Search results for: dispersed region growing algorithm (DRGA)
9792 New Test Algorithm to Detect Acute and Chronic HIV Infection Using a 4th Generation Combo Test
Authors: Barun K. De
Abstract:
Acquired immunodeficiency syndrome (AIDS) is caused by two types of human immunodeficiency viruses, collectively designated HIV. HIV infection is spreading globally particularly in developing countries. Before an individual is diagnosed with HIV, the disease goes through different phases. First there is an acute early phase that is followed by an established or chronic phase. Subsequently, there is a latency period after which the individual becomes immunodeficient. It is in the acute phase that an individual is highly infectious due to a high viral load. Presently, HIV diagnosis involves use of tests that do not detect the acute phase infection during which both the viral RNA and p24 antigen are expressed. Instead, these less sensitive tests detect antibodies to viral antigens which are typically sero-converted later in the disease process following acute infection. These antibodies are detected in both asymptomatic HIV-infected individuals as well as AIDS patients. Studies indicate that early diagnosis and treatment of HIV infection can reduce medical costs, improve survival, and reduce spreading of infection to new uninfected partners. Newer 4th generation combination antigen/antibody tests are highly sensitive and specific for detection of acute and established HIV infection (HIV1 and HIV2) enabling immediate linkage to care. The CDC (Center of Disease Control, USA) recently recommended an algorithm involving three different tests to screen and diagnose acute and established infections of HIV-1 and HIV-2 in a general population. Initially a 4th generation combo test detects a viral antigen p24 and specific antibodies against HIV -1 and HIV-2 envelope proteins. If the test is positive it is followed by a second test known as a differentiation assay which detects antibodies against specific HIV-1 and HIV-2 envelope proteins confirming established infection of HIV-1 or HIV-2. However if it is negative then another test is performed that measures viral load confirming an acute HIV-1 infection. Screening results of a Phoenix area population detected 0.3% new HIV infections among which 32.4% were acute cases. Studies in the U.S. indicate that this algorithm effectively reduces HIV infection through immediate treatment and education following diagnosis.Keywords: new algorithm, HIV, diagnosis, infection
Procedia PDF Downloads 4129791 Multi-Criterial Analysis: Potential Regions and Height of Wind Turbines, Rio de Janeiro, Brazil
Authors: Claudio L. M. Souza, Milton Erthal, Aldo Shimoya, Elias R. Goncalves, Igor C. Rangel, Allysson R. T. Tavares, Elias G. Figueira
Abstract:
The process of choosing a region for the implementation of wind farms involves factors such as the wind regime, economic viability, land value, topography, and accessibility. This work presents results obtained by multi-criteria decision analysis, and it establishes a hierarchy, regarding the installation of wind farms, among geopolicy regions in the state of ‘Rio de Janeiro’, Brazil: ‘Regiao Norte-RN’, ‘Regiao dos Lagos-RL’ and ‘Regiao Serrana-RS’. The wind regime map indicates only these three possible regions with an average annual wind speed of above of 6.0 m/s. The method applied was the Analytical Hierarchy Process-AHP, designed to prioritize and rank the three regions based on four criteria as follows: 1) potential of the site and average wind speeds of above 6.0 ms-¹, 2) average land value, 3) distribution and interconnection to electric network with the highest number of electricity stations, and 4) accessibility with proximity and quality of highways and flat topography. The values of energy generation were calculated for wind turbines 50, 75, and 100 meters high, considering the production of site (GWh/Km²) and annual production (GWh). The weight of each criterion was attributed by six engineers and by analysis of Road Map, the Map of the Electric System, the Map of Wind Regime and the Annual Land Value Report. The results indicated that in 'RS', the demand was estimated at 2,000 GWh, so a wind farm can operate efficiently in 50 m turbines. This region is mainly mountainous with difficult access and lower land value. With respect to ‘RL’, the wind turbines have to be installed at a height of 75 m high to reach a demand of 6,300 GWh. This region is very flat, with easy access, and low land value. Finally, the ‘NR’ was evaluated as very flat and with expensive lands. In this case, wind turbines with 100 m can reach an annual production of 19,000 GWh. In this Region, the coast area was classified as of greater logistic, productivity and economic potential.Keywords: AHP, renewable energy, wind energy
Procedia PDF Downloads 1519790 A Carrier Phase High Precision Ranging Theory Based on Frequency Hopping
Authors: Jie Xu, Zengshan Tian, Ze Li
Abstract:
Previous indoor ranging or localization systems achieving high accuracy time of flight (ToF) estimation relied on two key points. One is to do strict time and frequency synchronization between the transmitter and receiver to eliminate equipment asynchronous errors such as carrier frequency offset (CFO), but this is difficult to achieve in a practical communication system. The other one is to extend the total bandwidth of the communication because the accuracy of ToF estimation is proportional to the bandwidth, and the larger the total bandwidth, the higher the accuracy of ToF estimation obtained. For example, ultra-wideband (UWB) technology is implemented based on this theory, but high precision ToF estimation is difficult to achieve in common WiFi or Bluetooth systems with lower bandwidth compared to UWB. Therefore, it is meaningful to study how to achieve high-precision ranging with lower bandwidth when the transmitter and receiver are asynchronous. To tackle the above problems, we propose a two-way channel error elimination theory and a frequency hopping-based carrier phase ranging algorithm to achieve high accuracy ranging under asynchronous conditions. The two-way channel error elimination theory uses the symmetry property of the two-way channel to solve the asynchronous phase error caused by the asynchronous transmitter and receiver, and we also study the effect of the two-way channel generation time difference on the phase according to the characteristics of different hardware devices. The frequency hopping-based carrier phase ranging algorithm uses frequency hopping to extend the equivalent bandwidth and incorporates a carrier phase ranging algorithm with multipath resolution to achieve a ranging accuracy comparable to that of UWB at 400 MHz bandwidth in the typical 80 MHz bandwidth of commercial WiFi. Finally, to verify the validity of the algorithm, we implement this theory using a software radio platform, and the actual experimental results show that the method proposed in this paper has a median ranging error of 5.4 cm in the 5 m range, 7 cm in the 10 m range, and 10.8 cm in the 20 m range for a total bandwidth of 80 MHz.Keywords: frequency hopping, phase error elimination, carrier phase, ranging
Procedia PDF Downloads 1229789 Multi-Objective Optimization in Carbon Abatement Technology Cycles (CAT) and Related Areas: Survey, Developments and Prospects
Authors: Hameed Rukayat Opeyemi, Pericles Pilidis, Pagone Emanuele
Abstract:
An infinitesimal increase in performance can have immense reduction in operating and capital expenses in a power generation system. Therefore, constant studies are being carried out to improve both conventional and novel power cycles. Globally, power producers are constantly researching on ways to minimize emission and to collectively downsize the total cost rate of power plants. A substantial spurt of developmental technologies of low carbon cycles have been suggested and studied, however they all have their limitations and financial implication. In the area of carbon abatement in power plants, three major objectives conflict: The cost rate of the plant, Power output and Environmental impact. Since, an increase in one of this parameter directly affects the other. This poses a multi-objective problem. It is paramount to be able to discern the point where improving one objective affects the other. Hence, the need for a Pareto-based optimization algorithm. Pareto-based optimization algorithm helps to find those points where improving one objective influences another objective negatively and stops there. The application of Pareto-based optimization algorithm helps the user/operator/designer make an informed decision. This paper sheds more light on areas that multi-objective optimization has been applied in carbon abatement technologies in the last five years, developments and prospects.Keywords: gas turbine, low carbon technology, pareto optimal, multi-objective optimization
Procedia PDF Downloads 7919788 The Environment in Urban Planning and Management
Authors: Mahmood Salahi, Fatemeh Abbasi
Abstract:
Increasing urbanization will be one of the defining features of the 21st century. This produces particular environmental challenges, but also creates opportunities for urban development that can contribute to broader goals of improving the quality of life for urban residents while achieving greater levels of global sustainability. Half of the world’s population already lives in urban areas, with a growing number of these people living in towns and cities in low and middle-income countries. As well as being a demographic phenomenon, urbanisation is intricately linked with economic, social and environmental transitions. The increasing proportion of the world’s population living in urban areas has been driven by the growing concentration of new investment and employment opportunities. In general, nations with the most rapid and sustained economic growth have urbanized most.2 Urban centres provide opportunities for a range of social and cultural activities, as well as being critical for innovations in science, technology and education. Indeed, urban areas are of critical importance for social and economic development: as the Cities Alliance recognizes, 'only sustained urban growth has the capacity to lift both rural and urban populations out of poverty'.Keywords: environment, urban planning, management, urbanization
Procedia PDF Downloads 4649787 Computer-Aided Detection of Simultaneous Abdominal Organ CT Images by Iterative Watershed Transform
Authors: Belgherbi Aicha, Hadjidj Ismahen, Bessaid Abdelhafid
Abstract:
Interpretation of medical images benefits from anatomical and physiological priors to optimize computer-aided diagnosis applications. Segmentation of liver, spleen and kidneys is regarded as a major primary step in the computer-aided diagnosis of abdominal organ diseases. In this paper, a semi-automated method for medical image data is presented for the abdominal organ segmentation data using mathematical morphology. Our proposed method is based on hierarchical segmentation and watershed algorithm. In our approach, a powerful technique has been designed to suppress over-segmentation based on mosaic image and on the computation of the watershed transform. Our algorithm is currency in two parts. In the first, we seek to improve the quality of the gradient-mosaic image. In this step, we propose a method for improving the gradient-mosaic image by applying the anisotropic diffusion filter followed by the morphological filters. Thereafter, we proceed to the hierarchical segmentation of the liver, spleen and kidney. To validate the segmentation technique proposed, we have tested it on several images. Our segmentation approach is evaluated by comparing our results with the manual segmentation performed by an expert. The experimental results are described in the last part of this work.Keywords: anisotropic diffusion filter, CT images, morphological filter, mosaic image, simultaneous organ segmentation, the watershed algorithm
Procedia PDF Downloads 4419786 Intelligent Rescheduling Trains for Air Pollution Management
Authors: Kainat Affrin, P. Reshma, G. Narendra Kumar
Abstract:
Optimization of timetable is the need of the day for the rescheduling and routing of trains in real time. Trains are scheduled in parallel with the road transport vehicles to the same destination. As the number of trains is restricted due to single track, customers usually opt for road transport to use frequently. The air pollution increases as the density of vehicles on road transport is increased. Use of an alternate mode of transport like train helps in reducing air-pollution. This paper mainly aims at attracting the passengers to Train transport by proper rescheduling of trains using hybrid of stop-skip algorithm and iterative convex programming algorithm. Rescheduling of train bi-directionally is achieved on a single track with dynamic dual time and varying stops. Introduction of more trains attract customers to use rail transport frequently, thereby decreasing the pollution. The results are simulated using Network Simulator (NS-2).Keywords: air pollution, AODV, re-scheduling, WSNs
Procedia PDF Downloads 3619785 Effects of Malachite Green Contaminated Water on Production of Pak Choy and Chinese Convolvulus
Authors: N. Piwpuan, J. Tosalee, N. Phonkerd
Abstract:
Malachite green (MG), a synthetic dye, is used in industries and aquaculture and also disposed in the effluent. Use of wastewater in irrigation increases due to water shortage. However, wastewater containing dyes, MG, are toxic to biological systems. Therefore, effects of MG on growth of vegetables were evaluated in order to utilize dye-contaminated wastewater for irrigation. In this study, Pak choy (Brassica chinensis) and Chinese convolvulus (Ipomoea aquatica) were grown in growing material (mixture of soil, coconut fiber, and compost) for four weeks and afterward kept watering with 200 ml of tap water containing MG at the concentrations of 0 (control), 1, 2, 10, and 20 mg/L. At harvest, number of leaf and shoot and root dry weight of the treated plants were measured and compared with control. For both species, their biomass values were similar among treatments and did not differ from the control plants (dry weight were 0.6-1.0 and 1.1-1.7 g/plant for B. chinensis and I. aquatica, respectively). B. chinensis treated with 2, 10, and 20 mg/L of MG produced lower number of new leaf and had smaller and shorter leaf compared to control and treatment of 1 mg/L. These results indicate the different responses between plant species, which B. chinensis is more sensitive to contaminant compared to I. aquatica. There was no sign of MG and leucomalachite green (LMG) detected in root and shoot tissues of plants treated with MG at 20 mg/L, tested by thin layer chromatography. After plant harvest, toxicity of the growing material from all treatments was tested on mung beans. Percent germination (83-97%), seedling fresh weight (0.3-0.5 g/plant), and shoot length (11-12.5 cm) were similar to the control. These indicated that contaminant in growing material did not pose detrimental effect on mung beans. Based on these results, the water contaminated with low concentration of MG, such as discharge from aquaculture, may serve as ferti-irrigation water to compensate water shortage.Keywords: ferti-irrigation, soil toxicity, triphenylmethane dye, wastewater reuse
Procedia PDF Downloads 1999784 A C/T Polymorphism at the 5’ Untranslated Region of CD40 Gene in Patients Associated with Graves’ Disease in Kumaon Region
Authors: Sanjeev Kumar Shukla, Govind Singh, Prabhat Pant Shahzad Ahmad
Abstract:
Background: Graves’ disease is an autoimmune disorder with a genetic predisposition, and CD40 plays a pathogenic role in various autoimmune diseases. A single nucleotide polymorphism at position –1 of the Kozak sequence of the 5 untranslated regions of the CD40 gene of exon 1 has been reported to be associated with the development of Graves’ Disease. Objective: The aim of the present study was to investigate whether CD40 gene polymorphism confers susceptibility to Graves’ disease in the Kumaon region. CD40 gene polymorphisms were studied in Graves’ Disease patients (n=50) and healthy control subjects without anti-thyroid autoantibodies or a family history of autoimmune disorders (n=50). Material and Method: CD40 gene polymorphisms were studied in fifty Graves’ Disease patients and fifty healthy control subjects. All samples were collected from STG Hospital, Haldwani, Nainital. A C/T polymorphism at position –1 of the CD40 gene was measured using the polymerase chain reaction-restriction fragment length polymorphism. Results: There was no significant difference in allele or genotype frequency of the CD40 SNP between Graves’ Disease and control subjects. There was a significant decrease in the TT genotype frequency in the Graves’ Disease patients who developed Graves’ Disease after 40 years old than those under 40 years of age. These data suggest that the SNP of the CD40 gene is associated with susceptibility to the later onset of Graves’ Disease. Conclusion: The CD40 gene was a different susceptibility gene for Graves’ Disease within certain families because it was both linked and associated with Graves’ Disease.Keywords: autoimmune diseases, pathogenesis, diagnosis, therapy
Procedia PDF Downloads 519783 Determinants of Breastfeeding in Thailand
Authors: Patarapan Odton
Abstract:
This study investigates demographic and socio-economic factors of breastfeeding practice, including exclusively breastfeeding among children in Thailand using the Multiple Indicator Cluster Survey (MICS3 and MICS4). Logistic regression models were used to examine the determinants of initial breastfeeding, exclusively breastfeeding, and predominant breastfeeding, using data from women and children section of the survey. For initial breastfeeding, women live in rural area were more likely to start breastfeeding within one day of birth rather than who live in urban area in both round of the surveys. In year 2012, there were significantly higher probabilities of women in rural area started breastfeeding within one hour of birth compare to urban area. Women in southern Thailand have higher probabilities of start breastfeeding within one hour and one day than women in Bangkok and central region. During the year 2005-2006, children aged less than 5 years old lived in rural area have been breastfed higher than children in urban area. Children live in the northeast region were more likely to have been breastfed than the other regions. Only the second wealth quintile group was significant higher probability of ever been breastfed than the poorest group. The findings in the second round of the survey are different from the year 2005-06. In 2012, there was no difference in probability of ever been breastfed among children live in urban and rural area, children in Bangkok and central region were less probability of ever been breastfed than the others.Keywords: Breastfeeding, Exclusive Breastfeeding, Predominant Breastfeeding, Urban-Rural Difference
Procedia PDF Downloads 2619782 Decision Trees Constructing Based on K-Means Clustering Algorithm
Authors: Loai Abdallah, Malik Yousef
Abstract:
A domain space for the data should reflect the actual similarity between objects. Since objects belonging to the same cluster usually share some common traits even though their geometric distance might be relatively large. In general, the Euclidean distance of data points that represented by large number of features is not capturing the actual relation between those points. In this study, we propose a new method to construct a different space that is based on clustering to form a new distance metric. The new distance space is based on ensemble clustering (EC). The EC distance space is defined by tracking the membership of the points over multiple runs of clustering algorithm metric. Over this distance, we train the decision trees classifier (DT-EC). The results obtained by applying DT-EC on 10 datasets confirm our hypotheses that embedding the EC space as a distance metric would improve the performance.Keywords: ensemble clustering, decision trees, classification, K nearest neighbors
Procedia PDF Downloads 1919781 Selection of Designs in Ordinal Regression Models under Linear Predictor Misspecification
Authors: Ishapathik Das
Abstract:
The purpose of this article is to find a method of comparing designs for ordinal regression models using quantile dispersion graphs in the presence of linear predictor misspecification. The true relationship between response variable and the corresponding control variables are usually unknown. Experimenter assumes certain form of the linear predictor of the ordinal regression models. The assumed form of the linear predictor may not be correct always. Thus, the maximum likelihood estimates (MLE) of the unknown parameters of the model may be biased due to misspecification of the linear predictor. In this article, the uncertainty in the linear predictor is represented by an unknown function. An algorithm is provided to estimate the unknown function at the design points where observations are available. The unknown function is estimated at all points in the design region using multivariate parametric kriging. The comparison of the designs are based on a scalar valued function of the mean squared error of prediction (MSEP) matrix, which incorporates both variance and bias of the prediction caused by the misspecification in the linear predictor. The designs are compared using quantile dispersion graphs approach. The graphs also visually depict the robustness of the designs on the changes in the parameter values. Numerical examples are presented to illustrate the proposed methodology.Keywords: model misspecification, multivariate kriging, multivariate logistic link, ordinal response models, quantile dispersion graphs
Procedia PDF Downloads 3939780 Analyzing Social and Political Constraints in Development Aid Projects in Post Conflict Region of SWAT, Pakistan
Authors: Faizan Sultan
Abstract:
Non-government organizations (NGOs) in Pakistan have the potential to deliver services such as health, education, and rural development through targeting the most vulnerable communities of society. Having this significant importance, NGOs are facing numerous challenges in service delivery. So, there is a need to identify the challenges NGOs face in community development, particularly post-conflict development. The current study has analyzed the social and political constraints in development projects in the post-conflict region of the Swat district of Khyber Pakhtunkhwa. The objectives of this study are “What are the social and political constraints faced by the nongovernmental organizations in the implementation of development aid Projects in post-conflict development of Swat and to examine the challenges in coordination mechanism between government departments, NGOs, and community in reconstruction activities”. This research is based upon both the quantitative and qualitative data that is being gathered from the NGO representatives, government officials, and community members who were involved in post-conflict development interventions in the Swat region. A purposive sampling technique was used to select respondents from the community members/activists (25 in number) and government and NGO officials (10 in number). Based on analysis against our objectives, NGOs have faced numerous constraints such as Insecurity, Negative Perceptions about NGOs, restrictions on women's mobility, government policies and regulations, lack of coordination and networking, trust deficit, and political interference while implementing their project interventions. These findings concluded that constraints have affected project implementation to a greater extent, including women's participation, involvement of marginalized populations, and equal distribution of resources. In the Swat region, NGOs cannot openly discuss sensitive projects such as human rights, gender-based projects, or women empowerment as these issues are very sensitive to the local community due to their cultural values. The community may not allow their females to go outside their homes as this region is a male-dominated society. Similarly, lack of communication and poor networking for the arrangements of the project meetings were also the major constraints.Keywords: national disaster management authority, millennium development goals, provincial disaster management authority, provincial reconstruction, rehabilitation and settlement authority
Procedia PDF Downloads 599779 Effect of Non-Newtonian Behavior of Oil Phase on Oil-Water Stratified Flow in a Horizontal Channel
Authors: Satish Kumar Dewangan, Santosh Kumar Senapati
Abstract:
The present work focuses on the investigation of the effect of non-Newtonian behavior on the oil-water stratified flow in a horizontal channel using ANSYS Fluent. Coupled level set and volume of fluid (CLSVOF) has been used to capture the evolving interface assuming unsteady, coaxial flow with constant fluid properties. The diametric variation of oil volume fraction, mixture velocity, total pressure and pressure gradient has been studied. Non-Newtonian behavior of oil has been represented by the power law model in order to investigate the effect of flow behavior index. Stratified flow pattern tends to assume dispersed flow pattern with the change in the behavior of oil to non-Newtonian. The pressure gradient is found to be very much sensitive to the flow behavior index. The findings could be useful in designing the transportation pipe line in petroleum industries.Keywords: oil-water stratified flow, horizontal channel, CLSVOF, non–Newtonian behaviour.
Procedia PDF Downloads 4929778 Antibacterial and Antioxidant Activities of Artemisia herba-alba Asso Essential Oil Growing in M’sila (Algeria)
Authors: Asma Meliani, S. Lakehal, F. Z. Benrebiha, C. Chaouia
Abstract:
There is an increasing interest in phytochemicals as new source of natural antioxidant and antimicrobial agents. Plants essential oils have come more into the focus of phytomedicine. Many researchers have reported various biological and/or pharmacological properties of Artemisia herba alba Asso essential oil. The present study describes antimicrobial and antioxidant properties of Artemisia herba alba Asso essential oil. Artemisia herba alba Asso essential oil obtained by hydrodistillation (using Clevenger type apparatus) growing in Algeria (M’sila) was analyzed by GC-MS. The essential oil yield of the study was 0.7%. The major components were found to be camphor, chrysanthenone et 1,8-cineole. The antimicrobial activity of the essential oil was tested against four bacteria (Gram-negative and Gram-positive) and three fungi using the diffusion method and by determining the inhibition zone. The oil was found to have significant antibacterial activity. In addition, antioxidant activity was determined by 1, 1-diphenyl-1-picrylhydrazyl (DPPH) assay, ferric reducing (FRAP) assay and β-carotene bleaching test, and high activity was found for Artemisia herba-alba oil.Keywords: Artemisia herba-alba, essential oil, antibacterial activity, antioxidant activity
Procedia PDF Downloads 3339777 Flexible Arm Manipulator Control for Industrial Tasks
Authors: Mircea Ivanescu, Nirvana Popescu, Decebal Popescu, Dorin Popescu
Abstract:
This paper addresses the control problem of a class of hyper-redundant arms. In order to avoid discrepancy between the mathematical model and the actual dynamics, the dynamic model with uncertain parameters of this class of manipulators is inferred. A procedure to design a feedback controller which stabilizes the uncertain system has been proposed. A PD boundary control algorithm is used in order to control the desired position of the manipulator. This controller is easy to implement from the point of view of measuring techniques and actuation. Numerical simulations verify the effectiveness of the presented methods. In order to verify the suitability of the control algorithm, a platform with a 3D flexible manipulator has been employed for testing. Experimental tests on this platform illustrate the applications of the techniques developed in the paper.Keywords: distributed model, flexible manipulator, observer, robot control
Procedia PDF Downloads 3219776 The Effect of Feature Selection on Pattern Classification
Authors: Chih-Fong Tsai, Ya-Han Hu
Abstract:
The aim of feature selection (or dimensionality reduction) is to filter out unrepresentative features (or variables) making the classifier perform better than the one without feature selection. Since there are many well-known feature selection algorithms, and different classifiers based on different selection results may perform differently, very few studies consider examining the effect of performing different feature selection algorithms on the classification performances by different classifiers over different types of datasets. In this paper, two widely used algorithms, which are the genetic algorithm (GA) and information gain (IG), are used to perform feature selection. On the other hand, three well-known classifiers are constructed, which are the CART decision tree (DT), multi-layer perceptron (MLP) neural network, and support vector machine (SVM). Based on 14 different types of datasets, the experimental results show that in most cases IG is a better feature selection algorithm than GA. In addition, the combinations of IG with DT and IG with SVM perform best and second best for small and large scale datasets.Keywords: data mining, feature selection, pattern classification, dimensionality reduction
Procedia PDF Downloads 6699775 Adaptive Filtering in Subbands for Supervised Source Separation
Authors: Bruna Luisa Ramos Prado Vasques, Mariane Rembold Petraglia, Antonio Petraglia
Abstract:
This paper investigates MIMO (Multiple-Input Multiple-Output) adaptive filtering techniques for the application of supervised source separation in the context of convolutive mixtures. From the observation that there is correlation among the signals of the different mixtures, an improvement in the NSAF (Normalized Subband Adaptive Filter) algorithm is proposed in order to accelerate its convergence rate. Simulation results with mixtures of speech signals in reverberant environments show the superior performance of the proposed algorithm with respect to the performances of the NLMS (Normalized Least-Mean-Square) and conventional NSAF, considering both the convergence speed and SIR (Signal-to-Interference Ratio) after convergence.Keywords: adaptive filtering, multi-rate processing, normalized subband adaptive filter, source separation
Procedia PDF Downloads 4369774 Retraction Free Motion Approach and Its Application in Automated Robotic Edge Finishing and Inspection Processes
Authors: M. Nemer, E. I. Konukseven
Abstract:
In this paper, a motion generation algorithm for a six Degrees of Freedom (DoF) robotic hand in a static environment is presented. The purpose of developing this method is to be used in the path generation of the end-effector for edge finishing and inspection processes by utilizing the CAD model of the considered workpiece. Nonetheless, the proposed algorithm may be extended to be applicable for other similar manufacturing processes. A software package programmed in the application programming interface (API) of SolidWorks generates tool path data for the robot. The proposed method significantly simplifies the given problem, resulting in a reduction in the CPU time needed to generate the path, and offers an efficient overall solution. The ABB IRB2000 robot is chosen for executing the generated tool path.Keywords: CAD-based tools, edge deburring, edge scanning, offline programming, path generation
Procedia PDF Downloads 2849773 Reflections on the Trajectory of an Online Literature Cafe through Its Music and Arts Activities
Authors: Mariko Hara, Mari Aoki, Takako Ito, Masao Sugita
Abstract:
Social distancing measures due to the COVID-19 crisis had a severe impact on music and art practices based in community settings. They had to re-think how to connect with their dispersed community using online tools. As the social distancing continues, there is an urgent need to investigate the possibilities of online community music and art practices. Are they sustainable actions that can have positive impacts on the community and the quality of lives of people over time? The Online Lindgren Café (hereafter ‘OLC’) is a monthly online literature event which started in June 2020. In the OLC, up to 14 members meet online to discuss the works of Astrid Lindgren and similar authors. Members come from various places in Japan and Norway, with a variety of expertise from music therapy, music education, psychotherapy, music sociology, storytelling, and theatre, and their family members join them. In these meetings, music and arts activities emerged in response to interests among the members. The resources and experiences of the members helped to develop these activities further. This paper first introduces one of the music and art activities in one specific event, a collaborative picture book-making with music, which was initiated and led by the second author. The third author chose the music, and the activity itself was recorded. This is followed by the description of a reflecting event, where the recording of the collaborative picture book-making activity was shared to facilitate further creations (drawings, haiku, and fabric weaving) as well as group reflections on the trajectories of the Online Lindgren Café. Finally, we will discuss the preliminary findings using the data collected at the reflecting event. Key findings suggest that the resource-driven approach of the OLC leveled the relationships among the intergenerational, multi-cultural, and interdisciplinary members. This enabled the members to set aside their professional and/or predominant identities, which allowed them to discover their own and others’ resources. The relaxed, unstructured, and liminal phenomenon at OLC can be regarded as a form of communitas, where members gain a sense of liberation and belonging in a different way from in-person communications. Participation from one’s home, as well as a video conferencing function that allowed the members to position themselves among the other participants in equal-sized windows, seems to have enabled members to feel safe to express themselves openly at the same time feel a sense of belonging. Furthermore, in the OLC, music and arts activities acted to inclusively connect and re-connect dispersed, intergenerational members with each other. For instance, in a music and drawing activity, music acted as a means for each member to engage in their own ‘drawing space’ while still feeling connected with the others. The positive experiences from these activities inspired the members to use similar approaches outside of the OLC. The finding suggests that, because of its resource-driven approach supported by the music and arts activities, the OLC could be developed further as a permeable and sustainable action even after any current social distancing measures are lifted.Keywords: communitas, COVID-19, musical affordances, online community of practices, resource-driven approach
Procedia PDF Downloads 1349772 Parallel Pipelined Conjugate Gradient Algorithm on Heterogeneous Platforms
Authors: Sergey Kopysov, Nikita Nedozhogin, Leonid Tonkov
Abstract:
The article presents a parallel iterative solver for large sparse linear systems which can be used on a heterogeneous platform. Traditionally, the problem of solving linear systems does not scale well on multi-CPU/multi-GPUs clusters. For example, most of the attempts to implement the classical conjugate gradient method were at best counted in the same amount of time as the problem was enlarged. The paper proposes the pipelined variant of the conjugate gradient method (PCG), a formulation that is potentially better suited for hybrid CPU/GPU computing since it requires only one synchronization point per one iteration instead of two for standard CG. The standard and pipelined CG methods need the vector entries generated by the current GPU and other GPUs for matrix-vector products. So the communication between GPUs becomes a major performance bottleneck on multi GPU cluster. The article presents an approach to minimize the communications between parallel parts of algorithms. Additionally, computation and communication can be overlapped to reduce the impact of data exchange. Using the pipelined version of the CG method with one synchronization point, the possibility of asynchronous calculations and communications, load balancing between the CPU and GPU for solving the large linear systems allows for scalability. The algorithm is implemented with the combined use of technologies: MPI, OpenMP, and CUDA. We show that almost optimum speed up on 8-CPU/2GPU may be reached (relatively to a one GPU execution). The parallelized solver achieves a speedup of up to 5.49 times on 16 NVIDIA Tesla GPUs, as compared to one GPU.Keywords: conjugate gradient, GPU, parallel programming, pipelined algorithm
Procedia PDF Downloads 1659771 A Column Generation Based Algorithm for Airline Cabin Crew Rostering Problem
Authors: Nan Xu
Abstract:
In airlines, the crew scheduling problem is usually decomposed into two stages: crew pairing and crew rostering. In the crew pairing stage, pairings are generated such that each flight is covered by exactly one pairing and the overall cost is minimized. In the crew rostering stage, the pairings generated in the crew pairing stage are combined with off days, training and other breaks to create individual work schedules. The paper focuses on cabin crew rostering problem, which is challenging due to the extremely large size and the complex working rules involved. In our approach, the objective of rostering consists of two major components. The first is to minimize the number of unassigned pairings and the second is to ensure the fairness to crew members. There are two measures of fairness to crew members, the number of overnight duties and the total fly-hour over a given period. Pairings should be assigned to each crew member so that their actual overnight duties and fly hours are as close to the expected average as possible. Deviations from the expected average are penalized in the objective function. Since several small deviations are preferred than a large deviation, the penalization is quadratic. Our model of the airline crew rostering problem is based on column generation. The problem is decomposed into a master problem and subproblems. The mater problem is modeled as a set partition problem and exactly one roster for each crew is picked up such that the pairings are covered. The restricted linear master problem (RLMP) is considered. The current subproblem tries to find columns with negative reduced costs and add them to the RLMP for the next iteration. When no column with negative reduced cost can be found or a stop criteria is met, the procedure ends. The subproblem is to generate feasible crew rosters for each crew member. A separate acyclic weighted graph is constructed for each crew member and the subproblem is modeled as resource constrained shortest path problems in the graph. Labeling algorithm is used to solve it. Since the penalization is quadratic, a method to deal with non-additive shortest path problem using labeling algorithm is proposed and corresponding domination condition is defined. The major contribution of our model is: 1) We propose a method to deal with non-additive shortest path problem; 2) Operation to allow relaxing some soft rules is allowed in our algorithm, which can improve the coverage rate; 3) Multi-thread techniques are used to improve the efficiency of the algorithm when generating Line-of-Work for crew members. Here a column generation based algorithm for the airline cabin crew rostering problem is proposed. The objective is to assign a personalized roster to crew member which minimize the number of unassigned pairings and ensure the fairness to crew members. The algorithm we propose in this paper has been put into production in a major airline in China and numerical experiments show that it has a good performance.Keywords: aircrew rostering, aircrew scheduling, column generation, SPPRC
Procedia PDF Downloads 1469770 Antibacterial and Antioxidant Properties of Artemisia herba-alba Asso Essential Oil Growing in M’sila, Algeria
Authors: Asma Meliani, S. Lakehal, F. Z. Benrebiha, C. Chaouia
Abstract:
There is an increasing interest in phytochemicals as new source of natural antioxidant and antimicrobial agents. Plants essential oils have come more into the focus of phytomedicine. Many researchers have reported various biological and/or pharmacological properties of Artemisia herba alba Asso essential oil. The present study describes antimicrobial and antioxidant properties of Artemisia herba alba Asso essential oil. Artemisia herba alba Asso essential oil obtained by hydrodistillation (using Clevenger type apparatus) growing in Algeria (M’sila) was analyzed by GC-MS. The essential oil yield of the study was 0.7 %. The major components were found to be camphor, chrysanthenone et 1,8-cineole. The antimicrobial activity of the essential oil was tested against four bacteria (Gram-negative and Gram-positive) and one fungi using the diffusion method and by determining the inhibition zone. The oil was found to have significant antibacterial activity. In addition, antioxidant activity was determined by 1,1-diphenyl-1-picrylhydrazyl (DPPH) assay, ferric reducing (FRAP) assay and β-carotene bleaching test, and high activity was found for Artemisia herba-alba oil.Keywords: Artemisia herba-alba, essential oil, antibacterial activity, antioxidant activity
Procedia PDF Downloads 4709769 Mitigating Acid Mine Drainage Pollution: A Case Study In the Witwatersrand Area of South Africa
Authors: Elkington Sibusiso Mnguni
Abstract:
In South Africa, mining has been a key economic sector since the discovery of gold in 1886 in the Witwatersrand region, where the city of Johannesburg is located. However, some mines have since been decommissioned, and the continuous pumping of acid mine drainage (AMD) also stopped causing the AMD to rise towards the ground surface. This posed a serious environmental risk to the groundwater resources and river systems in the region. This paper documents the development and extent of the environmental damage as well as the measures implemented by the government to alleviate such damage. The study will add to the body of knowledge on the subject of AMD treatment to prevent environmental degradation. The method used to gather and collate relevant data and information was the desktop study. The key findings include the social and environmental impact of the AMD, which include the pollution of water sources for domestic use leading to skin and other health problems and the loss of biodiversity in some areas. It was also found that the technical intervention of constructing a plant to pump and treat the AMD using the high-density sludge technology was the most effective short-term solution available while a long-term solution was being explored. Some successes and challenges experienced during the implementation of the project are also highlighted. The study will be a useful record of the current status of the AMD treatment interventions in the region.Keywords: acid mine drainage, groundwater resources, pollution, river systems, technical intervention, high density sludge
Procedia PDF Downloads 1869768 Effect of Using a Mixture of Al2O3 Nanoparticles and 3-Aminopropyltriethoxysilane as the Sensing Membrane for Polysilicon Wire on pH Sensing
Authors: You-Lin Wu, Zong-Xian Wu, Jing-Jenn Lin, Shih-Hung Lin
Abstract:
In this work, a polysilicon wire (PSW) coated with a mixture of 3-aminopropyltriethoxysilane (r-APTES) and Al2O3 nanoparticles as the sensing membrane prepared with various Al2O3/r-APTES and dispersing agent/r-APTES ratios for pH sensing is studied. The r-APTES and dispersed Al2O3 nanoparticles mixture was directly transferred to PSW surface by solution phase deposition (SPD). It is found that using a mixture of Al2O3 nanoparticles and r-APTES as the sensing membrane help in improving the pH sensing of the PSW sensor and a 5 min SPD deposition time is the best. Dispersing agent is found to be necessary for better pH sensing when preparing the mixture of Al2O3 nanoparticles and r-APTES. The optimum condition for preparing the mixture is found to be Al2O3/r-APTES ratio of 2% and dispersing agent/r-APTES ratio of 0.3%.Keywords: al2o3 nanoparticles, ph sensing, polysilicon wire sensor, r-aptes
Procedia PDF Downloads 4149767 Measuring the Lean Readiness of Kuwaiti Manufacturing Industries
Authors: Mohamad Alnajem
Abstract:
Purpose: To measure the readiness of the Kuwaiti small and medium sized manufacturing industries (K-SMMIs) to implement the lean system (LS) through an evaluation of their existing quality practices, and compare such readiness among different product sectors and ownership types. Design/methodology/approach: This study adopts the measurement framework developed by Al-Najem et al. (2013), which establishes six constructs related to lean quality practices, namely: process, planning and control, customer relations, suppliers relations, HR, and top management and leadership. Data were collected from a survey of 50 K-SMMIs operating in different industrial sectors. One research question and two hypotheses were developed and tested using t-test and Levene’s test, descriptive analysis, and one-way ANOVA. Findings: The results demonstrate that the K-SMMIs are far from being ready to implement lean. In addition, the study found that product sector and ownership type have no significant impact on the lean readiness in the K-SMMIs. Practical implications: This research provides insight into preparing Kuwaiti, and other SMMIs, to implement the LS by creating an assessment of their existing lean practices and readiness. Originality/value: This research is among a limited number of studies that have addressed lean within the Arab region, and only the second to examine the level of lean readiness of the K-SMMIs. It expands the literature on lean in developing countries, particularly in the Arab region, and can provide guidance to research within other countries in the region.Keywords: Kuwaiti small and medium sized industries, lean system, lean readiness, manufacturing industries
Procedia PDF Downloads 1989766 Postpartum Depression and Its Association with Food Insecurity and Social Support among Women in Post-Conflict Northern Uganda
Authors: Kimton Opiyo, Elliot M. Berry, Patil Karamchand, Barnabas K. Natamba
Abstract:
Background: Postpartum depression (PPD) is a major psychiatric disorder that affects women soon after birth and in some cases, is a continuation of antenatal depression. Food insecurity (FI) and social support (SS) are known to be associated with major depressive disorder, and vice versa. This study was conducted to examine the interrelationships among FI, SS, and PPD among postpartum women in Gulu, a post-conflict region in Uganda. Methods: Cross-sectional data from postpartum women on depression symptoms, FI and SS were, respectively, obtained using the Center for Epidemiologic Studies-Depression (CES-D) scale, Individually Focused FI Access scale (IFIAS) and Duke-UNC functional social support scale. Standard regression methods were used to assess associations among FI, SS, and PPD. Results: A total of 239 women were studied, and 40% were found to have any PPD, i.e., with depressive symptom scores of ≥ 17. The mean ± standard deviation (SD) for FI score and SS scores were 6.47 ± 5.02 and 19.11 ± 4.23 respectively. In adjusted analyses, PPD symptoms were found to be positively associated with FI (unstandardized beta and standardized beta of 0.703 and 0.432 respectively, standard errors =0.093 and p-value < 0.0001) and negatively associated with SS (unstandardized beta and standardized beta of -0.263 and -0.135 respectively, standard errors = 0.111 and p-value = 0.019). Conclusions: Many women in this post-conflict region reported experiencing PPD. In addition, this data suggest that food security and psychosocial support interventions may help mitigate women’s experience of PPD or its severity.Keywords: postpartum depression, food insecurity, social support, post-conflict region
Procedia PDF Downloads 1689765 Detailed Quantum Circuit Design and Evaluation of Grover's Algorithm for the Bounded Degree Traveling Salesman Problem Using the Q# Language
Authors: Wenjun Hou, Marek Perkowski
Abstract:
The Traveling Salesman problem is famous in computing and graph theory. In short, it asks for the Hamiltonian cycle of the least total weight in a given graph with N nodes. All variations on this problem, such as those with K-bounded-degree nodes, are classified as NP-complete in classical computing. Although several papers propose theoretical high-level designs of quantum algorithms for the Traveling Salesman Problem, no quantum circuit implementation of these algorithms has been created up to our best knowledge. In contrast to previous papers, the goal of this paper is not to optimize some abstract complexity measures based on the number of oracle iterations, but to be able to evaluate the real circuit and time costs of the quantum computer. Using the emerging quantum programming language Q# developed by Microsoft, which runs quantum circuits in a quantum computer simulation, an implementation of the bounded-degree problem and its respective quantum circuit were created. To apply Grover’s algorithm to this problem, a quantum oracle was designed, evaluating the cost of a particular set of edges in the graph as well as its validity as a Hamiltonian cycle. Repeating the Grover algorithm with an oracle that finds successively lower cost each time allows to transform the decision problem to an optimization problem, finding the minimum cost of Hamiltonian cycles. N log₂ K qubits are put into an equiprobablistic superposition by applying the Hadamard gate on each qubit. Within these N log₂ K qubits, the method uses an encoding in which every node is mapped to a set of its encoded edges. The oracle consists of several blocks of circuits: a custom-written edge weight adder, node index calculator, uniqueness checker, and comparator, which were all created using only quantum Toffoli gates, including its special forms, which are Feynman and Pauli X. The oracle begins by using the edge encodings specified by the qubits to calculate each node that this path visits and adding up the edge weights along the way. Next, the oracle uses the calculated nodes from the previous step and check that all the nodes are unique. Finally, the oracle checks that the calculated cost is less than the previously-calculated cost. By performing the oracle an optimal number of times, a correct answer can be generated with very high probability. The oracle of the Grover Algorithm is modified using the recalculated minimum cost value, and this procedure is repeated until the cost cannot be further reduced. This algorithm and circuit design have been verified, using several datasets, to generate correct outputs.Keywords: quantum computing, quantum circuit optimization, quantum algorithms, hybrid quantum algorithms, quantum programming, Grover’s algorithm, traveling salesman problem, bounded-degree TSP, minimal cost, Q# language
Procedia PDF Downloads 1909764 Photo-Thermal Degradation Analysis of Single Junction Amorphous Silicon Solar Module Eva Encapsulation
Authors: Gilbert O. Osayemwenre, Meyer L. Edson
Abstract:
Ethylene vinyl acetate (EVA) encapsulation degradation affects the performance of photovoltaic (PV) module. Hotspot formation causes the EVA encapsulation to undergo photothermal deterioration and molecular breakdown by UV radiation. This leads to diffusion of chemical particles into other layers. During outdoor deployment, the EVA encapsulation in the affect region loses its adhesive strength, when this happen the affected region layer undergoes rapid delamination. The presence of photo-thermal degradation is detrimental to PV modules as it causes both optical and thermal degradation. Also, it enables the encapsulant to be more susceptible to chemicals substance and moisture. Our findings show a high concentration of Sodium, Phosphorus and Aluminium which originate from the glass substrate, cell emitter and back contact respectively.Keywords: ethylene vinyl acetate (EVA), encapsulation, photo-thermal degradation, thermogravimetric analysis (TGA), scanning probe microscope (SPM)
Procedia PDF Downloads 3079763 Scalable Learning of Tree-Based Models on Sparsely Representable Data
Authors: Fares Hedayatit, Arnauld Joly, Panagiotis Papadimitriou
Abstract:
Many machine learning tasks such as text annotation usually require training over very big datasets, e.g., millions of web documents, that can be represented in a sparse input space. State-of the-art tree-based ensemble algorithms cannot scale to such datasets, since they include operations whose running time is a function of the input space size rather than a function of the non-zero input elements. In this paper, we propose an efficient splitting algorithm to leverage input sparsity within decision tree methods. Our algorithm improves training time over sparse datasets by more than two orders of magnitude and it has been incorporated in the current version of scikit-learn.org, the most popular open source Python machine learning library.Keywords: big data, sparsely representable data, tree-based models, scalable learning
Procedia PDF Downloads 263