Search results for: boundary layer displacement
2664 An Optimized Method for Calculating the Linear and Nonlinear Response of SDOF System Subjected to an Arbitrary Base Excitation
Authors: Hossein Kabir, Mojtaba Sadeghi
Abstract:
Finding the linear and nonlinear responses of a typical single-degree-of-freedom system (SDOF) is always being regarded as a time-consuming process. This study attempts to provide modifications in the renowned Newmark method in order to make it more time efficient than it used to be and make it more accurate by modifying the system in its own non-linear state. The efficacy of the presented method is demonstrated by assigning three base excitations such as Tabas 1978, El Centro 1940, and MEXICO CITY/SCT 1985 earthquakes to a SDOF system, that is, SDOF, to compute the strength reduction factor, yield pseudo acceleration, and ductility factor.Keywords: single-degree-of-freedom system (SDOF), linear acceleration method, nonlinear excited system, equivalent displacement method, equivalent energy method
Procedia PDF Downloads 3202663 Systematic Analysis of Immune Response to Biomaterial Surface Characteristics
Authors: Florian Billing, Soren Segan, Meike Jakobi, Elsa Arefaine, Aliki Jerch, Xin Xiong, Matthias Becker, Thomas Joos, Burkhard Schlosshauer, Ulrich Rothbauer, Nicole Schneiderhan-Marra, Hanna Hartmann, Christopher Shipp
Abstract:
The immune response plays a major role in implant biocompatibility, but an understanding of how to design biomaterials for specific immune responses is yet to be achieved. We aimed to better understand how changing certain material properties can drive immune responses. To this end, we tested immune response to experimental implant coatings that vary in specific characteristics. A layer-by-layer approach was employed to vary surface charge and wettability. Human-based in vitro models (THP-1 macrophages and primary peripheral blood mononuclear cells (PBMCS)) were used to assess immune responses using multiplex cytokine analysis, flow cytometry (CD molecule expression) and microscopy (cell morphology). We observed dramatic differences in immune response due to specific alterations in coating properties. For example altering the surface charge of coating A from anionic to cationic resulted in the substantial elevation of the pro-inflammatory molecules IL-1beta, IL-6, TNF-alpha and MIP-1beta, while the pro-wound healing factor VEGF was significantly down-regulated. We also observed changes in cell surface marker expression in relation to altered coating properties, such as CD16 on NK Cells and HLA-DR on monocytes. We furthermore observed changes in the morphology of THP-1 macrophages following cultivation on different coatings. A correlation between these morphological changes and the cytokine expression profile is ongoing. Targeted changes in biomaterial properties can produce vast differences in immune response. The properties of the coatings examined here may, therefore, be a method to direct specific biological responses in order to improve implant biocompatibility.Keywords: biomaterials, coatings, immune system, implants
Procedia PDF Downloads 1892662 Comparative Assessment of Geocell and Geogrid Reinforcement for Flexible Pavement: Numerical Parametric Study
Authors: Anjana R. Menon, Anjana Bhasi
Abstract:
Development of highways and railways play crucial role in a nation’s economic growth. While rigid concrete pavements are durable with high load bearing characteristics, growing economies mostly rely on flexible pavements which are easier in construction and more economical. The strength of flexible pavement is based on the strength of subgrade and load distribution characteristics of intermediate granular layers. In this scenario, to simultaneously meet economy and strength criteria, it is imperative to strengthen and stabilize the load transferring layers, namely subbase and base. Geosynthetic reinforcement in planar and cellular forms have been proven effective in improving soil stiffness and providing a stable load transfer platform. Studies have proven the relative superiority of cellular form-geocells over planar geosynthetic forms like geogrid, owing to the additional confinement of infill material and pocket effect arising from vertical deformation. Hence, the present study investigates the efficiency of geocells over single/multiple layer geogrid reinforcements by a series of three-dimensional model analyses of a flexible pavement section under a standard repetitive wheel load. The stress transfer mechanism and deformation profiles under various reinforcement configurations are also studied. Geocell reinforcement is observed to take up a higher proportion of stress caused by the traffic loads compared to single and double-layer geogrid reinforcements. The efficiency of single geogrid reinforcement reduces with an increase in embedment depth. The contribution of lower geogrid is insignificant in the case of the double-geogrid reinforced system.Keywords: Geocell, Geogrid, Flexible Pavement, Repetitive Wheel Load, Numerical Analysis
Procedia PDF Downloads 752661 A Novel Combustion Engine, Design and Modeling
Authors: M. A. Effati, M. R. Hojjati, M. Razmdideh
Abstract:
Nowadays, engine developments have focused on internal combustion engine design call for increased engine power, reduced engine size and improved fuel economy, simultaneously. In this paper, a novel design for combustion engine is proposed. Two combustion chambers were designed in two sides of cylinder. Piston was designed in a way that two sides of piston would transfer heat energy due to combustion to linear motion. This motion would convert to rotary motion through the designed mechanism connected to connecting rod. Connecting rod operation was analyzed to evaluate applied stress in 3000, 4500 and 6000 rpm. Boundary conditions including generated pressure in each side of cylinder in these 3 situations was calculated.Keywords: combustion engine, design, finite element method, modeling
Procedia PDF Downloads 5132660 Numerical Study on Jatropha Oil Pool Fire Behavior in a Compartment
Authors: Avinash Chaudhary, Akhilesh Gupta, Surendra Kumar, Ravi Kumar
Abstract:
This paper presents the numerical study on Jatropha oil pool fire in a compartment. A fire experiment with jatropha oil was conducted in a compartment of size 4 m x 4 m x m to study the fire development and temperature distribution. Fuel is burned in the center of the compartment in a pool diameter of 0.5 m with an initial fuel depth of 0.045 m. Corner temperature in the compartment, doorway temperature and hot gas layer temperature at various locations are measured. Numerical simulations were carried out using Fire Dynamics Simulator (FDS) software at grid size of 0.05 m, 0.12 m and for performing simulation heat release rate of jatropha oil measured using mass loss method were inputted into FDS. Experimental results shows that like other fuel fires, the whole combustion process can be divided into four stages: initial stage, growth stage, steady profile or developed phase and decay stage. The fire behavior shows two zone profile where upper zone consists of mainly hot gases while lower zone is relatively at colder side. In this study, predicted temperatures from simulation are in good agreement in upper zone of compartment. Near the interface of hot and cold zone, deviations were reported between the simulated and experimental results which is probably due to the difference between the predictions of smoke layer height by FDS. Also, changing the grid size from 0.12 m to 0.05 m does not show any effect in temperatures at upper zone while in lower zone, grid size of 0.05 m showed satisfactory agreement with experimental results. Numerical results showed that calculated temperatures at various locations matched well with the experimental results. On the whole, an effective method is provided with reasonable results to study the burning characteristics of jatropha oil with numerical simulations.Keywords: jatropha oil, compartment fire, heat release rate, FDS (fire dynamics simulator), numerical simulation
Procedia PDF Downloads 2572659 Investigation of Building Pounding during Earthquake and Calculation of Impact Force between Two Adjacent Structures
Authors: H. Naderpour, R. C. Barros, S. M. Khatami
Abstract:
Seismic excitation is naturally caused large horizontal relative displacements, which is able to provide collisions between two adjacent buildings due to insufficient separation distance and severe damages are occurred due to impact especially in tall buildings. In this paper, an impact is numerically simulated and two needed parameters are calculated, including impact force and energy absorption. In order to calculate mentioned parameters, mathematical study needs to model an unreal link element, which is logically assumed to be spring and dashpot to determine lateral displacement and damping ratio of impact. For the determination of dynamic response of impact, a new equation of motion is theoretically suggested to evaluate impact force and energy dissipation. In order to confirm the rendered equation, a series of parametric study are performed and the accuracy of formula is confirmed.Keywords: pounding, impact, dissipated energy, coefficient of restitution
Procedia PDF Downloads 3572658 Hull Detection from Handwritten Digit Image
Authors: Sriraman Kothuri, Komal Teja Mattupalli
Abstract:
In this paper we proposed a novel algorithm for recognizing hulls in a hand written digits. This is an extension to the work on “Digit Recognition Using Freeman Chain code”. In order to find out the hulls in a user given digit it is necessary to follow three steps. Those are pre-processing, Boundary Extraction and at last apply the Hull Detection system in a way to attain the better results. The detection of Hull Regions is mainly intended to increase the machine learning capability in detection of characters or digits. This can also extend this in order to get the hull regions and their intensities in Black Holes in Space Exploration.Keywords: chain code, machine learning, hull regions, hull recognition system, SASK algorithm
Procedia PDF Downloads 4002657 Structural Performance Evaluation of Power Boiler for the Pressure Release Valve in Consideration of the Thermal Expansion
Authors: Young-Hun Lee, Tae-Gwan Kim, Jong-Kyu Kim, Young-Chul Park
Abstract:
In this study, Spring safety valve Heat - structure coupled analysis was carried out. Full analysis procedure and performing thermal analysis at a maximum temperature, them to the results obtained through to give an additional load and the pressure on the valve interior, and Disc holder Heat-Coupled structure Analysis was carried out. Modeled using a 3D design program Solidworks, For the modeling of the safety valve was used 3D finite element analysis program ANSYS. The final result to be obtained through the Analysis examined the stability of the maximum displacement and the maximum stress to the valve internal components occurring in the high-pressure conditions.Keywords: finite element method, spring safety valve, gap, stress, strain, deformation
Procedia PDF Downloads 3682656 Nanoprofiling of GaAs Surface in a Combined Low-Temperature Plasma for Microwave Devices
Authors: Victor S. Klimin, Alexey A. Rezvan, Maxim S. Solodovnik, Oleg A. Ageev
Abstract:
In this paper, the problems of existing methods of profiling and surface modification of nanoscale arsenide-gallium structures are analyzed. The use of a combination of methods of local anodic oxidation and plasma chemical etching to solve this problem is considered. The main features that make this technology one of the promising areas of modification and profiling of near-surface layers of solids are demonstrated. In this paper, we studied the effect of formation stress and etching time on the geometrical parameters of the etched layer and the roughness of the etched surface. Experimental dependences of the thickness of the etched layer on the time and stress of formation were obtained. The surface analysis was carried out using atomic force microscopy methods, the corresponding profilograms were constructed from the obtained images, and the roughness of the etched surface was studied accordingly. It was shown that at high formation voltage, the depth of the etched surface increased, this is due to an increase in the number of active particles (oxygen ions and hydroxyl groups) formed as a result of the decomposition of water molecules in an electric field, during the formation of oxide nanostructures on the surface of gallium arsenide. Oxide layers were used as negative masks for subsequent plasma chemical etching by the STE ICPe68 unit. BCl₃ was chosen as the chlorine-containing gas, which differs from analogs in some parameters for the effect of etching of nanostructures based on gallium arsenide in the low-temperature plasma. The gas mixture of reaction chamber consisted of a buffer gas NAr = 100 cm³/min and a chlorine-containing gas NBCl₃ = 15 cm³/min at a pressure P = 2 Pa. The influence of these methods modes, which are formation voltage and etching time, on the roughness and geometric parameters, and corresponding dependences are demonstrated. Probe nanotechnology was used for surface analysis.Keywords: nanostructures, GaAs, plasma chemical etching, modification structures
Procedia PDF Downloads 1452655 Internal Stresses and Structural Evolutions in Zr Alloys during Oxidation at High Temperature and Subsequent Cooling
Authors: Raphaelle Guillou, Matthieu Le Saux, Jean-Christophe Brachet, Thomas Guilbert, Elodie Rouesne, Denis Menut, Caroline Toffolon-Masclet, Dominique Thiaudiere
Abstract:
In some hypothetical accidental situations, such as during a Loss Of Coolant Accident (LOCA) in pressurized water reactors, fuel cladding tubes made of zirconium alloys can be exposed for a few minutes to steam at High Temperature (HT up to 1200°C) before being cooled and then quenched in water. Under LOCA-like conditions, the cladding undergoes a number of metallurgical changes (phase transformations, oxygen diffusion and growth of an oxide layer...) and is consequently submitted to internal stresses whose state evolves during the transient. These stresses can have an effect on the oxide structure and the oxidation kinetics of the material. They evolve during cooling, owing to differences between the thermal expansion coefficients of the various phases and phase transformations of the metal and the oxide. These stresses may result in the failure of the cladding during quenching, once the material is embrittled by oxidation. In order to progress in the evaluation of these internal stresses, X-ray diffraction experiments were performed in-situ under synchrotron radiation during HT oxidation and subsequent cooling on Zircaloy-4 sheet samples. First, structural evolutions, such as phase transformations, have been studied as a function of temperature for both the oxide layer and the metallic substrate. Then, internal stresses generated within the material oxidized at temperatures between 700 and 900°C have been evaluated thanks to the 2θ diffraction peak position shift measured during the in-situ experiments. Electron backscatter diffraction (EBSD) analysis was performed on the samples after cooling in order to characterize their crystallographic texture. Furthermore, macroscopic strains induced by oxidation in the conditions investigated during the in-situ X-ray diffraction experiments were measured in-situ in a dilatometer.Keywords: APRP, stains measurements, synchrotron diffraction, zirconium allows
Procedia PDF Downloads 3092654 Exact and Approximate Controllability of Nuclear Dynamics Using Bilinear Controls
Authors: Ramdas Sonawane, Mahaveer Gadiya
Abstract:
The control problem associated with nuclear dynamics is represented by nonlinear integro-differential equation with additive controls. To control chain reaction, certain amount of neutrons is added into (or withdrawn out of) chamber as and when required. It is not realistic. So, we can think of controlling the reactor dynamics by bilinear control, which enters the system as coefficient of state. In this paper, we study the approximate and exact controllability of parabolic integro-differential equation controlled by bilinear control with non-homogeneous boundary conditions in bounded domain. We prove the existence of control and propose an explicit control strategy.Keywords: approximate control, exact control, bilinear control, nuclear dynamics, integro-differential equations
Procedia PDF Downloads 4442653 Implementation of Clinical Monitoring System of Physiological Parameters
Authors: Abdesselam Babouri, Ahcène Lemzadmi, M Rahmane, B. Belhadi, N. Abouchi
Abstract:
Medical monitoring aims at monitoring and remotely controlling the vital physiological parameters of the patient. The physiological sensors provide repetitive measurements of these parameters in the form of electrical signals that vary continuously over time. Various measures allow informing us about the health of the person's physiological data (weight, blood pressure, heart rate or specific to a disease), environmental conditions (temperature, humidity, light, noise level) and displacement and movements (physical efforts and the completion of major daily living activities). The collected data will allow monitoring the patient’s condition and alerting in case of modification. They are also used in the diagnosis and decision making on medical treatment and the health of the patient. This work presents the implementation of a monitoring system to be used for the control of physiological parameters.Keywords: clinical monitoring, physiological parameters, biomedical sensors, personal health
Procedia PDF Downloads 4732652 Defending Indigenous Working Urban Spaces Trough Visual Activism in Quito
Authors: Katherine Anson
Abstract:
This paper takes a closer look at the use of day-to-day informal working practices in Latin American spatial, cultural activism against gentrification. Through a discursive analysis of the Ecuadorian communally made film documentary San Roque: A House for All (2015), and the study of the political conflict around the gentrification of the place, the essay illustrates how the purposeful showcase of indigenous uses of space claims ownership over the city’s downtown area. This argument concludes that by making visible everyday indigenous ways of production in relation to space, the video contests the neoliberalist aim to proletarianize the urban poor, and therefore, to transform them into a landless group. This approach demonstrates that through representations of their own cultural working practices grassroots organizations consciously deconstruct/contest the capitalist urbanization of space.Keywords: cultural activism, gentrification, indigenous working traditions, neoliberalism, urban displacement, everyday forms of resistance
Procedia PDF Downloads 1542651 Potential of Aerodynamic Feature on Monitoring Multilayer Rough Surfaces
Authors: Ibtissem Hosni, Lilia Bennaceur Farah, Saber Mohamed Naceur
Abstract:
In order to assess the water availability in the soil, it is crucial to have information about soil distributed moisture content; this parameter helps to understand the effect of humidity on the exchange between soil, plant cover and atmosphere in addition to fully understanding the surface processes and the hydrological cycle. On the other hand, aerodynamic roughness length is a surface parameter that scales the vertical profile of the horizontal component of the wind speed and characterizes the surface ability to absorb the momentum of the airflow. In numerous applications of the surface hydrology and meteorology, aerodynamic roughness length is an important parameter for estimating momentum, heat and mass exchange between the soil surface and atmosphere. It is important on this side, to consider the atmosphere factors impact in general, and the natural erosion in particular, in the process of soil evolution and its characterization and prediction of its physical parameters. The study of the induced movements by the wind over soil vegetated surface, either spaced plants or plant cover, is motivated by significant research efforts in agronomy and biology. The known major problem in this side concerns crop damage by wind, which presents a booming field of research. Obviously, most models of soil surface require information about the aerodynamic roughness length and its temporal and spatial variability. We have used a bi-dimensional multi-scale (2D MLS) roughness description where the surface is considered as a superposition of a finite number of one-dimensional Gaussian processes each one having a spatial scale using the wavelet transform and the Mallat algorithm to describe natural surface roughness. We have introduced multi-layer aspect of the humidity of the soil surface, to take into account a volume component in the problem of backscattering radar signal. As humidity increases, the dielectric constant of the soil-water mixture increases and this change is detected by microwave sensors. Nevertheless, many existing models in the field of radar imagery, cannot be applied directly on areas covered with vegetation due to the vegetation backscattering. Thus, the radar response corresponds to the combined signature of the vegetation layer and the layer of soil surface. Therefore, the key issue of the numerical estimation of soil moisture is to separate the two contributions and calculate both scattering behaviors of the two layers by defining the scattering of the vegetation and the soil blow. This paper presents a synergistic methodology, and it is for estimating roughness and soil moisture from C-band radar measurements. The methodology adequately represents a microwave/optical model which has been used to calculate the scattering behavior of the aerodynamic vegetation-covered area by defining the scattering of the vegetation and the soil below.Keywords: aerodynamic, bi-dimensional, vegetation, synergistic
Procedia PDF Downloads 2692650 pH and Temperature Triggered Release of Doxorubicin from Hydogen Bonded Multilayer Films of Polyoxazolines
Authors: Meltem Haktaniyan, Eda Cagli, Irem Erel Goktepe
Abstract:
Polymers that change their properties in response to different stimuli (e.g. light, temperature, pH, ionic strength or magnetic field) are called ‘smart’ or ‘stimuli-responsive polymers’. These polymers have been widely used in biomedical applications such as sensors, gene delivery, drug delivery or tissue engineering. Temperature-responsive polymers have been studied extensively for controlled drug delivery applications. As regard of pseudo-peptides, poly (2-alky-2-oxazoline)s are considered as good candidates for delivery systems due to their stealth behavior and nontoxicity. In order to build responsive multilayer films for controlled drug release applications from surface, Layer by layer technique (LBL) is a powerful technique with an advantage of nanometer scale control over spatial architecture and morphology. Multilayers can be constructed on surface where non-covalent interactions including electrostatic interactions, hydrogen bonding, and charge-transfer or hydrophobic-hydrophobic interactions. In the present study, hydrogen bounded multilayer films of poly (2-alky-2-oxazoline) s with tannic acid were prepared in order to use as a platform to release Doxorubicin (DOX) from surface with pH and thermal triggers. For this purpose, poly (2-isopropyl-2-oxazoline) (PIPOX) and poly (2-ethyl-2-oxazoline) (PETOX) were synthesized via cationic ring opening polymerization (CROP) with hydroxyl end groups. Two polymeric multilayer systems ((PETOX)/(DOX)-(TA) complexes and (PIPOX)/(DOX)-(TA) complexes) were designed to investigate of controlled release of Doxorubicin (DOX) from surface with pH and thermal triggers. The drug release profiles from the multilayer thin films with alterations of pH and temperature will been examined with UV-Vis Spectroscopy and Fluorescence Spectroscopy.Keywords: temperature responsive polymers, h-bonded multilayer films, drug release, polyoxazoline
Procedia PDF Downloads 3082649 Practical Limitations of the Fraud Triangle Framework in Fraud Prevention
Authors: Alexander Glebovskiy
Abstract:
Practitioners charged with fraud prevention and investigation strongly rely on the Fraud Triangle framework developed by Joseph T. Wells in 1997 while analyzing the causes of fraud at business organizations. The Fraud Triangle model explains fraud by elements such as pressure, opportunity, and rationalization. This view is not fully suitable for effective fraud prevention as the Fraud Triangle model provides limited insight into the causation of fraud. Fraud is a multifaceted phenomenon, the contextual factors of which may not fit into any framework. Employee criminal behavior in business organizations is influenced by environmental, individual, and organizational aspects. Therefore, further criminogenic factors and processes facilitating fraud in organizational settings need to be considered in the root-cause analysis: organizational culture, leadership style, groupthink effect, isomorphic behavior, crime of obedience, displacement of responsibility, lack of critical thinking and unquestioning conformity and loyalty.Keywords: criminogenesis, fraud triangle, fraud prevention, organizational culture
Procedia PDF Downloads 3002648 '3D City Model' through Quantum Geographic Information System: A Case Study of Gujarat International Finance Tec-City, Gujarat, India
Authors: Rahul Jain, Pradhir Parmar, Dhruvesh Patel
Abstract:
Planning and drawing are the important aspects of civil engineering. For testing theories about spatial location and interaction between land uses and related activities the computer based solution of urban models are used. The planner’s primary interest is in creation of 3D models of building and to obtain the terrain surface so that he can do urban morphological mappings, virtual reality, disaster management, fly through generation, visualization etc. 3D city models have a variety of applications in urban studies. Gujarat International Finance Tec-City (GIFT) is an ongoing construction site between Ahmedabad and Gandhinagar, Gujarat, India. It will be built on 3590000 m2 having a geographical coordinates of North Latitude 23°9’5’’N to 23°10’55’’ and East Longitude 72°42’2’’E to 72°42’16’’E. Therefore to develop 3D city models of GIFT city, the base map of the city is collected from GIFT office. Differential Geographical Positioning System (DGPS) is used to collect the Ground Control Points (GCP) from the field. The GCP points are used for the registration of base map in QGIS. The registered map is projected in WGS 84/UTM zone 43N grid and digitized with the help of various shapefile tools in QGIS. The approximate height of the buildings that are going to build is collected from the GIFT office and placed on the attribute table of each layer created using shapefile tools. The Shuttle Radar Topography Mission (SRTM) 1 Arc-Second Global (30 m X 30 m) grid data is used to generate the terrain of GIFT city. The Google Satellite Map is used to place on the background to get the exact location of the GIFT city. Various plugins and tools in QGIS are used to convert the raster layer of the base map of GIFT city into 3D model. The fly through tool is used for capturing and viewing the entire area in 3D of the city. This paper discusses all techniques and their usefulness in 3D city model creation from the GCP, base map, SRTM and QGIS.Keywords: 3D model, DGPS, GIFT City, QGIS, SRTM
Procedia PDF Downloads 2472647 Test Research on Damage Initiation and Development of a Concrete Beam Using Acoustic Emission Technology
Authors: Xiang Wang
Abstract:
In order to validate the efficiency of recognizing the damage initiation and development of a concrete beam using acoustic emission technology, a concrete beam is built and tested in the laboratory. The acoustic emission signals are analyzed based on both parameter and wave information, which is also compared with the beam deflection measured by displacement sensors. The results indicate that using acoustic emission technology can detect damage initiation and development effectively, especially in the early stage of the damage development, which can not be detected by the common monitoring technology. Furthermore, the positioning of the damage based on the acoustic emission signals can be proved to be reasonable. This job can be an important attempt for the future long-time monitoring of the real concrete structure.Keywords: acoustic emission technology, concrete beam, parameter analysis, wave analysis, positioning
Procedia PDF Downloads 1412646 Low-Temperature Poly-Si Nanowire Junctionless Thin Film Transistors with Nickel Silicide
Authors: Yu-Hsien Lin, Yu-Ru Lin, Yung-Chun Wu
Abstract:
This work demonstrates the ultra-thin poly-Si (polycrystalline Silicon) nanowire junctionless thin film transistors (NWs JL-TFT) with nickel silicide contact. For nickel silicide film, this work designs to use two-step annealing to form ultra-thin, uniform and low sheet resistance (Rs) Ni silicide film. The NWs JL-TFT with nickel silicide contact exhibits the good electrical properties, including high driving current (>10⁷ Å), subthreshold slope (186 mV/dec.), and low parasitic resistance. In addition, this work also compares the electrical characteristics of NWs JL-TFT with nickel silicide and non-silicide contact. Nickel silicide techniques are widely used for high-performance devices as the device scaling due to the source/drain sheet resistance issue. Therefore, the self-aligned silicide (salicide) technique is presented to reduce the series resistance of the device. Nickel silicide has several advantages including low-temperature process, low silicon consumption, no bridging failure property, smaller mechanical stress, and smaller contact resistance. The junctionless thin-film transistor (JL-TFT) is fabricated simply by heavily doping the channel and source/drain (S/D) regions simultaneously. Owing to the special doping profile, JL-TFT has some advantages such as lower thermal the budget which can integrate with high-k/metal-gate easier than conventional MOSFETs (Metal Oxide Semiconductor Field-Effect Transistors), longer effective channel length than conventional MOSFETs, and avoidance of complicated source/drain engineering. To solve JL-TFT has turn-off problem, JL-TFT needs ultra-thin body (UTB) structure to reach fully depleted channel region in off-state. On the other hand, the drive current (Iᴅ) is declined as transistor features are scaled. Therefore, this work demonstrates ultra thin poly-Si nanowire junctionless thin film transistors with nickel silicide contact. This work investigates the low-temperature formation of nickel silicide layer by physical-chemical deposition (PVD) of a 15nm Ni layer on the poly-Si substrate. Notably, this work designs to use two-step annealing to form ultrathin, uniform and low sheet resistance (Rs) Ni silicide film. The first step was promoted Ni diffusion through a thin interfacial amorphous layer. Then, the unreacted metal was lifted off after the first step. The second step was annealing for lower sheet resistance and firmly merged the phase.The ultra-thin poly-Si nanowire junctionless thin film transistors NWs JL-TFT with nickel silicide contact is demonstrated, which reveals high driving current (>10⁷ Å), subthreshold slope (186 mV/dec.), and low parasitic resistance. In silicide film analysis, the second step of annealing was applied to form lower sheet resistance and firmly merge the phase silicide film. In short, the NWs JL-TFT with nickel silicide contact has exhibited a competitive short-channel behavior and improved drive current.Keywords: poly-Si, nanowire, junctionless, thin-film transistors, nickel silicide
Procedia PDF Downloads 2372645 A Hybrid Model of Structural Equation Modelling-Artificial Neural Networks: Prediction of Influential Factors on Eating Behaviors
Authors: Maryam Kheirollahpour, Mahmoud Danaee, Amir Faisal Merican, Asma Ahmad Shariff
Abstract:
Background: The presence of nonlinearity among the risk factors of eating behavior causes a bias in the prediction models. The accuracy of estimation of eating behaviors risk factors in the primary prevention of obesity has been established. Objective: The aim of this study was to explore the potential of a hybrid model of structural equation modeling (SEM) and Artificial Neural Networks (ANN) to predict eating behaviors. Methods: The Partial Least Square-SEM (PLS-SEM) and a hybrid model (SEM-Artificial Neural Networks (SEM-ANN)) were applied to evaluate the factors affecting eating behavior patterns among university students. 340 university students participated in this study. The PLS-SEM analysis was used to check the effect of emotional eating scale (EES), body shape concern (BSC), and body appreciation scale (BAS) on different categories of eating behavior patterns (EBP). Then, the hybrid model was conducted using multilayer perceptron (MLP) with feedforward network topology. Moreover, Levenberg-Marquardt, which is a supervised learning model, was applied as a learning method for MLP training. The Tangent/sigmoid function was used for the input layer while the linear function applied for the output layer. The coefficient of determination (R²) and mean square error (MSE) was calculated. Results: It was proved that the hybrid model was superior to PLS-SEM methods. Using hybrid model, the optimal network happened at MPLP 3-17-8, while the R² of the model was increased by 27%, while, the MSE was decreased by 9.6%. Moreover, it was found that which one of these factors have significantly affected on healthy and unhealthy eating behavior patterns. The p-value was reported to be less than 0.01 for most of the paths. Conclusion/Importance: Thus, a hybrid approach could be suggested as a significant methodological contribution from a statistical standpoint, and it can be implemented as software to be able to predict models with the highest accuracy.Keywords: hybrid model, structural equation modeling, artificial neural networks, eating behavior patterns
Procedia PDF Downloads 1562644 Wrinkling Prediction of Membrane Composite of Varying Orientation under In-Plane Shear
Abstract:
In this article, the wrinkling failure of orthotropic composite membranes due to in-plane shear deformation is investigated using nonlinear finite element analyses. A nonlinear post-buckling analysis is performed to show the evolution of shear-induced wrinkles. The method of investigation is based on the post-buckling finite element analysis adopted from commercial FEM code; ANSYS. The resulting wrinkling patterns, their amplitude and their wavelengths under the prescribed loads and boundary conditions were confirmed by experimental results. Our study reveals that wrinkles develop when both the magnitudes and coverage of the minimum principal stresses in the laminated composite laminates are sufficiently large to trigger wrinkling.Keywords: composite, FEM, membrane, wrinkling
Procedia PDF Downloads 2752643 A Deep Explanation for the Formation of Force as a Foundational Law of Physics by Incorporating Unknown Degrees of Freedom into Space
Authors: Mohsen Farshad
Abstract:
Information and force definition has been intertwined with the concept of entropy for many years. The displacement information of degrees of freedom with Brownian motions at a given temperature in space emerges as an entropic force between species. Here, we use this concept of entropy to understand the underlying physics behind the formation of attractive and repulsive forces by imagining that space is filled with free Brownian degrees of freedom. We incorporate the radius of bodies and the distance between them into entropic force relation systematically. Using this modified gravitational entropic force, we derive the attractive entropic force between bodies without considering their spin. We further hypothesize a possible mechanism for the formation of the repulsive force between two bodies. We visually elaborate that the repulsive entropic force will be manifested through the rotation of degrees of freedom around the spinning particles.Keywords: entropy, information, force, Brownian Motions
Procedia PDF Downloads 762642 Reactive Fabrics for Chemical Warfare Agent Decomposition Using Particle Crystallization
Authors: Myungkyu Park, Minkun Kim, Sunghoon Kim, Samgon Ryu
Abstract:
Recently, research for reactive fabrics which have the characteristics of CWA (Chemical Warfare Agent) decomposition is being performed actively. The performance level of decomposition for CWA decomposition in various environmental condition is one of the critical factors in applicability as protective materials for NBC (Nuclear, Biological, and Chemical) protective clothing. In this study, results of performance test for CWA decomposition by reactive fabric made of electrospinning web and reactive particle are presented. Currently, the MOF (metal organic framework) type of UiO-66-NH₂ is frequently being studied as material for decomposing CWA especially blister agent HD [Bis(2-chloroethyl) sulfide]. When we test decomposition rate with electrospinning web made of PVB (Polyvinyl Butiral) polymer and UiO-66-NH₂ particle, we can get very high protective performance than the case other particles are applied. Furthermore, if the repellant surface fabric is added on reactive material as the component of protective fabric, the performance of layer by layered reactive fabric could be approached to the level of current NBC protective fabric for HD decomposition rate. Reactive fabric we used in this study is manufactured by electrospinning process of polymer which contains the reactive particle of UiO-66-NH₂, and we performed crystalizing process once again on that polymer fiber web in solvent systems as a second step for manufacturing reactive fabric. Three kinds of polymer materials are used in this process, but PVB was most suitable as an electrospinning fiber polymer considering the shape of product. The density of particle on fiber web and HD decomposition rate is enhanced by secondary crystallization compared with the results which are not processed. The amount of HD penetration by 24hr AVLAG (Aerosol Vapor Liquid Assessment Group) swatch test through the reactive fabrics with secondary crystallization and without crystallization is 24 and 146μg/cm² respectively. Even though all of the reactive fiber webs for this test are combined with repellant surface layer at outer side of swatch, the effects of secondary crystallization of particle for the reactive fiber web are remarkable.Keywords: CWA, Chemical Warfare Agent, gas decomposition, particle growth, protective clothing, reactive fabric, swatch test
Procedia PDF Downloads 2952641 Method for Controlling the Groundwater Polluted by the Surface Waters through Injection Wells
Authors: Victorita Radulescu
Abstract:
Introduction: The optimum exploitation of agricultural land in the presence of an aquifer polluted by the surface sources requires close monitoring of groundwater level in both periods of intense irrigation and in absence of the irrigations, in times of drought. Currently in Romania, in the south part of the country, the Baragan area, many agricultural lands are confronted with the risk of groundwater pollution in the absence of systematic irrigation, correlated with the climate changes. Basic Methods: The non-steady flow of the groundwater from an aquifer can be described by the Bousinesq’s partial differential equation. The finite element method was used, applied to the porous media needed for the water mass balance equation. By the proper structure of the initial and boundary conditions may be modeled the flow in drainage or injection systems of wells, according to the period of irrigation or prolonged drought. The boundary conditions consist of the groundwater levels required at margins of the analyzed area, in conformity to the reality of the pollutant emissaries, following the method of the double steps. Major Findings/Results: The drainage condition is equivalent to operating regimes on the two or three rows of wells, negative, as to assure the pollutant transport, modeled with the variable flow in groups of two adjacent nodes. In order to obtain the level of the water table, in accordance with the real constraints, are needed, for example, to be restricted its top level below of an imposed value, required in each node. The objective function consists of a sum of the absolute values of differences of the infiltration flow rates, increased by a large penalty factor when there are positive values of pollutant. In these conditions, a balanced structure of the pollutant concentration is maintained in the groundwater. The spatial coordinates represent the modified parameters during the process of optimization and the drainage flows through wells. Conclusions: The presented calculation scheme was applied to an area having a cross-section of 50 km between two emissaries with various levels of altitude and different values of pollution. The input data were correlated with the measurements made in-situ, such as the level of the bedrock, the grain size of the field, the slope, etc. This method of calculation can also be extended to determine the variation of the groundwater in the aquifer following the flood wave propagation in envoys.Keywords: environmental protection, infiltrations, numerical modeling, pollutant transport through soils
Procedia PDF Downloads 1552640 Thermal Energy Storage Based on Molten Salts Containing Nano-Particles: Dispersion Stability and Thermal Conductivity Using Multi-Scale Computational Modelling
Authors: Bashar Mahmoud, Lee Mortimer, Michael Fairweather
Abstract:
New methods have recently been introduced to improve the thermal property values of molten nitrate salts (a binary mixture of NaNO3:KNO3in 60:40 wt. %), by doping them with minute concentration of nanoparticles in the range of 0.5 to 1.5 wt. % to form the so-called: Nano-heat-transfer-fluid, apt for thermal energy transfer and storage applications. The present study aims to assess the stability of these nanofluids using the advanced computational modelling technique, Lagrangian particle tracking. A multi-phase solid-liquid model is used, where the motion of embedded nanoparticles in the suspended fluid is treated by an Euler-Lagrange hybrid scheme with fixed time stepping. This technique enables measurements of various multi-scale forces whose characteristic (length and timescales) are quite different. Two systems are considered, both consisting of 50 nm Al2O3 ceramic nanoparticles suspended in fluids of different density ratios. This includes both water (5 to 95 °C) and molten nitrate salt (220 to 500 °C) at various volume fractions ranging between 1% to 5%. Dynamic properties of both phases are coupled to the ambient temperature of the fluid suspension. The three-dimensional computational region consists of a 1μm cube and particles are homogeneously distributed across the domain. Periodic boundary conditions are enforced. The particle equations of motion are integrated using the fourth order Runge-Kutta algorithm with a very small time-step, Δts, set at 10-11 s. The implemented technique demonstrates the key dynamics of aggregated nanoparticles and this involves: Brownian motion, soft-sphere particle-particle collisions, and Derjaguin, Landau, Vervey, and Overbeek (DLVO) forces. These mechanisms are responsible for the predictive model of aggregation of nano-suspensions. An energy transport-based method of predicting the thermal conductivity of the nanofluids is also used to determine thermal properties of the suspension. The simulation results confirms the effectiveness of the technique. The values are in excellent agreement with the theoretical and experimental data obtained from similar studies. The predictions indicates the role of Brownian motion and DLVO force (represented by both the repulsive electric double layer and an attractive Van der Waals) and its influence in the level of nanoparticles agglomeration. As to the nano-aggregates formed that was found to play a key role in governing the thermal behavior of nanofluids at various particle concentration. The presentation will include a quantitative assessment of these forces and mechanisms, which would lead to conclusions about nanofluids, heat transfer performance and thermal characteristics and its potential application in solar thermal energy plants.Keywords: thermal energy storage, molten salt, nano-fluids, multi-scale computational modelling
Procedia PDF Downloads 1912639 Paper-Like and Battery Free Sensor Patches for Wound Monitoring
Authors: Xiaodi Su, Xin Ting Zheng, Laura Sutarlie, Nur Asinah binte Mohamed Salleh, Yong Yu
Abstract:
Wound healing is a dynamic process with multiple phases. Rapid profiling and quantitative characterization of inflammation and infection remain challenging. We have developed paper-like battery-free multiplexed sensors for holistic wound assessment via quantitative detection of multiple inflammation and infection markers. In one of the designs, the sensor patch consists of a wax-printed paper panel with five colorimetric sensor channels arranged in a pattern resembling a five-petaled flower (denoted as a ‘Petal’ sensor). The five sensors are for temperature, pH, trimethylamine, uric acid, and moisture. The sensor patch is sandwiched between a top transparent silicone layer and a bottom adhesive wound contact layer. In the second design, a palm-like-shaped paper strip is fabricated by a paper-cutter printer (denoted as ‘Palm’ sensor). This sensor strip carries five sensor regions connected by a stem sampling entrance that enables rapid colorimetric detection of multiple bacteria metabolites (aldehyde, lactate, moisture, trimethylamine, tryptophan) from wound exudate. For both the “\’ Petal’ and ‘Palm’ sensors, color images can be captured by a mobile phone. According to the color changes, one can quantify the concentration of the biomarkers and then determine wound healing status and identify/quantify bacterial species in infected wounds. The ‘Petal’ and ‘Palm’ sensors are validated with in-situ animal and ex-situ skin wound models, respectively. These sensors have the potential for integration with wound dressing to allow early warning of adverse events without frequent removal of the plasters. Such in-situ and early detection of non-healing condition can trigger immediate clinical intervention to facilitate wound care management.Keywords: wound infection, colorimetric sensor, paper fluidic sensor, wound care
Procedia PDF Downloads 812638 Seismic Strengthening of Reinforced Concrete Beam-Column Joint by Reversible Mixed Technologies of FRP
Authors: Nasser-Eddine Attari
Abstract:
After the earthquake many structures were classified as slightly damaged and, being uneconomic to replace them, at least in the short term, suitable means of repairs of the beam column joint area are being studied. Furthermore, there exist a large number of buildings that need retrofitting of the joints before the next earthquake. The paper reports the results of the experimental programme, constituted of three beam-column reinforced concrete joints at a scale of one to three (1/3) tested under the effect of a pre-stressing axial load acting over the column. The beams were subjected at their ends to an alternate cyclic loading under displacement control to simulate a seismic action. Strain and cracking fields were monitored with the help a digital recording camera. Following the analysis of the results, a comparison can be made between the performances in terms of ductility, strength, and mode of failure of the different strengthening solution considered.Keywords: fibre reinforced polymers, joints, reinforced concrete, beam columns
Procedia PDF Downloads 4402637 A Note on the Fractal Dimension of Mandelbrot Set and Julia Sets in Misiurewicz Points
Authors: O. Boussoufi, K. Lamrini Uahabi, M. Atounti
Abstract:
The main purpose of this paper is to calculate the fractal dimension of some Julia Sets and Mandelbrot Set in the Misiurewicz Points. Using Matlab to generate the Julia Sets images that match the Misiurewicz points and using a Fractal software, we were able to find different measures that characterize those fractals in textures and other features. We are actually focusing on fractal dimension and the error calculated by the software. When executing the given equation of regression or the log-log slope of image a Box Counting method is applied to the entire image, and chosen settings are available in a FracLAc Program. Finally, a comparison is done for each image corresponding to the area (boundary) where Misiurewicz Point is located.Keywords: box counting, FracLac, fractal dimension, Julia Sets, Mandelbrot Set, Misiurewicz Points
Procedia PDF Downloads 2162636 A Novel Method for Solving Nonlinear Whitham–Broer–Kaup Equation System
Authors: Ayda Nikkar, Roghayye Ahmadiasl
Abstract:
In this letter, a new analytical method called homotopy perturbation method, which does not need small parameter in the equation is implemented for solving the nonlinear Whitham–Broer–Kaup (WBK) partial differential equation. In this method, a homotopy is introduced to be constructed for the equation. The initial approximations can be freely chosen with possible unknown constants which can be determined by imposing the boundary and initial conditions. Comparison of the results with those of exact solution has led us to significant consequences. The results reveal that the HPM is very effective, convenient and quite accurate to systems of nonlinear equations. It is predicted that the HPM can be found widely applicable in engineering.Keywords: homotopy perturbation method, Whitham–Broer–Kaup (WBK) equation, Modified Boussinesq, Approximate Long Wave
Procedia PDF Downloads 3112635 Passive Seismic in Hydrogeological Prospecting: The Case Study from Hard Rock and Alluvium Plain
Authors: Prarabdh Tiwari, M. Vidya Sagar, K. Bhima Raju, Joy Choudhury, Subash Chandra, E. Nagaiah, Shakeel Ahmed
Abstract:
Passive seismic, a wavefield interferometric imaging, low cost and rapid tool for subsurface investigation is used for various geotechnical purposes such as hydrocarbon exploration, seismic microzonation, etc. With the recent advancement, its application has also been extended to groundwater exploration by means of finding the bedrock depth. Council of Scientific & Industrial Research (CSIR)-National Geophysical Research Institute (NGRI) has experimented passive seismic studies along with electrical resistivity tomography for groundwater in hard rock (Choutuppal, Hyderabad). Passive Seismic with Electrical Resistivity (ERT) can give more clear 2-D subsurface image for Groundwater Exploration in Hard Rock area. Passive seismic data were collected using a Tromino, a three-component broadband seismometer, to measure background ambient noise and processed using GRILLA software. The passive seismic results are found corroborating with ERT (Electrical Resistivity Tomography) results. For data acquisition purpose, Tromino was kept over 30 locations consist recording of 20 minutes at each station. These location shows strong resonance frequency peak, suggesting good impedance contrast between different subsurface layers (ex. Mica rich Laminated layer, Weathered layer, granite, etc.) This paper presents signature of passive seismic for hard rock terrain. It has been found that passive seismic has potential application for formation characterization and can be used as an alternative tool for delineating litho-stratification in an urban condition where electrical and electromagnetic tools cannot be applied due to high cultural noise. In addition to its general application in combination with electrical and electromagnetic methods can improve the interpreted subsurface model.Keywords: passive seismic, resonant frequency, Tromino, GRILLA
Procedia PDF Downloads 188