Search results for: climatic classification
1124 Impacts of Climate Elements on the Annual Periodic Behavior of the Shallow Groundwater Level: Case Study from Central-Eastern Europe
Authors: Tamas Garamhegyi, Jozsef Kovacs, Rita Pongracz, Peter Tanos, Balazs Trasy, Norbert Magyar, Istvan G. Hatvani
Abstract:
Like most environmental processes, shallow groundwater fluctuation under natural circumstances also behaves periodically. With the statistical tools at hand, it can easily be determined if a period exists in the data or not. Thus, the question may be raised: Does the estimated average period time characterize the whole time period, or not? This is especially important in the case of such complex phenomena as shallow groundwater fluctuation, driven by numerous factors. Because of the continuous changes in the oscillating components of shallow groundwater time series, the most appropriate method should be used to investigate its periodicity, this is wavelet spectrum analysis. The aims of the research were to investigate the periodic behavior of the shallow groundwater time series of an agriculturally important and drought sensitive region in Central-Eastern Europe and its relationship to the European pressure action centers. During the research ~216 shallow groundwater observation wells located in the eastern part of the Great Hungarian Plain with a temporal coverage of 50 years were scanned for periodicity. By taking the full-time interval as 100%, the presence of any period could be determined in percentages. With the complex hydrogeological/meteorological model developed in this study, non-periodic time intervals were found in the shallow groundwater levels. On the local scale, this phenomenon linked to drought conditions, and on a regional scale linked to the maxima of the regional air pressures in the Gulf of Genoa. The study documented an important link between shallow groundwater levels and climate variables/indices facilitating the necessary adaptation strategies on national and/or regional scales, which have to take into account the predictions of drought-related climatic conditions.Keywords: climate change, drought, groundwater periodicity, wavelet spectrum and coherence analyses
Procedia PDF Downloads 3851123 Introduction to Techno-Sectoral Innovation System Modeling and Functions Formulating
Authors: S. M. Azad, H. Ghodsi Pour, F. Roshannafasa
Abstract:
In recent years ‘technology management and policymaking’ is one of the most important problems in management science. In this field, different generations of innovation and technology management are presented which the earliest one is Innovation System (IS) approach. In a general classification, innovation systems are divided in to 4 approaches: Technical, sectoral, regional, and national. There are many researches in relation to each of these approaches in different academic fields. Every approach has some benefits. If two or more approaches hybrid, their benefits would be combined. In addition, according to the sectoral structure of the governance model in Iran, in many sectors such as information technology, the combination of three other approaches with sectoral approach is essential. Hence, in this paper, combining two IS approaches (technical and sectoral) and using system dynamics, a generic model is presented for a sample of software industry. As a complimentary point, this article is introducing a new hybrid approach called Techno-Sectoral Innovation System. This TSIS model is accomplished by Changing concepts of the ‘functions’ which came from Technological IS literature and using them into sectoral system as measurable indicators.Keywords: innovation system, technology, techno-sectoral system, functional indicators, system dynamics
Procedia PDF Downloads 4391122 Plant Leaf Recognition Using Deep Learning
Authors: Aadhya Kaul, Gautam Manocha, Preeti Nagrath
Abstract:
Our environment comprises of a wide variety of plants that are similar to each other and sometimes the similarity between the plants makes the identification process tedious thus increasing the workload of the botanist all over the world. Now all the botanists cannot be accessible all the time for such laborious plant identification; therefore, there is an urge for a quick classification model. Also, along with the identification of the plants, it is also necessary to classify the plant as healthy or not as for a good lifestyle, humans require good food and this food comes from healthy plants. A large number of techniques have been applied to classify the plants as healthy or diseased in order to provide the solution. This paper proposes one such method known as anomaly detection using autoencoders using a set of collections of leaves. In this method, an autoencoder model is built using Keras and then the reconstruction of the original images of the leaves is done and the threshold loss is found in order to classify the plant leaves as healthy or diseased. A dataset of plant leaves is considered to judge the reconstructed performance by convolutional autoencoders and the average accuracy obtained is 71.55% for the purpose.Keywords: convolutional autoencoder, anomaly detection, web application, FLASK
Procedia PDF Downloads 1631121 Effect of Floods on Water Quality: A Global Review and Analysis
Authors: Apoorva Bamal, Agnieszka Indiana Olbert
Abstract:
Floods are known to be one of the most devastating hydro-climatic events, impacting a wide range of stakeholders in terms of environmental, social and economic losses. With difference in inundation durations and level of impact, flood hazards are of different degrees and strength. Amongst various set of domains being impacted by floods, environmental degradation in terms of water quality deterioration is one of the majorly effected but less highlighted domains across the world. The degraded water quality is caused by numerous natural and anthropogenic factors that are both point and non-point sources of pollution. Therefore, it is essential to understand the nature and source of the water pollution due to flooding. The major impact of floods is not only on the physico-chemical water quality parameters, but also on the biological elements leading to a vivid influence on the aquatic ecosystem. This deteriorated water quality is impacting many water categories viz. agriculture, drinking water, aquatic habitat, and miscellaneous services requiring an appropriate water quality to survive. This study identifies, reviews, evaluates and assesses multiple researches done across the world to determine the impact of floods on water quality. With a detailed statistical analysis of top relevant researches, this study is a synopsis of the methods used in assessment of impact of floods on water quality in different geographies, and identifying the gaps for further abridgement. As per majority of the studies, different flood magnitudes have varied impact on the water quality parameters leading to either increased or decreased values as compared to the recommended values for various categories. There is also an evident shift of the biological elements in the impacted waters leading to a change in its phenology and inhabitants of the specified water body. This physical, chemical and biological water quality degradation by floods is dependent upon its duration, extent, magnitude and flow direction. Therefore, this research provides an overview into the multiple impacts of floods on water quality, along with a roadmap of way forward to an efficient and uniform linkage of floods and impacted water quality dynamics.Keywords: floods, statistical analysis, water pollution, water quality
Procedia PDF Downloads 811120 Predicting Machine-Down of Woodworking Industrial Machines
Authors: Matteo Calabrese, Martin Cimmino, Dimos Kapetis, Martina Manfrin, Donato Concilio, Giuseppe Toscano, Giovanni Ciandrini, Giancarlo Paccapeli, Gianluca Giarratana, Marco Siciliano, Andrea Forlani, Alberto Carrotta
Abstract:
In this paper we describe a machine learning methodology for Predictive Maintenance (PdM) applied on woodworking industrial machines. PdM is a prominent strategy consisting of all the operational techniques and actions required to ensure machine availability and to prevent a machine-down failure. One of the challenges with PdM approach is to design and develop of an embedded smart system to enable the health status of the machine. The proposed approach allows screening simultaneously multiple connected machines, thus providing real-time monitoring that can be adopted with maintenance management. This is achieved by applying temporal feature engineering techniques and training an ensemble of classification algorithms to predict Remaining Useful Lifetime of woodworking machines. The effectiveness of the methodology is demonstrated by testing an independent sample of additional woodworking machines without presenting machine down event.Keywords: predictive maintenance, machine learning, connected machines, artificial intelligence
Procedia PDF Downloads 2261119 WebAppShield: An Approach Exploiting Machine Learning to Detect SQLi Attacks in an Application Layer in Run-time
Authors: Ahmed Abdulla Ashlam, Atta Badii, Frederic Stahl
Abstract:
In recent years, SQL injection attacks have been identified as being prevalent against web applications. They affect network security and user data, which leads to a considerable loss of money and data every year. This paper presents the use of classification algorithms in machine learning using a method to classify the login data filtering inputs into "SQLi" or "Non-SQLi,” thus increasing the reliability and accuracy of results in terms of deciding whether an operation is an attack or a valid operation. A method Web-App auto-generated twin data structure replication. Shielding against SQLi attacks (WebAppShield) that verifies all users and prevents attackers (SQLi attacks) from entering and or accessing the database, which the machine learning module predicts as "Non-SQLi" has been developed. A special login form has been developed with a special instance of data validation; this verification process secures the web application from its early stages. The system has been tested and validated, up to 99% of SQLi attacks have been prevented.Keywords: SQL injection, attacks, web application, accuracy, database
Procedia PDF Downloads 1511118 Prediction of All-Beta Protein Secondary Structure Using Garnier-Osguthorpe-Robson Method
Authors: K. Tejasri, K. Suvarna Vani, S. Prathyusha, S. Ramya
Abstract:
Proteins are chained sequences of amino acids which are brought together by the peptide bonds. Many varying formations of the chains are possible due to multiple combinations of amino acids and rotation in numerous positions along the chain. Protein structure prediction is one of the crucial goals worked towards by the members of bioinformatics and theoretical chemistry backgrounds. Among the four different structure levels in proteins, we emphasize mainly the secondary level structure. Generally, the secondary protein basically comprises alpha-helix and beta-sheets. Multi-class classification problem of data with disparity is truly a challenge to overcome and has to be addressed for the beta strands. Imbalanced data distribution constitutes a couple of the classes of data having very limited training samples collated with other classes. The secondary structure data is extracted from the protein primary sequence, and the beta-strands are predicted using suitable machine learning algorithms.Keywords: proteins, secondary structure elements, beta-sheets, beta-strands, alpha-helices, machine learning algorithms
Procedia PDF Downloads 941117 Tracing the Courtyard Typology from the Past: Highlighting a Need for Conservation in Case of Historic Settlement in Historic Town of Gwalior
Authors: Shivani Dolas, A. Richa Mishra
Abstract:
The existence of Courtyards in India can be traced back to ‘Indus valley civilization’ and various layers of history bearing implications like socio-cultural, traditional, religious, climatic, etc., moreover serving as a breathing space in case of historical core areas. Over time, with the overlay of various historic layers within the historic urban cores and the present high density populace, the cores are getting congested day by day. In this case, courtyards may emerge out as an efficient medium to provide quality of life through livable spaces. Presently, with the growing population of the historic town of Gwalior, town in Madhya Pradesh holds remarkable essence of courtyards with its multiple concepts over time. Its scale and function varies from an imposing grand appearance in palatial form, up to functional practices as residential. Its privilege can also be drawn in urban forms, in sharing single space by multiple dwellings and in temples which can be sketched specifically in the region. Moreover, the effectiveness of courtyards has proven balance and control of micro-climate in such composite climate region. The research paper aims to underline the concept of courtyards in case of a mixed use neighborhood, Naya bazar, in Lashkar area of Gwalior, which developed during 19th century, highlighting the need of its preservation. The paper also elaborates its various implications on user-space relationship as in the present context, and growing congestion in the area, user and space relationship is seen lost. The noticeable change in the behavioral context in buildings and users can be noticed with the downfall of courtyards, isolating users with land. Also, a concern has been expressed on negligence of courtyard planning in future development, suggesting recommendations on preserving the courtyard typology as heritage.Keywords: courtyards, Gwalior, historic settlement, heritage
Procedia PDF Downloads 1501116 Hybrid Feature Selection Method for Sentiment Classification of Movie Reviews
Authors: Vishnu Goyal, Basant Agarwal
Abstract:
Sentiment analysis research provides methods for identifying the people’s opinion written in blogs, reviews, social networking websites etc. Sentiment analysis is to understand what opinion people have about any given entity, object or thing. Sentiment analysis research can be broadly categorised into three types of approaches i.e. semantic orientation, machine learning and lexicon based approaches. Feature selection methods improve the performance of the machine learning algorithms by eliminating the irrelevant features. Information gain feature selection method has been considered best method for sentiment analysis; however, it has the drawback of selection of threshold. Therefore, in this paper, we propose a hybrid feature selection methods comprising of information gain and proposed feature selection method. Initially, features are selected using Information Gain (IG) and further more noisy features are eliminated using the proposed feature selection method. Experimental results show the efficiency of the proposed feature selection methods.Keywords: feature selection, sentiment analysis, hybrid feature selection
Procedia PDF Downloads 3381115 The Fishery Regulations in the Egyptian Marine Fisheries and Its Effectiveness
Authors: Sahar Fahmy Mehanna
Abstract:
Wild fisheries and aquaculture offer excellent opportunities to decrease hunger and improve nutrition, relieve poverty, create economic growth and guarantee healthier use of natural resources. Employment in fisheries and aquaculture has grown continuously quicker than in the agriculture sector, providing up to 55 million jobs worldwide. Fisheries and aquaculture supplied Egypt with 2.1 million tons of fish in 2021, mostly used as food for people. Fish production in Egypt has grown dramatically in the last three decades, where fish production increased from about 346 thousand tons in 1990 to up to 2.1 million tons in 2021. In contrast to natural resources, which increased by only 30% in the period from 1990 to 2021, aquaculture production increased by 2502% during the same period. The majority of wild fisheries production in Egypt arises from coastal areas, where pollution is one of the main challenges severely affected both the productivity and quality of fish stocks. Our marine resources are at the risk of irreversible loss to habitats, ecological functions, and biodiversity because of overfishing, pollution, destructive fishing methods, climatic changes, unsustainable coastal area development and the competing demands from different industrial uses and human activities. Illegal, Unreported and Unregulated (IUU) Fishing continues to be a big challenge to achieve sustainable fisheries. Furthermore, poor governance, management and practices are a further challenge. Reducing overfishing, stimulating responsible and sustainable fisheries management, applying aquaculture new and friendly practices and conserving the marine environment health are among the government’s best opportunities to provide highly nutritious food to the increasing population in Egypt. The present presentation will discuss the fishery regulations in the Egyptian marine fisheries that taken to maintain, protect and promote the different Egyptian marine environments and to what extent these regulations were effective.Keywords: egypt, marine fisheries, fishery regulations, fisheries management, Marine ecosystem conservation
Procedia PDF Downloads 691114 Hierarchical Piecewise Linear Representation of Time Series Data
Authors: Vineetha Bettaiah, Heggere S. Ranganath
Abstract:
This paper presents a Hierarchical Piecewise Linear Approximation (HPLA) for the representation of time series data in which the time series is treated as a curve in the time-amplitude image space. The curve is partitioned into segments by choosing perceptually important points as break points. Each segment between adjacent break points is recursively partitioned into two segments at the best point or midpoint until the error between the approximating line and the original curve becomes less than a pre-specified threshold. The HPLA representation achieves dimensionality reduction while preserving prominent local features and general shape of time series. The representation permits course-fine processing at different levels of details, allows flexible definition of similarity based on mathematical measures or general time series shape, and supports time series data mining operations including query by content, clustering and classification based on whole or subsequence similarity.Keywords: data mining, dimensionality reduction, piecewise linear representation, time series representation
Procedia PDF Downloads 2751113 A Deep Learning Based Approach for Dynamically Selecting Pre-processing Technique for Images
Authors: Revoti Prasad Bora, Nikita Katyal, Saurabh Yadav
Abstract:
Pre-processing plays an important role in various image processing applications. Most of the time due to the similar nature of images, a particular pre-processing or a set of pre-processing steps are sufficient to produce the desired results. However, in the education domain, there is a wide variety of images in various aspects like images with line-based diagrams, chemical formulas, mathematical equations, etc. Hence a single pre-processing or a set of pre-processing steps may not yield good results. Therefore, a Deep Learning based approach for dynamically selecting a relevant pre-processing technique for each image is proposed. The proposed method works as a classifier to detect hidden patterns in the images and predicts the relevant pre-processing technique needed for the image. This approach experimented for an image similarity matching problem but it can be adapted to other use cases too. Experimental results showed significant improvement in average similarity ranking with the proposed method as opposed to static pre-processing techniques.Keywords: deep-learning, classification, pre-processing, computer vision, image processing, educational data mining
Procedia PDF Downloads 1631112 Towards Integrating Statistical Color Features for Human Skin Detection
Authors: Mohd Zamri Osman, Mohd Aizaini Maarof, Mohd Foad Rohani
Abstract:
Human skin detection recognized as the primary step in most of the applications such as face detection, illicit image filtering, hand recognition and video surveillance. The performance of any skin detection applications greatly relies on the two components: feature extraction and classification method. Skin color is the most vital information used for skin detection purpose. However, color feature alone sometimes could not handle images with having same color distribution with skin color. A color feature of pixel-based does not eliminate the skin-like color due to the intensity of skin and skin-like color fall under the same distribution. Hence, the statistical color analysis will be exploited such mean and standard deviation as an additional feature to increase the reliability of skin detector. In this paper, we studied the effectiveness of statistical color feature for human skin detection. Furthermore, the paper analyzed the integrated color and texture using eight classifiers with three color spaces of RGB, YCbCr, and HSV. The experimental results show that the integrating statistical feature using Random Forest classifier achieved a significant performance with an F1-score 0.969.Keywords: color space, neural network, random forest, skin detection, statistical feature
Procedia PDF Downloads 4621111 Study of the Potential of Raw Sediments and Sediments Treated with Lime or Cement for Use in a Foundation Layer and the Base Layer of a Roadway
Authors: Nor-Edine Abriak, Mahfoud Benzerzour, Mouhamadou Amar, Abdeljalil Zri
Abstract:
In this work, firstly we have studied the potential of raw sediments and sediments treated with lime or cement for use in a foundation layer and the base layer of a roadway. Secondly, we have examined mineral changes caused by the addition of lime or cement in order to explain the mechanical performance of stabilized sediments. After determining the amount of lime and cement required stabilizing the sediments, the compaction characteristics and Immediate Bearing Capacity (IBI) were studied using the Modified Proctor method. Then, the evolution of the three parameters, which are optimum water content, maximum dry density and IBI, were determined. Mechanical performances can be evaluated through resistance to compression, resistance under traction and the elasticity modulus. The resistances of the formulations treated with ROLAC®645 increase with the amount of ROLAC®645. Traction resistance and the elastic modulus were used to evaluate the potential of the formulations as road construction materials using the classification diagram. The results show that all the other formulations with ROLAC®645 can be used in subgrades and foundation layers for roads.Keywords: sediment, lime, cement, roadway
Procedia PDF Downloads 2671110 Impact Assessment of Tropical Cyclone Hudhud on Visakhapatnam, Andhra Pradesh
Authors: Vivek Ganesh
Abstract:
Tropical cyclones are some of the most damaging events. They occur in yearly cycles and affect the coastal population with three dangerous effects: heavy rain, strong wind and storm surge. In order to estimate the area and the population affected by a cyclone, all the three types of physical impacts must be taken into account. Storm surge is an abnormal rise of water above the astronomical tides, generated by strong winds and drop in the atmospheric pressure. The main aim of the study is to identify the impact by comparing three different months data. The technique used here is NDVI classification technique for change detection and other techniques like storm surge modelling for finding the tide height. Current study emphasize on recent very severe cyclonic storm Hud Hud of category 3 hurricane which had developed on 8 October 2014 and hit the coast on 12 October 2014 which caused significant changes on land and coast of Visakhapatnam, Andhra Pradesh. In the present study, we have used Remote Sensing and GIS tools for investigating and quantifying the changes in vegetation and settlement.Keywords: inundation map, NDVI map, storm tide map, track map
Procedia PDF Downloads 2681109 Machine Learning Driven Analysis of Kepler Objects of Interest to Identify Exoplanets
Authors: Akshat Kumar, Vidushi
Abstract:
This paper identifies 27 KOIs, 26 of which are currently classified as candidates and one as false positives that have a high probability of being confirmed. For this purpose, 11 machine learning algorithms were implemented on the cumulative kepler dataset sourced from the NASA exoplanet archive; it was observed that the best-performing model was HistGradientBoosting and XGBoost with a test accuracy of 93.5%, and the lowest-performing model was Gaussian NB with a test accuracy of 54%, to test model performance F1, cross-validation score and RUC curve was calculated. Based on the learned models, the significant characteristics for confirm exoplanets were identified, putting emphasis on the object’s transit and stellar properties; these characteristics were namely koi_count, koi_prad, koi_period, koi_dor, koi_ror, and koi_smass, which were later considered to filter out the potential KOIs. The paper also calculates the Earth similarity index based on the planetary radius and equilibrium temperature for each KOI identified to aid in their classification.Keywords: Kepler objects of interest, exoplanets, space exploration, machine learning, earth similarity index, transit photometry
Procedia PDF Downloads 751108 Update Mosquito Species Composition and Distribution in Qatar
Authors: Fatima Alkhayat, Abu Hassan Ahmed
Abstract:
Qatar as the one of Middle East and Gulf country is growing rapidly due to urbanization. Urbanization, population’s movement and goods transportation in addition to climatic change all together create suitable environments for remerging and/or introduction of new disease vectors species. Unfortunately, knowledge on mosquito species composition and their geographical distribution in Qatar is extremely limited. The objective of present study is to provide update information on species composition and distribution. Mosquito larval survey carried out in six sentinel sites in Qatar. The collection was made on monthly basis in period from October 2013 to May 2015 using dipping techniques and identified to species level using appropriate pictorial keys. In total about 3,085 mosquito larvae were collected and identified to species compromising three mosquito genera, Culex 87.4% (n=2697), Ochlerotatus 9.9% (n= 305) and Anopheles 2.6% (n= 81). Among Culex genera; Culex quinquefasciatus represent 87.8% (n= 2369), Cx. pipiens 8.7% (n=237), and Cx. mattinglyi 3.4% (n=91). Culex quinquefasciatus was the most commonly collected species, representing 93.5% in Alwakra (n= 2216) which was observed in November, December, March, April and May when reached the peak. 6.4% in Nuaija (n= 151) was found in February and March and reached the peak in March. 0.1% in Alkaraana (n=2) only observed in April. Cx. pipiens was observed 50.2% in Rwdat Alfaras (n=120) and 48.9% in Hazm Almurkhiya (n=117). While in Rowdat Alfaras it was observed in Oct-May and in Hazm Almurkhiya from Oct-April. Cx. mattinglyi (n= 91) was only found in Nuaija from October to December. Ochlerotatus genera account 1 species Oc. dorsalis (n=305). The majority of Oc. dorsalis were observed in March and May, 98% in Nuaija (n= 299), followed by 2% in Alkhor (n=6) which was observed in January and February. Anopheles was only represented by An. stephensi which was found 69% in Alwakra (n= 56) in November, December, April and May, while 25.9% in Hazm Almurkhiya (n=21) and found in May and November. 6.2% in Rwadat Alfaras and was observed only in November and 1.2% in Nuaija (n=1) and observed in October. Further investigation is required on the composition and distribution of mosquito for implementing a surveillance program and control of mosquito-borne diseases in Qatar.Keywords: composition, distribution, mosquito, Qatar
Procedia PDF Downloads 2821107 PM10 Prediction and Forecasting Using CART: A Case Study for Pleven, Bulgaria
Authors: Snezhana G. Gocheva-Ilieva, Maya P. Stoimenova
Abstract:
Ambient air pollution with fine particulate matter (PM10) is a systematic permanent problem in many countries around the world. The accumulation of a large number of measurements of both the PM10 concentrations and the accompanying atmospheric factors allow for their statistical modeling to detect dependencies and forecast future pollution. This study applies the classification and regression trees (CART) method for building and analyzing PM10 models. In the empirical study, average daily air data for the city of Pleven, Bulgaria for a period of 5 years are used. Predictors in the models are seven meteorological variables, time variables, as well as lagged PM10 variables and some lagged meteorological variables, delayed by 1 or 2 days with respect to the initial time series, respectively. The degree of influence of the predictors in the models is determined. The selected best CART models are used to forecast future PM10 concentrations for two days ahead after the last date in the modeling procedure and show very accurate results.Keywords: cross-validation, decision tree, lagged variables, short-term forecasting
Procedia PDF Downloads 1941106 Comparison of Storage Facilities on Different Varieties of Orange Fleshed Sweet Potato Grown in Rwanda
Authors: Jean Paul Hategekimana, Dukuzumuremyi Yvonne, Mukeshimana Marthe, Alexandre Niyonshima
Abstract:
Sweet potato (Ipomoea batatas) is a very important staple food crop in Rwanda due to its high growth and consumption in all parts of the country. The effect of seven different storage conditions on the quality and nutritional composition of the three most grown and consumed varieties of orange-fleshed sweet potato (OFSP), namely Kabode, Terimbere, and Vita, were studied over a period of six weeks at Postharvest Service and Training Center of University Rwanda, Busogo Campus. The potato stored under the following conditions (zero energy cooling chamber, ground washed sweet potato, ground unwashed sweet potato, perforated washed sweet potato, perforated unwashed sweet potato, non-perforated washed sweet potato, and non-perforated unwashed sweet potato) were assessed in this study. These storage conditions are the modifications of existing methods currently used in Rwanda for suitable local climatic conditions. Hence, 30kgs of freshly harvested OFSP for each variety were bought from farmers of Gakenke and Rulindo districts and then transported to the postharvest training and service center UR-CAVM, Busogo Campus. 2.5kg of each potato sample was selected and stored under the above-mentioned storage conditions after pretreatment. Data were collected for six weeks on percent weight loss, shrinkability and the general appearance at interval of three days. The stored samples were also analyzed for moisture, crude ash, crude fiber, and reduced sugar levels during the entire storage period. Results showed the difference among the various storage conditions. It was shown that ZECC and non-perforated sacs (in the open air) storage techniques had good potential for storage of orange flesh sweet potato for up to six weeks without considerable change in physical and nutritional parameters compared to other considered conditions and, therefore, can be recommended as more useful for OSFP at farm level and during transport and market storage.Keywords: ZECC, orange fleshed sweet potato, perforated sacs, storage conditions
Procedia PDF Downloads 681105 Assessing the Impact of Heatwaves on Intertidal Mudflat Colonized by an Exotic Mussel
Authors: Marie Fouet, Olivier Maire, Cécile Masse, Hugues Blanchet, Salomé Coignard, Nicolas Lavesque, Guillaume Bernard
Abstract:
Exacerbated by global change, extreme climatic events such as atmospheric and marine heat waves may interact with the spread of non-indigenous species and their associated impacts on marine ecosystems. Since the 1970’s, the introduction of non-indigenous species due to oyster exchanges has been numerous. Among them, the Asian date mussel Arcuatula senhousia has colonized a large number of ecosystems worldwide (e.g., California, New Zealand, Italy). In these places, A.senhousia led to important habitat modifications in the benthic compartment through physical, biological, and biogeochemical effects associated with the development of dense mussel populations. In Arcachon Bay (France), a coastal lagoon of the French Atlantic and hotspot of oyster farming, abundances of A. senhousia recently increased, following a lag time of ca. 20 years since the first record of the species in 2002. Here, we addressed the potential effects of the interaction between A. senhousia invasion and heatwave intensity on ecosystem functioning within an intertidal mudflat. More precisely, two realistic intensities (“High” and “Severe”) of combined marine and atmospheric heatwaves have been simulated in an experimental tidal mesocosm system onto which naturally varying densities of A. senhousia and associated benthic communities were exposed in sediment cores collected in situ. Following a six-day exposure, community-scale responses were assessed by measuring benthic metabolism (oxygen and nutrient fluxes) in each core. Results show that besides significantly enhanced benthic metabolism with increasing heatwave intensity, mussel density clearly mediated the magnitude of the community-scale response, thereby highlighting the importance of understanding the interactive effects of environmental stressors co-occurring with non-indigenous species and their dependencies for a better assessment of their impacts.Keywords: arcuatula senhousia, benthic habitat, ecosystem functioning, heatwaves, metabolism
Procedia PDF Downloads 671104 Development of Pre-Mitigation Measures and Its Impact on Life-Cycle Cost of Facilities: Indian Scenario
Authors: Mahima Shrivastava, Soumya Kar, B. Swetha Malika, Lalu Saheb, M. Muthu Kumar, P. V. Ponambala Moorthi
Abstract:
Natural hazards and manmade destruction causes both economic and societal losses. Generalized pre-mitigation strategies introduced and adopted for prevention of disaster all over the world are capable of augmenting the resiliency and optimizing the life-cycle cost of facilities. In countries like India where varied topographical feature exists requires location specific mitigation measures and strategies to be followed for better enhancement by event-driven and code-driven approaches. Present state of vindication measures followed and adopted, lags dominance in accomplishing the required development. In addition, serious concern and debate over climate change plays a vital role in enhancing the need and requirement for the development of time bound adaptive mitigation measures. For the development of long-term sustainable policies incorporation of future climatic variation is inevitable. This will further assist in assessing the impact brought about by the climate change on life-cycle cost of facilities. This paper develops more definite region specific and time bound pre-mitigation measures, by reviewing the present state of mitigation measures in India and all over the world for improving life-cycle cost of facilities. For the development of region specific adoptive measures, Indian regions were divided based on multiple-calamity prone regions and geo-referencing tools were used to incorporate the effect of climate changes on life-cycle cost assessment. This study puts forward significant effort in establishing sustainable policies and helps decision makers in planning for pre-mitigation measures for different regions. It will further contribute towards evaluating the life cycle cost of facilities by adopting the developed measures.Keywords: climate change, geo-referencing tools, life-cycle cost, multiple-calamity prone regions, pre-mitigation strategies, sustainable policies
Procedia PDF Downloads 3791103 Evaluation of Weather Risk Insurance for Agricultural Products Using a 3-Factor Pricing Model
Authors: O. Benabdeljelil, A. Karioun, S. Amami, R. Rouger, M. Hamidine
Abstract:
A model for preventing the risks related to climate conditions in the agricultural sector is presented. It will determine the yearly optimum premium to be paid by a producer in order to reach his required turnover. The model is based on both climatic stability and 'soft' responses of usually grown species to average climate variations at the same place and inside a safety ball which can be determined from past meteorological data. This allows the use of linear regression expression for dependence of production result in terms of driving meteorological parameters, the main ones of which are daily average sunlight, rainfall and temperature. By simple best parameter fit from the expert table drawn with professionals, optimal representation of yearly production is determined from records of previous years, and yearly payback is evaluated from minimum yearly produced turnover. The model also requires accurate pricing of commodity at N+1. Therefore, a pricing model is developed using 3 state variables, namely the spot price, the difference between the mean-term and the long-term forward price, and the long-term structure of the model. The use of historical data enables to calibrate the parameters of state variables, and allows the pricing of commodity. Application to beet sugar underlines pricer precision. Indeed, the percentage of accuracy between computed result and real world is 99,5%. Optimal premium is then deduced and gives the producer a useful bound for negotiating an offer by insurance companies to effectively protect its harvest. The application to beet production in French Oise department illustrates the reliability of present model with as low as 6% difference between predicted and real data. The model can be adapted to almost any agricultural field by changing state parameters and calibrating their associated coefficients.Keywords: agriculture, production model, optimal price, meteorological factors, 3-factor model, parameter calibration, forward price
Procedia PDF Downloads 3761102 The Functions of “Question” and Its Role in Education Process: Quranic Approach
Authors: Sara Tusian, Zahra Salehi Motaahed, Narges Sajjadie, Nikoo Dialame
Abstract:
One of the methods which have frequently been used in Quran is the “question”. In the Quran, in addition to the content, methods are also important. Using analysis-interpretation method, the present study has investigated Quranic questions, and extracted its functions from educational perspective. In so doing, it has first investigated all the questions in Quran and then taking the three-stage classification of education into account, it has offered question functions. The results obtained from this study suggest that question functions in Quran are presented in three categories: the preparation stage (including preparation of the audience, revising the insights, and internal Evolution); main body (including the granting the insight, and elimination of intellectual negligence and the question of innate and logical axioms, the introducting of the realm of thinking, creating emotional arousal and alleged in the claim) and the third stage as modification and revision (including invitation to move in the framework of tasks using the individual beliefs to reveal the contradictions and, Error detection and contribution to change the function) that each of which has a special role in the education process.Keywords: education, question, Quranic questions, Quran
Procedia PDF Downloads 5031101 Roadway Maintenance Management System
Authors: Chika Catherine Ayogu
Abstract:
Rehabilitation plays an important and integral part in the life of roadway rehabilitation management system. It is a systematic method for inspection and rating the roadway condition in a given area. The system performs a cost effective analysis of various maintenance and rehabilitation strategies. Finally the system prioritize and recommend roadway rehabilitation and maintenance to maximize results within a given budget amount. During execution of maintenance activity, the system also tracks labour, materials, equipment and cost for activities performed. The system implements physical assessment field inspection and rating of each street segment which is then entered into a database. The information is analyzed using a software, and provide recommendations and project future conditions. The roadway management system provides a deterioration curve for each segment based on input then assigns the most cost-effective maintenance strategy based on conditions, surface type and functional classification, and available budget. This paper investigates the roadway management system and its capabilities to assist in applying the right treatment to the right roadway at the right time so that expected service life of the roadway is extended as long as possible with acceptable cost.Keywords: effectiveness, rehabilitation, roadway, software system
Procedia PDF Downloads 1501100 Parkinson's Disease Gene Identification Using Physicochemical Properties of Amino Acids
Authors: Priya Arora, Ashutosh Mishra
Abstract:
Gene identification, towards the pursuit of mutated genes, leading to Parkinson’s disease, puts forward a challenge towards proactive cure of the disorder itself. Computational analysis is an effective technique for exploring genes in the form of protein sequences, as the theoretical and manual analysis is infeasible. The limitations and effectiveness of a particular computational method are entirely dependent on the previous data that is available for disease identification. The article presents a sequence-based classification method for the identification of genes responsible for Parkinson’s disease. During the initiation phase, the physicochemical properties of amino acids transform protein sequences into a feature vector. The second phase of the method employs Jaccard distances to select negative genes from the candidate population. The third phase involves artificial neural networks for making final predictions. The proposed approach is compared with the state of art methods on the basis of F-measure. The results confirm and estimate the efficiency of the method.Keywords: disease gene identification, Parkinson’s disease, physicochemical properties of amino acid, protein sequences
Procedia PDF Downloads 1401099 Organic Agriculture in Pakistan: Opportunities, Challenges, and Future Directions
Authors: Sher Ali
Abstract:
Organic agriculture has gained significant momentum globally as a sustainable and environmentally friendly farming practice. In Pakistan, amidst growing concerns about food security, environmental degradation, and health issues related to conventional farming methods, the adoption of organic agriculture presents a promising pathway for agricultural development. This abstract aims to provide an overview of the status, opportunities, challenges, and future directions of organic agriculture in Pakistan. It delves into the current state of organic farming practices, including the extent of adoption, key crops cultivated, and the regulatory framework governing organic certification. Furthermore, the abstract discusses the unique opportunities that Pakistan offers for organic agriculture, such as its diverse agro-climatic zones, rich biodiversity, and traditional farming knowledge. It highlights successful initiatives and case studies that showcase the potential of organic farming to improve rural livelihoods, enhance food security, and promote sustainable agricultural practices. However, the abstract also addresses the challenges hindering the widespread adoption of organic agriculture in Pakistan, ranging from limited awareness and technical know-how among farmers to inadequate infrastructure and market linkages. It emphasizes the need for supportive policies, capacity-building programs, and investment in research and extension services to overcome these challenges and promote the growth of the organic agriculture sector. Lastly, the abstract outlines future directions and recommendations for advancing organic agriculture in Pakistan, including strategies for scaling up production, strengthening certification mechanisms, and fostering collaboration among stakeholders. By shedding light on the opportunities, challenges, and potential of organic agriculture in Pakistan, this abstract aims to contribute to the discourse on sustainable farming practices at the upcoming Agro Conference in the USA. It invites participants to engage in dialogue, share experiences, and explore avenues for collaboration toward promoting organic agriculture for a healthier, more resilient food system.Keywords: agriculture, challenges, organic, Pakistan
Procedia PDF Downloads 521098 The Results of the Archaeological Excavations at the Site of Qurh in Al Ula Region
Authors: Ahmad Al Aboudi
Abstract:
The Department of Archaeology at King Saud University conduct a long Term excavations since 2004 at the archaeological site of (Qurh) in Al-Ula area. The history of the site goes back to the eighth century AD. The main aim of the excavations is the training of the students on the archaeological field work associated with the scientific skills of exploring, surveying, classifying, documentations and other necessary in the field archaeology. During the 12th Season of Excavations, an area of 20 × 40 m2 of the site was excavated. The depth of the excavating the site was reached to 2-3 m. Many of the architectural features of a residential area in the northern part of the site were excavated this season. Circular walls made of mud-brick and a brick column drums and tiles made of clay were revealed this season. Additionally, lots of findings such as Gemstones, jars, ceramic plates, metal, glass, and fabric, as well as some jewelers and coins were discovered. This paper will deal with the main results of this field project including the architectural features and phenomena and their interpretations, the classification of excavated material culture remains and stratigraphy.Keywords: Islamic architecture, Islamic art, excavations, early Islamic city
Procedia PDF Downloads 2741097 Influence of Climate Change on Landslides in Northeast India: A Case Study
Authors: G. Vishnu, T. V. Bharat
Abstract:
Rainfall plays a major role in the stability of natural slopes in tropical and subtropical regions. These slopes usually have high slope angles and are stable during the dry season. The critical rainfall intensity that might trigger a landslide may not be the highest rainfall. In addition to geological discontinuities and anthropogenic factors, water content, suction, and hydraulic conductivity also play a role. A thorough geotechnical investigation with the principles of unsaturated soil mechanics is required to predict the failures in these cases. The study discusses three landslide events that had occurred in residual hills of Guwahati, India. Rainfall data analysis, history image analysis, land use, and slope maps of the region were analyzed and discussed. The landslide occurred on June (24, 26, and 28) 2020, on the respective sites, but the highest rainfall was on June (6 and 17) 2020. The factors that lead to the landslide occurrence is the combination of critical events initiated with rainfall, causing a reduction in suction. The sites consist of a mixture of rocks and soil. The slope failure occurs due to the saturation of the soil layer leading to loss of soil strength resulting in the flow of the entire soil rock mass. The land-use change, construction activities, other human and natural activities that lead to faster disintegration of rock mass may accelerate the landslide events. Landslides in these slopes are inevitable, and the development of an early warning system (EWS) to save human lives and resources is a feasible way. The actual time of failure of a slope can be better predicted by considering all these factors rather than depending solely on the rainfall intensities. An effective EWS is required with less false alarms in these regions by proper instrumentation of slope and appropriate climatic downscaling.Keywords: early warning system, historic image analysis, slope instrumentation, unsaturated soil mechanics
Procedia PDF Downloads 1141096 An Exploratory Entrepreneurial Study of Wine Production in Namibia: A Case of Grape Farmers in Ausenkehr, Namibia
Authors: Wilfred Isak April, Anthony Adenyanju
Abstract:
Research has proven that no other beverage has been adored and criticized at the same time as wine. It is important to reiterate that a selected grape production that results in the manufacturing of wine should be scrutinized with the greatest care. In addition, it should be laid down until optimum maturity, carefully selected for serving and ritually tasted by likeminded individuals. This paper aims to explore the entrepreneurial opportunities available through wine production in Namibia. In our daily lives, to the naked eye, consumers usually buy a bottle of wine according to affordability and what is on offer at the moment, sometimes get themselves intoxicated and also finish the bottle on the same day it has been purchased. When taking this as a comparison to those who are accustomed to grape production and wine-producing regions, it is usually a beverage purchased from the local produce cooperative, resembling a dispenser from a petrol pump at a fuel/gas station, usually taken home more than 5 liters at a particular point in time and enjoy it with a meal. It is very important to highlight that grapes are a non-climatic type of fruit, which usually occurs in clusters. Bringing it closer to context, this paper is based on the Republic of Namibia, which is a developing economy with so much potential. A qualitative research methodology will be applied with a purposive sampling technique. Moreover, in this study, a sample of 50 grape farmers will be interviewed. Data will be collected through in-depth interviews and thematic analysis was used to analyze the data. The envisaged results clearly illustrate that grape production contributes significantly not only to households but also to the larger economy. Studies of this nature are of crucial importance to Namibia since the country became a signatory of the General Agreement on Tariffs and Trade (GATT) in 1993 and has also become a subsequent member of the World Trade Organisation (WTO) subsequent to its creation after signing the Marrakech agreement in 1994. Given the latter mentioned, Namibia has made a commitment to the directives of WTO, meaning Namibian manufacturers have to compete in the global market.Keywords: wine production, entrepreneurship, innovation, development, Namibia, internalisation, creativity
Procedia PDF Downloads 301095 Deep Reinforcement Learning and Generative Adversarial Networks Approach to Thwart Intrusions and Adversarial Attacks
Authors: Fabrice Setephin Atedjio, Jean-Pierre Lienou, Frederica F. Nelson, Sachin S. Shetty
Abstract:
Malicious users exploit vulnerabilities in computer systems, significantly disrupting their performance and revealing the inadequacies of existing protective solutions. Even machine learning-based approaches, designed to ensure reliability, can be compromised by adversarial attacks that undermine their robustness. This paper addresses two critical aspects of enhancing model reliability. First, we focus on improving model performance and robustness against adversarial threats. To achieve this, we propose a strategy by harnessing deep reinforcement learning. Second, we introduce an approach leveraging generative adversarial networks to counter adversarial attacks effectively. Our results demonstrate substantial improvements over previous works in the literature, with classifiers exhibiting enhanced accuracy in classification tasks, even in the presence of adversarial perturbations. These findings underscore the efficacy of the proposed model in mitigating intrusions and adversarial attacks within the machine learning landscape.Keywords: machine learning, reliability, adversarial attacks, deep-reinforcement learning, robustness
Procedia PDF Downloads 9