urban challenges, machine learning, urban informality

Procedia PDF Downloads 61
9749 Deep Learning Based Fall Detection Using Simplified Human Posture

Authors: Kripesh Adhikari, Hamid Bouchachia, Hammadi Nait-Charif

Abstract:

Falls are one of the major causes of injury and death among elderly people aged 65 and above. A support system to identify such kind of abnormal activities have become extremely important with the increase in ageing population. Pose estimation is a challenging task and to add more to this, it is even more challenging when pose estimations are performed on challenging poses that may occur during fall. Location of the body provides a clue where the person is at the time of fall. This paper presents a vision-based tracking strategy where available joints are grouped into three different feature points depending upon the section they are located in the body. The three feature points derived from different joints combinations represents the upper region or head region, mid-region or torso and lower region or leg region. Tracking is always challenging when a motion is involved. Hence the idea is to locate the regions in the body in every frame and consider it as the tracking strategy. Grouping these joints can be beneficial to achieve a stable region for tracking. The location of the body parts provides a crucial information to distinguish normal activities from falls.

Keywords: fall detection, machine learning, deep learning, pose estimation, tracking

Procedia PDF Downloads 189
9748 Rapid Classification of Soft Rot Enterobacteriaceae Phyto-Pathogens Pectobacterium and Dickeya Spp. Using Infrared Spectroscopy and Machine Learning

Authors: George Abu-Aqil, Leah Tsror, Elad Shufan, Shaul Mordechai, Mahmoud Huleihel, Ahmad Salman

Abstract:

Pectobacterium and Dickeya spp which negatively affect a wide range of crops are the main causes of the aggressive diseases of agricultural crops. These aggressive diseases are responsible for a huge economic loss in agriculture including a severe decrease in the quality of the stored vegetables and fruits. Therefore, it is important to detect these pathogenic bacteria at their early stages of infection to control their spread and consequently reduce the economic losses. In addition, early detection is vital for producing non-infected propagative material for future generations. The currently used molecular techniques for the identification of these bacteria at the strain level are expensive and laborious. Other techniques require a long time of ~48 h for detection. Thus, there is a clear need for rapid, non-expensive, accurate and reliable techniques for early detection of these bacteria. In this study, infrared spectroscopy, which is a well-known technique with all its features, was used for rapid detection of Pectobacterium and Dickeya spp. at the strain level. The bacteria were isolated from potato plants and tubers with soft rot symptoms and measured by infrared spectroscopy. The obtained spectra were analyzed using different machine learning algorithms. The performances of our approach for taxonomic classification among the bacterial samples were evaluated in terms of success rates. The success rates for the correct classification of the genus, species and strain levels were ~100%, 95.2% and 92.6% respectively.

Keywords: soft rot enterobacteriaceae (SRE), pectobacterium, dickeya, plant infections, potato, solanum tuberosum, infrared spectroscopy, machine learning

Procedia PDF Downloads 103
9747 Data Poisoning Attacks on Federated Learning and Preventive Measures

Authors: Beulah Rani Inbanathan

Abstract:

In the present era, it is vivid from the numerous outcomes that data privacy is being compromised in various ways. Machine learning is one technology that uses the centralized server, and then data is given as input which is being analyzed by the algorithms present on this mentioned server, and hence outputs are predicted. However, each time the data must be sent by the user as the algorithm will analyze the input data in order to predict the output, which is prone to threats. The solution to overcome this issue is federated learning, where the models alone get updated while the data resides on the local machine and does not get exchanged with the other local models. Nevertheless, even on these local models, there are chances of data poisoning, and it is crystal clear from various experiments done by many people. This paper delves into many ways where data poisoning occurs and the many methods through which it is prevalent that data poisoning still exists. It includes the poisoning attacks on IoT devices, Edge devices, Autoregressive model, and also, on Industrial IoT systems and also, few points on how these could be evadible in order to protect our data which is personal, or sensitive, or harmful when exposed.

Keywords: data poisoning, federated learning, Internet of Things, edge computing

Procedia PDF Downloads 87
9746 Impact Location From Instrumented Mouthguard Kinematic Data In Rugby

Authors: Jazim Sohail, Filipe Teixeira-Dias

Abstract:

Mild traumatic brain injury (mTBI) within non-helmeted contact sports is a growing concern due to the serious risk of potential injury. Extensive research is being conducted looking into head kinematics in non-helmeted contact sports utilizing instrumented mouthguards that allow researchers to record accelerations and velocities of the head during and after an impact. This does not, however, allow the location of the impact on the head, and its magnitude and orientation, to be determined. This research proposes and validates two methods to quantify impact locations from instrumented mouthguard kinematic data, one using rigid body dynamics, the other utilizing machine learning. The rigid body dynamics technique focuses on establishing and matching moments from Euler’s and torque equations in order to find the impact location on the head. The methodology is validated with impact data collected from a lab test with the dummy head fitted with an instrumented mouthguard. Additionally, a Hybrid III Dummy head finite element model was utilized to create synthetic kinematic data sets for impacts from varying locations to validate the impact location algorithm. The algorithm calculates accurate impact locations; however, it will require preprocessing of live data, which is currently being done by cross-referencing data timestamps to video footage. The machine learning technique focuses on eliminating the preprocessing aspect by establishing trends within time-series signals from instrumented mouthguards to determine the impact location on the head. An unsupervised learning technique is used to cluster together impacts within similar regions from an entire time-series signal. The kinematic signals established from mouthguards are converted to the frequency domain before using a clustering algorithm to cluster together similar signals within a time series that may span the length of a game. Impacts are clustered within predetermined location bins. The same Hybrid III Dummy finite element model is used to create impacts that closely replicate on-field impacts in order to create synthetic time-series datasets consisting of impacts in varying locations. These time-series data sets are used to validate the machine learning technique. The rigid body dynamics technique provides a good method to establish accurate impact location of impact signals that have already been labeled as true impacts and filtered out of the entire time series. However, the machine learning technique provides a method that can be implemented with long time series signal data but will provide impact location within predetermined regions on the head. Additionally, the machine learning technique can be used to eliminate false impacts captured by sensors saving additional time for data scientists using instrumented mouthguard kinematic data as validating true impacts with video footage would not be required.

Keywords: head impacts, impact location, instrumented mouthguard, machine learning, mTBI

Procedia PDF Downloads 217
9745 Management Support, Role Ambiguity and Role Ambiguity among Professional Nurses at National Health Insurance Pilot Sites in South Africa: An Interpretive Phenomenology

Authors: Nomcebo N. Mpili, Cynthia Z. Madlabana

Abstract:

The South African Primary Health Care (PHC) system has undergone a number of transformations such as the introduction of National Health Insurance (NHI) to bring about easily accessible universal health coverage and to meet the health needs for all its citizens. This provides ongoing challenges to ensure that health workers are equipped with appropriate knowledge, support, and skills to meet these changes. Therefore it is crucial to understand the experiences and challenges of nurses as the backbone of PHC in providing quality healthcare services. In addition there has been a need to understand nurses’ experiences with management support, role ambiguity and role conflict amongst other challenges in light of the current reforms in healthcare. Indeed these constructs are notorious for having a detrimental impact on the outcomes of change initiatives within any organisation, this is no different in healthcare. This draws a discussion on professional nurses within the South African health care system especially since they have been labelled as the backbone of PHC, meaning any healthcare backlog falls on them. The study made use of semi-structured interviews and adopted the interpretative phenomenological approach (IPA) as the researcher aimed to explore the lived experiences of (n= 18) participants. The study discovered that professional nurses experienced a lack of management support within PHC facilities and that management mainly played an administrative and disciplinary role. Although participants mainly held positive perceptions with regards to changes happening in health care however they also expressed negative experiences in terms of how change initiatives were introduced resulting in role conflict and role ambiguity. Participants mentioned a shortage of staff, inadequate training as well as a lack of management support as some of the key challenges faced in facilities. This study offers unique findings as participants have not only experienced the various reforms within the PHC system however they have also been part of NHI pilot. The authors are not aware of any other studies published that examine management support, role conflict and role ambiguity together especially in South African PHC facilities. In conclusion understanding these challenges may provide insight and opportunities available to improve the current landscape of PHC not only in South Africa but internationally.

Keywords: management support, professional nurse, role ambiguity, role conflict

Procedia PDF Downloads 144
9744 Examining the Predicting Effect of Mindfulness on Psychological Well-Being among Undergraduate Students

Authors: Piyanee Klainin-Yobas, Debbie Ramirez, Zenaida Fernandez, Jenneth Sarmiento, Wareerat Thanoi, Jeanette Ignacio, Ying Lau

Abstract:

In many countries, university students experience various stressors that may negatively affect their psychological well-being (PWB). Hence, they are at risk for physical and mental problems. This research aimed to examine the predicting effects of mindfulness, self-efficacy, and social support on psychological well-being among undergraduate students. A non-experimental research was conducted at a university in the Philippines. All students enrolled in undergraduate programs were eligible for this study unless they had chronic medical or mental health problems. Power analysis was used to calculate an adequate sample size and a convenience sampling of 630 was recruited. Data were collected through online self-reported questionnaires from year 2013 to 2015. All self-reported scales used in this study had sound psychometric properties. Descriptive statistics, correlational analyses, and structural equation modeling were performed to analyze the research data. Results showed that the participants were mostly Filipino, female, Christian, and in Schools of Nursing. Mindfulness, self-efficacy, support from family, support from friends, and support from significant others were significant predictors of psychological well-being. Mindfulness was the strongest predictor of positive psychological well-being whereas self-efficacy was the strongest predictor of negative psychological well-being. In conclusion, findings from this study add knowledge to the existing literature regarding the predictors of psychological well-being. Psychosocial interventions, with the focus on strengthening mindfulness and self-efficacy, could be delivered to undergraduate students to help them enhance psychological well-being. More studies can be undertaken to test the interventions and multi-centered research can be conducted to enhance generalizability of research findings.

Keywords: mindfulness, self-efficacy, social support, psychological wellbeing

Procedia PDF Downloads 427
9743 Design of 3-Step Skew BLAC Motor for Better Performance in Electric Power Steering System

Authors: Subrato Saha, Yun-Hyun Cho

Abstract:

In electric power steering (EPS), spoke type brushless ac (BLAC) motors offer distinct advantages over other electric motor types in terms torque smoothness, reliability and efficiency. This paper deals with the shape optimization of spoke type BLAC motor, in order to reduce cogging torque. This paper examines 3 steps skewing rotor angle, optimizing rotor core edge and rotor overlap length for reducing cogging torque in spoke type BLAC motor. The methods were applied to existing machine designs and their performance was calculated using finite- element analysis (FEA). Prototypes of the machine designs were constructed and experimental results obtained. It is shown that the FEA predicted the cogging torque to be nearly reduce using those methods.

Keywords: EPS, 3-Step skewing, spoke type BLAC, cogging torque, FEA, optimization

Procedia PDF Downloads 491