Search results for: transmission error
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3771

Search results for: transmission error

2061 Patients Reactions to Medical Errors in Hospitals: The Need for Social Workers in Nigeria

Authors: Emmanuel Temitope Adaranijo

Abstract:

Medical error is on the increase in many nations and like many developing nations, Nigeria is not excluded and more importantly, Lafia, Nasarawa state, where the study was carried. The study was undertaken to explore Patients' knowledge and their reactions to medical errors in hospitals in Lafia Local Government Area; therefore, five objectives were formulated to guide the study. The survey research design was employed and triangulation of quantitative and qualitative instruments was used to collect data. The total population for the study was 330,712 and the sample size was 400; however, only 343 patients and three doctors responded to the quantitative and qualitative study, respectively. Frequency distribution, simple percentage, and r test were used to analyze the data obtained from respondents. The findings revealed that medical errors are prevalent in hospitals in Lafia and the patients are neither aware nor willing to report such occurrence. The study recommends that social workers, hospital management, and governments should take up their roles in reducing the occurrence of medical errors.

Keywords: health, hospital, medical errors, social work

Procedia PDF Downloads 130
2060 Deep Learning Framework for Predicting Bus Travel Times with Multiple Bus Routes: A Single-Step Multi-Station Forecasting Approach

Authors: Muhammad Ahnaf Zahin, Yaw Adu-Gyamfi

Abstract:

Bus transit is a crucial component of transportation networks, especially in urban areas. Any intelligent transportation system must have accurate real-time information on bus travel times since it minimizes waiting times for passengers at different stations along a route, improves service reliability, and significantly optimizes travel patterns. Bus agencies must enhance the quality of their information service to serve their passengers better and draw in more travelers since people waiting at bus stops are frequently anxious about when the bus will arrive at their starting point and when it will reach their destination. For solving this issue, different models have been developed for predicting bus travel times recently, but most of them are focused on smaller road networks due to their relatively subpar performance in high-density urban areas on a vast network. This paper develops a deep learning-based architecture using a single-step multi-station forecasting approach to predict average bus travel times for numerous routes, stops, and trips on a large-scale network using heterogeneous bus transit data collected from the GTFS database. Over one week, data was gathered from multiple bus routes in Saint Louis, Missouri. In this study, Gated Recurrent Unit (GRU) neural network was followed to predict the mean vehicle travel times for different hours of the day for multiple stations along multiple routes. Historical time steps and prediction horizon were set up to 5 and 1, respectively, which means that five hours of historical average travel time data were used to predict average travel time for the following hour. The spatial and temporal information and the historical average travel times were captured from the dataset for model input parameters. As adjacency matrices for the spatial input parameters, the station distances and sequence numbers were used, and the time of day (hour) was considered for the temporal inputs. Other inputs, including volatility information such as standard deviation and variance of journey durations, were also included in the model to make it more robust. The model's performance was evaluated based on a metric called mean absolute percentage error (MAPE). The observed prediction errors for various routes, trips, and stations remained consistent throughout the day. The results showed that the developed model could predict travel times more accurately during peak traffic hours, having a MAPE of around 14%, and performed less accurately during the latter part of the day. In the context of a complicated transportation network in high-density urban areas, the model showed its applicability for real-time travel time prediction of public transportation and ensured the high quality of the predictions generated by the model.

Keywords: gated recurrent unit, mean absolute percentage error, single-step forecasting, travel time prediction.

Procedia PDF Downloads 72
2059 Investigated Optimization of Davidson Path Loss Model for Digital Terrestrial Television (DTTV) Propagation in Urban Area

Authors: Pitak Keawbunsong, Sathaporn Promwong

Abstract:

This paper presents an investigation on the efficiency of the optimized Davison path loss model in order to look for a suitable path loss model to design and planning DTTV propagation for small and medium urban areas in southern Thailand. Hadyai City in Songkla Province is chosen as the case study to collect the analytical data on the electric field strength. The optimization is conducted through the least square method while the efficiency index is through the statistical value of relative error (RE). The result of the least square method is the offset and slop of the frequency to be used in the optimized process. The statistical result shows that RE of the old Davidson model is at the least when being compared with the optimized Davison and the Hata models. Thus, the old Davison path loss model is the most accurate that further becomes the most optimized for the plan on the propagation network design.

Keywords: DTTV propagation, path loss model, Davidson model, least square method

Procedia PDF Downloads 338
2058 One-Step Synthesis of Titanium Dioxide Porous Microspheres by Picosecond Pulsed Laser Welding

Authors: Huiwu Yu, Xiangyou Li, Xiaoyan Zeng

Abstract:

Porous spheres have been widely used in many fields due to their attractive features. In this work, an approach for fabricating porous spheres of nanoparticles was presented, in which the nanoparticles were welded together to form micro spheres by simply irradiating the nanoparticles in liquid medium by a picosecond laser. As an example, anatase titanium dioxide was chosen as a typical material on account of its metastability. The structure and morphologies of the products were characterised by X-ray diffraction (XRD), scanning electron microscope (SEM), Raman, and high-resolution transmission electron microscopy (HRTEM), respectively. The results showed that, anatase titanium dioxide micro spheres (2-10 μm) with macroporous (10-100 nm) were prepared from nano-anatase titanium dioxide nanoparticles (10-100 nm). The formation process of polycrystalline anatase titanium dioxide microspheres was investigated with different liquid mediums and the input laser fluences. Thus, this facile laser irradiation approach might provide a way for the fabrication of porous microspheres without phase-transition.

Keywords: titanium dioxide, porous microspheres, picosecond laser, nano-welding

Procedia PDF Downloads 305
2057 X̄ and S Control Charts based on Weighted Standard Deviation Method

Authors: Derya Karagöz

Abstract:

A Shewhart chart based on normality assumption is not appropriate for skewed distributions since its Type-I error rate is inflated. This study presents X̄ and S control charts for monitoring the process variability for skewed distributions. We propose Weighted Standard Deviation (WSD) X̄ and S control charts. Standard deviation estimator is applied to monitor the process variability for estimating the process standard deviation, in the case of the W SD X̄ and S control charts as this estimator is simple and easy to compute. Unlike the Shewhart control chart, the proposed charts provide asymmetric limits in accordance with the direction and degree of skewness to construct the upper and lower limits. The performances of the proposed charts are compared with other heuristic charts for skewed distributions by using Simulation study. The Simulation studies show that the proposed control charts have good properties for skewed distributions and large sample sizes.

Keywords: weighted standard deviation, MAD, skewed distributions, S control charts

Procedia PDF Downloads 399
2056 Improvement of Camera Calibration Based on the Relationship between Focal Length and Aberration Coefficient

Authors: Guorong Sui, Xingwei Jia, Chenhui Yin, Xiumin Gao

Abstract:

In the processing of camera-based high precision and non-contact measurement, the geometric-optical aberration is always inevitably disturbing the measuring system. Moreover, the aberration is different with the different focal length, which will increase the difficulties of the system’s calibration. Therefore, to understand the relationship between the focal length as a function of aberration properties is a very important issue to the calibration of the measuring systems. In this study, we propose a new mathematics model, which is based on the plane calibration method by Zhang Zhengyou, and establish a relationship between the focal length and aberration coefficient. By using the mathematics model and carefully modified compensation templates, the calibration precision of the system can be dramatically improved. The experiment results show that the relative error is less than 1%. It is important for optoelectronic imaging systems that apply to measure, track and position by changing the camera’s focal length.

Keywords: camera calibration, aberration coefficient, vision measurement, focal length, mathematics model

Procedia PDF Downloads 364
2055 Electrochemical Biosensor for Rutin Detection with Multiwall Carbon Nanotubes and Cerium Dioxide Nanoparticles

Authors: Stephen Rathinaraj Benjamin, Flavio Colmati Junior, Maria Izabel Florindo Guedes, Rosa Amalia Fireman Dutra

Abstract:

A new enzymatic electrochemical biosensor based on multiwall carbon nanotubes and cerium oxide nanoparticles for the detection of rutin has been developed. The cerium oxide nanoparticles /HRP/ multiwall carbon nanotubes/ carbon paste electrode (HRP/ CeO2/MWCNTs/CPE) was prepared by ensuing addition of MWCNTs and HRP on the CPE, followed by the mixing with cerium oxide nanoparticles. Surface physical characteristics of the modified electrode and the electrochemical properties of the composite were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), cylic voltammetry (CV), differential pulse voltammetry (DPV) and square wave voltammetry (SWV). The HRP/ CeO2/MWCNTs/CPE showed good selectivity, stability and reproducibility, which was further applied to detect rutin tablet and capsule samples with satisfactory results.

Keywords: cerium dioxide nanoparticles, horseradish peroxidase, multiwall carbon nanotubes, rutin

Procedia PDF Downloads 393
2054 Optimization of Vertical Axis Wind Turbine Based on Artificial Neural Network

Authors: Mohammed Affanuddin H. Siddique, Jayesh S. Shukla, Chetan B. Meshram

Abstract:

The neural networks are one of the power tools of machine learning. After the invention of perceptron in early 1980's, the neural networks and its application have grown rapidly. Neural networks are a technique originally developed for pattern investigation. The structure of a neural network consists of neurons connected through synapse. Here, we have investigated the different algorithms and cost function reduction techniques for optimization of vertical axis wind turbine (VAWT) rotor blades. The aerodynamic force coefficients corresponding to the airfoils are stored in a database along with the airfoil coordinates. A forward propagation neural network is created with the input as aerodynamic coefficients and output as the airfoil co-ordinates. In the proposed algorithm, the hidden layer is incorporated into cost function having linear and non-linear error terms. In this article, it is observed that the ANNs (Artificial Neural Network) can be used for the VAWT’s optimization.

Keywords: VAWT, ANN, optimization, inverse design

Procedia PDF Downloads 324
2053 The Effect of Floor Impact Sound Insulation Performance Using Scrambled Thermoplastic Poly Urethane and Ethylene Vinyl Acetate

Authors: Bonsoo Koo, Seong Shin Hong, Byung Kwon Lee

Abstract:

Most of apartments in Korea have wall type structure that present poor performance regarding floor impact sound insulation. In order to minimize the transmission of floor impact sound, flooring structures are used in which an insulating material, 30 mm thickness pad of EPS or EVA, is sandwiched between a concrete slab and the finished mortar. Generally, a single-material pad used for insulation has a heavyweight impact sound level of 44~47 dB with 210 mm thickness slab. This study provides an analysis of the floor impact sound insulation performance using thermoplastic poly urethane (TPU), ethylene vinyl acetate (EVA), and expanded polystyrene (EPS) materials with buffering performance. Following mock-up tests the effect of lightweight impact sound turned out to be similar but heavyweight impact sound was decreased by 3 dB compared to conventional single material insulation pad.

Keywords: floor impact sound, thermoplastic poly urethane, ethylene vinyl acetate, heavyweight impact sound

Procedia PDF Downloads 404
2052 Performance Comparison of Space-Time Block and Trellis Codes under Rayleigh Channels

Authors: Jing Qingfeng, Wu Jiajia

Abstract:

Due to the crowded orbits and shortage of frequency resources, utilizing of MIMO technology to improve spectrum efficiency and increase the capacity has become a necessary trend of broadband satellite communication. We analyze the main influenced factors and compare the BER performance of space-time block code (STBC) scheme and space-time trellis code (STTC) scheme. This paper emphatically studies the bit error rate (BER) performance of STTC and STBC under Rayleigh channel. The main emphasis is placed on the effects of the factors, such as terminal environment and elevation angles, on the BER performance of STBC and STTC schemes. Simulation results indicate that performance of STTC under Rayleigh channel is obviously improved with the increasing of transmitting and receiving antennas numbers, but the encoder state has little impact on the performance. Under Rayleigh channel, performance of Alamouti code is better than that of STTC.

Keywords: MIMO, space time block code (STBC), space time trellis code (STTC), Rayleigh channel

Procedia PDF Downloads 349
2051 Coordination Polymer Hydrogels Based on Coinage Metals and Nucleobase Derivatives

Authors: Lamia L. G. Al-Mahamad, Benjamin R. Horrocks, Andrew Houlton

Abstract:

Hydrogels based on metal coordination polymers of nucleosides and a range of metal ions (Au, Ag, Cu) have been prepared and characterized by atomic force microscopy (AFM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, ultraviolet-visible absorption spectroscopy, and powder X-ray diffraction. AFM images of the xerogels revealed the formation of extremely long polymer molecules (> 10 micrometers, the maximum scan range). This result is also consistent with TEM images which show a fibrous morphology. Oxidative doping of the Au-nucleoside fibres produces an electrically conductive nanowire. No sharp Bragg peaks were found at the at the X-ray diffraction pattern for metal ions hydrogels indicating that the samples were amorphous, but instead the data showed broad peaks in the range 20 < Q < 40 and correspond to distances d=2μ/Q. The data was analysed using a simplified Rietveld method by fitting a regression model to obtain the distance between atoms.

Keywords: hydrogel, metal ions, nanowire, nucleoside

Procedia PDF Downloads 265
2050 Efficient Prediction of Surface Roughness Using Box Behnken Design

Authors: Ajay Kumar Sarathe, Abhinay Kumar

Abstract:

Production of quality products required for specific engineering applications is an important issue. The roughness of the surface plays an important role in the quality of the product by using appropriate machining parameters to eliminate wastage due to over machining. To increase the quality of the surface, the optimum machining parameter setting is crucial during the machining operation. The effect of key machining parameters- spindle speed, feed rate, and depth of cut on surface roughness has been evaluated. Experimental work was carried out using High Speed Steel tool and AlSI 1018 as workpiece material. In this study, the predictive model has been developed using Box-Behnken Design. An experimental investigation has been carried out for this work using BBD for three factors and observed that the predictive model of Ra value is closed to predictive value with a marginal error of 2.8648 %. Developed model establishes a correlation between selected key machining parameters that influence the surface roughness in a AISI 1018. F

Keywords: ANOVA, BBD, optimisation, response surface methodology

Procedia PDF Downloads 159
2049 Secret Sharing in Visual Cryptography Using NVSS and Data Hiding Techniques

Authors: Misha Alexander, S. B. Waykar

Abstract:

Visual Cryptography is a special unbreakable encryption technique that transforms the secret image into random noisy pixels. These shares are transmitted over the network and because of its noisy texture it attracts the hackers. To address this issue a Natural Visual Secret Sharing Scheme (NVSS) was introduced that uses natural shares either in digital or printed form to generate the noisy secret share. This scheme greatly reduces the transmission risk but causes distortion in the retrieved secret image through variation in settings and properties of digital devices used to capture the natural image during encryption / decryption phase. This paper proposes a new NVSS scheme that extracts the secret key from randomly selected unaltered multiple natural images. To further improve the security of the shares data hiding techniques such as Steganography and Alpha channel watermarking are proposed.

Keywords: decryption, encryption, natural visual secret sharing, natural images, noisy share, pixel swapping

Procedia PDF Downloads 404
2048 Observational Study -HIV/ AIDS and Medical Personnel in Mangalore, India

Authors: Anjana Sreedharan, Harish Rao

Abstract:

Background: India has the world’s third largest population of people living with HIV/AIDS, with a prevalence rate of 0.69 in the state of Karnataka. This study aims at assessing the HIV/AIDS related knowledge, attitude and behavior of the medical personnel in 3 hospitals in the city of Mangalore. Methods: Surgeons, Anesthetists, OT staff nurses, ward nursing staff, House surgeons working in the hospitals associated with Kasturba Medical college, Mangalore were given questionnaires and interviewed. Their knowledge about HIV, their attitude towards HIV positive patients and bias in management of the patients was assessed. Conclusion: So far, it has been found that amongst doctors, discrimination was mainly in the form of HIV testing without consent and a lack of confidentiality. However, the doctors rarely changed the treatment plan on knowing the HIV status of the patient. Amongst the nursing staff and interns, there is a serious lacuna of knowledge regarding HIV transmission, as compared to consultants. The patient seldom faced verbal abuse from the team. Use of universal precautions is less among the entire team due to insufficient availability of the same.

Keywords: discrimination, HIV/ AIDS, medical colleges, stigma

Procedia PDF Downloads 332
2047 Silver Nanoparticles-Enhanced Luminescence Spectra of Silicon Nanocrystals

Authors: Khamael M. Abualnaja, Lidija Šiller, Benjamin R. Horrocks

Abstract:

Metal-enhanced luminescence of silicon nano crystals (SiNCs) was determined using two different particle sizes of silver nano particles (AgNPs). SiNCs have been characterized by scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photo electron spectroscopy (XPS). It is found that the SiNCs are crystalline with an average diameter of 65 nm and FCC lattice. AgNPs were synthesized using photochemical reduction of AgNO3 with sodium dodecyl sulphate (SDS). The enhanced luminescence of SiNCs by AgNPs was evaluated by confocal Raman microspectroscopy. Enhancement up to ×9 and ×3 times were observed for SiNCs that mixed with AgNPs which have an average particle size of 100 nm and 30 nm, respectively. Silver NPs-enhanced luminescence of SiNCs occurs as a result of the coupling between the excitation laser light and the plasmon bands of AgNPs; thus this intense field at AgNPs surface couples strongly to SiNCs.

Keywords: silver nanoparticles, surface enhanced raman spectroscopy (SERS), silicon nanocrystals, luminescence

Procedia PDF Downloads 421
2046 Refitting Equations for Peak Ground Acceleration in Light of the PF-L Database

Authors: Matevž Breška, Iztok Peruš, Vlado Stankovski

Abstract:

Systematic overview of existing Ground Motion Prediction Equations (GMPEs) has been published by Douglas. The number of earthquake recordings that have been used for fitting these equations has increased in the past decades. The current PF-L database contains 3550 recordings. Since the GMPEs frequently model the peak ground acceleration (PGA) the goal of the present study was to refit a selection of 44 of the existing equation models for PGA in light of the latest data. The algorithm Levenberg-Marquardt was used for fitting the coefficients of the equations and the results are evaluated both quantitatively by presenting the root mean squared error (RMSE) and qualitatively by drawing graphs of the five best fitted equations. The RMSE was found to be as low as 0.08 for the best equation models. The newly estimated coefficients vary from the values published in the original works.

Keywords: Ground Motion Prediction Equations, Levenberg-Marquardt algorithm, refitting PF-L database, peak ground acceleration

Procedia PDF Downloads 462
2045 Investigation of Comfort Properties of Knitted Fabrics

Authors: Mehmet Karahan, Nevin Karahan

Abstract:

Water and air permeability and thermal resistance of fabrics are the important attributes which strongly influence the thermo-physiological comfort properties of sportswear fabrics in different environmental conditions. In this work, terry and fleece fabrics were developed by varying the fiber content and areal density of fabrics. Further, the thermo-physical properties, including air permeability, water vapor permeability, and thermal resistance, of the developed fabrics were analyzed before and after washing. The multi-response optimization of thermo-physiological comfort properties was done by using principal component analysis (PCA) and Taguchi signal to noise ratio (PCA-S/N ratio) for optimal properties. It was found that the selected parameters resulted in a significant effect on thermo-physiological comfort properties of knitted fabrics. The PCA analysis showed that before wash, 100% cotton fabric with an aerial weight of 220 g.m⁻² gave optimum values of thermo-physiological comfort.

Keywords: thermo-physiological comfort, fleece knitted fabric, air permeability, water vapor transmission, cotton/polyester

Procedia PDF Downloads 117
2044 Effect of BYMV on Faba Bean Productivity in Libya

Authors: Abdullah S. El-Ammari, Omar M. El-Sanousi, Fathi S. El-Mesmari

Abstract:

One distinct virus namely bean yellow mosaic potyvirus (BYMV) was isolated from naturally infected faba bean plants and identified through the serological reaction, mechanical transmission, host range and symptomology. To study the effect of BYMV on faba bean crop productivity, the experiment was carried out in naturally infected field in a completely randomized design with two treatments (the early infected plants and the lately infected plants). T- test was used to analyze the data. plants of each treatment were harvested when the pods were fully ripened. Early infection significantly reduced the yield of broad bean crop leading to 85.04% yield loss in productivity of seeds per plant, 72.42% yield loss in number of pods per plants, 31.58% yield loss in number of seeds per pod and 18.2% yield loss in weight of seeds per plant.

Keywords: bean yellow mosaic potyvirus, faba bean, productivity, libya

Procedia PDF Downloads 315
2043 Design of Compact Dual-Band Planar Antenna for WLAN Systems

Authors: Anil Kumar Pandey

Abstract:

A compact planar monopole antenna with dual-band operation suitable for wireless local area network (WLAN) application is presented in this paper. The antenna occupies an overall area of 18 ×12 mm2. The antenna is fed by a coplanar waveguide (CPW) transmission line and it combines two folded strips, which radiates at 2.4 and 5.2 GHz. In the proposed antenna, by optimally selecting the antenna dimensions, dual-band resonant modes with a much wider impedance matching at the higher band can be produced. Prototypes of the obtained optimized design have been simulated using EM solver. The simulated results explore good dual-band operation with -10 dB impedance bandwidths of 50 MHz and 2400 MHz at bands of 2.4 and 5.2 GHz, respectively, which cover the 2.4/5.2/5.8 GHz WLAN operating bands. Good antenna performances such as radiation patterns and antenna gains over the operating bands have also been observed. The antenna with a compact size of 18×12×1.6 mm3 is designed on an FR4 substrate with a dielectric constant of 4.4.

Keywords: CPW antenna, dual-band, electromagnetic simulation, wireless local area network (WLAN)

Procedia PDF Downloads 209
2042 A Hybrid Model Tree and Logistic Regression Model for Prediction of Soil Shear Strength in Clay

Authors: Ehsan Mehryaar, Seyed Armin Motahari Tabari

Abstract:

Without a doubt, soil shear strength is the most important property of the soil. The majority of fatal and catastrophic geological accidents are related to shear strength failure of the soil. Therefore, its prediction is a matter of high importance. However, acquiring the shear strength is usually a cumbersome task that might need complicated laboratory testing. Therefore, prediction of it based on common and easy to get soil properties can simplify the projects substantially. In this paper, A hybrid model based on the classification and regression tree algorithm and logistic regression is proposed where each leaf of the tree is an independent regression model. A database of 189 points for clay soil, including Moisture content, liquid limit, plastic limit, clay content, and shear strength, is collected. The performance of the developed model compared to the existing models and equations using root mean squared error and coefficient of correlation.

Keywords: model tree, CART, logistic regression, soil shear strength

Procedia PDF Downloads 197
2041 Classification of Precipitation Types Detected in Malaysia

Authors: K. Badron, A. F. Ismail, A. L. Asnawi, N. F. A. Malik, S. Z. Abidin, S. Dzulkifly

Abstract:

The occurrences of precipitation, also commonly referred as rain, in the form of "convective" and "stratiform" have been identified to exist worldwide. In this study, the radar return echoes or known as reflectivity values acquired from radar scans have been exploited in the process of classifying the type of rain endured. The investigation use radar data from Malaysian Meteorology Department (MMD). It is possible to discriminate the types of rain experienced in tropical region by observing the vertical characteristics of the rain structure. .Heavy rain in tropical region profoundly affects radiowave signals, causing transmission interference and signal fading. Required wireless system fade margin depends on the type of rain. Information relating to the two mentioned types of rain is critical for the system engineers and researchers in their endeavour to improve the reliability of communication links. This paper highlights the quantification of percentage occurrences over one year period in 2009.

Keywords: stratiform, convective, tropical region, attenuation radar reflectivity

Procedia PDF Downloads 288
2040 Convergence Analysis of Cubic B-Spline Collocation Method for Time Dependent Parabolic Advection-Diffusion Equations

Authors: Bharti Gupta, V. K. Kukreja

Abstract:

A comprehensive numerical study is presented for the solution of time-dependent advection diffusion problems by using cubic B-spline collocation method. The linear combination of cubic B-spline basis, taken as approximating function, is evaluated using the zeros of shifted Chebyshev polynomials as collocation points in each element to obtain the best approximation. A comparison, on the basis of efficiency and accuracy, with the previous techniques is made which confirms the superiority of the proposed method. An asymptotic convergence analysis of technique is also discussed, and the method is found to be of order two. The theoretical analysis is supported with suitable examples to show second order convergence of technique. Different numerical examples are simulated using MATLAB in which the 3-D graphical presentation has taken at different time steps as well as different domain of interest.

Keywords: cubic B-spline basis, spectral norms, shifted Chebyshev polynomials, collocation points, error estimates

Procedia PDF Downloads 223
2039 Phase II Monitoring of First-Order Autocorrelated General Linear Profiles

Authors: Yihua Wang, Yunru Lai

Abstract:

Statistical process control has been successfully applied in a variety of industries. In some applications, the quality of a process or product is better characterized and summarized by a functional relationship between a response variable and one or more explanatory variables. A collection of this type of data is called a profile. Profile monitoring is used to understand and check the stability of this relationship or curve over time. The independent assumption for the error term is commonly used in the existing profile monitoring studies. However, in many applications, the profile data show correlations over time. Therefore, we focus on a general linear regression model with a first-order autocorrelation between profiles in this study. We propose an exponentially weighted moving average charting scheme to monitor this type of profile. The simulation study shows that our proposed methods outperform the existing schemes based on the average run length criterion.

Keywords: autocorrelation, EWMA control chart, general linear regression model, profile monitoring

Procedia PDF Downloads 460
2038 The Exploration of Psychosocial Risk and the Handling of Unsafe Acts and Misconduct

Authors: Jacquelene Swanepoel, J. C. Visagie, H. M. Linde

Abstract:

Purpose: The aim of this article is to investigate the psychosocial risk environment influencing employee behaviour, and subsequently the trust relationship between employer and employee. Design/methodology/approach: The unique nature and commonness of negative acts, such as unsafe behaviour, human errors, poor performance and negligence, also referred to as unsafe practice, are explored. A literature review is formulated to investigate the nature of negative acts or unsafe behaviour. The findings of this study are used to draw comparisons between unsafe behaviour/misconduct and accidents in the workplace and finally conclude how it should be addressed from a labour relations point of view. Findings: The results indicate comparisons between unsafe practice/misconduct and occupational injuries and accidents, as a result of system flaws, human error or psychosocial risk.

Keywords: occupational risks, unsafe practice, misconduct, organisational safety culture, ergonomics, management commitment and leadership, labour relations

Procedia PDF Downloads 357
2037 Quantification of Magnetic Resonance Elastography for Tissue Shear Modulus using U-Net Trained with Finite-Differential Time-Domain Simulation

Authors: Jiaying Zhang, Xin Mu, Chang Ni, Jeff L. Zhang

Abstract:

Magnetic resonance elastography (MRE) non-invasively assesses tissue elastic properties, such as shear modulus, by measuring tissue’s displacement in response to mechanical waves. The estimated metrics on tissue elasticity or stiffness have been shown to be valuable for monitoring physiologic or pathophysiologic status of tissue, such as a tumor or fatty liver. To quantify tissue shear modulus from MRE-acquired displacements (essentially an inverse problem), multiple approaches have been proposed, including Local Frequency Estimation (LFE) and Direct Inversion (DI). However, one common problem with these methods is that the estimates are severely noise-sensitive due to either the inverse-problem nature or noise propagation in the pixel-by-pixel process. With the advent of deep learning (DL) and its promise in solving inverse problems, a few groups in the field of MRE have explored the feasibility of using DL methods for quantifying shear modulus from MRE data. Most of the groups chose to use real MRE data for DL model training and to cut training images into smaller patches, which enriches feature characteristics of training data but inevitably increases computation time and results in outcomes with patched patterns. In this study, simulated wave images generated by Finite Differential Time Domain (FDTD) simulation are used for network training, and U-Net is used to extract features from each training image without cutting it into patches. The use of simulated data for model training has the flexibility of customizing training datasets to match specific applications. The proposed method aimed to estimate tissue shear modulus from MRE data with high robustness to noise and high model-training efficiency. Specifically, a set of 3000 maps of shear modulus (with a range of 1 kPa to 15 kPa) containing randomly positioned objects were simulated, and their corresponding wave images were generated. The two types of data were fed into the training of a U-Net model as its output and input, respectively. For an independently simulated set of 1000 images, the performance of the proposed method against DI and LFE was compared by the relative errors (root mean square error or RMSE divided by averaged shear modulus) between the true shear modulus map and the estimated ones. The results showed that the estimated shear modulus by the proposed method achieved a relative error of 4.91%±0.66%, substantially lower than 78.20%±1.11% by LFE. Using simulated data, the proposed method significantly outperformed LFE and DI in resilience to increasing noise levels and in resolving fine changes of shear modulus. The feasibility of the proposed method was also tested on MRE data acquired from phantoms and from human calf muscles, resulting in maps of shear modulus with low noise. In future work, the method’s performance on phantom and its repeatability on human data will be tested in a more quantitative manner. In conclusion, the proposed method showed much promise in quantifying tissue shear modulus from MRE with high robustness and efficiency.

Keywords: deep learning, magnetic resonance elastography, magnetic resonance imaging, shear modulus estimation

Procedia PDF Downloads 68
2036 Sampling Error and Its Implication for Capture Fisheries Management in Ghana

Authors: Temiloluwa J. Akinyemi, Denis W. Aheto, Wisdom Akpalu

Abstract:

Capture fisheries in developing countries provide significant animal protein and directly supports the livelihoods of several communities. However, the misperception of biophysical dynamics owing to a lack of adequate scientific data has contributed to the suboptimal management in marine capture fisheries. This is because yield and catch potentials are sensitive to the quality of catch and effort data. Yet, studies on fisheries data collection practices in developing countries are hard to find. This study investigates the data collection methods utilized by fisheries technical officers within the four fishing regions of Ghana. We found that the officers employed data collection and sampling procedures which were not consistent with the technical guidelines curated by FAO. For example, 50 instead of 166 landing sites were sampled, while 290 instead of 372 canoes were sampled. We argue that such sampling errors could result in the over-capitalization of capture fish stocks and significant losses in resource rents.

Keywords: Fisheries data quality, fisheries management, Ghana, Sustainable Fisheries

Procedia PDF Downloads 93
2035 The Promotion of AI Technology to Financial Development in China

Authors: Li Yong

Abstract:

Using the data of 135 financial institutions in China from 2018 to 2022, this paper deeply analyzes the underlying theoretical mechanism of artificial intelligence (AI) technology promoting financial development and examines the impact of AI technology on the digital transformation performance of financial enterprises. It is found that the level of AI technology has a significant positive impact on the development of finance. Compared with the impact on the expansion of financial scale, AI technology plays a greater role in improving the performance of financial institutions, reflecting the trend characteristics of the current AI technology to promote the evolution of financial structure. By investigating the intermediary transmission effects, we found that AI technology plays a positive role in promoting the performance of financial institutions by reducing operating costs and improving customer satisfaction, but its function in innovating financial products and mitigating financial risks is relatively limited. In addition, the promotion of AI technology in financial development has significant heterogeneity in terms of the type, scale, and attributes of financial institutions.

Keywords: artificial intelligence technology, financial development, China, heterogeneity

Procedia PDF Downloads 65
2034 Investigation of Self-Assembling of Maghemite Nanoparticles into Chain–Like Structures Using Birefringence Measurements

Authors: C. R. Stein; K. Skeff Neto, K. L. C. Miranda, P. P. C. Sartoratto, M. E. Xavier, Z. G. M. Lacava, S. M. De Freita, P. C. Morais

Abstract:

In this study, static magnetic birefringence (SMB) and transmission electron microscopy (TEM) were used to investigate the self-assembling of maghemite nanoparticles suspended as biocompatible magnetic fluid (BMF) while incubated or not with the Black Eyed–Pea Trypsin Chymotripsin Inhibitor–BTCI protein. The stock samples herein studied are dextran coated maghemite nanoparticles (average core diameter of 7.1 nm, diameter dispersion of 0.26, and containing 4.6×1016 particle/mL) and the dextran coated maghemite nanoparticles associated with the BTCI protein. Several samples were prepared by diluting the stock samples with deionized water while following their colloidal stability. The diluted samples were investigated using SMB measurements to assess the average sizes of the self-assembled and suspended mesoscopic structures whereas the TEM micrographs provide the morphology of the as-suspended units. The SMB data were analyzed using a model that includes the particle-particle interaction within the mean field model picture.

Keywords: biocompatible magnetic fluid, maghemite nanoparticles, self-assembling

Procedia PDF Downloads 480
2033 Estimation of Chronic Kidney Disease Using Artificial Neural Network

Authors: Ilker Ali Ozkan

Abstract:

In this study, an artificial neural network model has been developed to estimate chronic kidney failure which is a common disease. The patients’ age, their blood and biochemical values, and 24 input data which consists of various chronic diseases are used for the estimation process. The input data have been subjected to preprocessing because they contain both missing values and nominal values. 147 patient data which was obtained from the preprocessing have been divided into as 70% training and 30% testing data. As a result of the study, artificial neural network model with 25 neurons in the hidden layer has been found as the model with the lowest error value. Chronic kidney failure disease has been able to be estimated accurately at the rate of 99.3% using this artificial neural network model. The developed artificial neural network has been found successful for the estimation of chronic kidney failure disease using clinical data.

Keywords: estimation, artificial neural network, chronic kidney failure disease, disease diagnosis

Procedia PDF Downloads 447
2032 Effects of AI-driven Applications on Bank Performance in West Africa

Authors: Ani Wilson Uchenna, Ogbonna Chikodi

Abstract:

This study examined the impact of artificial intelligence driven applications on banks’ performance in West Africa using Nigeria and Ghana as case studies. Specifically, the study examined the extent to which deployment of smart automated teller machine impacts the banks’ net worth within the reference period in Nigeria and Ghana. It ascertained the impact of point of sale on banks’ net worth within the reference period in Nigeria and Ghana. Thirdly, it verified the extent to which webpay services can influence banks’ performance in Nigeria and Ghana and finally, determined the impact of mobile pay services on banks’ performance in Nigeria and Ghana. The study used automated teller machine (ATM), Point of sale services (POS), Mobile pay services (MOP) and Web pay services (WBP) as proxies for explanatory variables while Bank net worth was used as explained variable for the study. The data for this study were sourced from central bank of Nigeria (CBN) Statistical Bulletin as well as Bank of Ghana (BoGH) Statistical Bulletin, Ghana payment systems oversight annual report and world development indicator (WDI). Furthermore, the mixed order of integration observed from the panel unit test result justified the use of autoregressive distributed lag (ARDL) approach to data analysis which the study adopted. While the cointegration test showed the existence of cointegration among the studied variables, bound test result justified the presence of long-run relationship among the series. Again, ARDL error correction estimate established satisfactory (13.92%) speed of adjustment from long run disequilibrium back to short run dynamic relationship. The study found that while Automated teller machine (ATM) had statistically significant impact on bank net worth (BNW) of Nigeria and Ghana, point of sale services application (POS) statistically and significantly impact on bank net worth within the study period, mobile pay services application was statistically significant in impacting the changes in the bank net worth of the countries of study while web pay services (WBP) had no statistically significant impact on bank net worth of the countries of reference. The study concluded that artificial intelligence driven application have significant an positive impact on bank performance with exception of web pay which had negative impact on bank net worth. The study recommended that management of banks both in Nigerian and Ghanaian should encourage more investments in AI-powered smart ATMs aimed towards delivering more secured banking services in order to increase revenue, discourage excessive queuing in the banking hall, reduced fraud and minimize error in processing transaction. Banks within the scope of this study should leverage on modern technologies to checkmate the excesses of the private operators POS in order to build more confidence on potential customers. Government should convert mobile pay services to a counter terrorism tool by ensuring that restrictions on over-the-counter withdrawals to a minimum amount is maintained and place sanctions on withdrawals above that limit.

Keywords: artificial intelligence (ai), bank performance, automated teller machines (atm), point of sale (pos)

Procedia PDF Downloads 8