Search results for: social network analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 36679

Search results for: social network analysis

34969 Family Background and Extracurricular English Learning: Ethnography of Language Ideologies and Language Management in China

Authors: Yan Ma

Abstract:

Parents in China now are of great enthusiasm to outsource extracurricular lessons and activities to ensure their children’s English learning. This study draws on one year of ethnographic observations and interviews with parents and children in 6 families in Shaoxing, a small city in East China, to explore how parents in different social classes differ in their ideology and investment practice towards their children’s English education. Through comparative analysis, the study reveals though all the families acknowledge the importance of English and there are great similarities among families in the same social class, differences are distinct among those in different social classes with regard to how they perceived the importance and what measures they take. The results also reflect China’s sociocultural and socioeconomic factors that underlined the heated wave of English learning as well as the social, cultural and economic conditions of different families that exert a decisive influence on their children’s learning experience.

Keywords: family background, extracurricular English learning, language ideologies, language management

Procedia PDF Downloads 110
34968 Investigating the Application of Social Sustainability: A Case Study in the Egyptian Retailing Sector

Authors: Lobna Hafez, Eman Elakkad

Abstract:

Sustainability is no longer a choice for firms. To achieve sustainable supply chain, all three dimensions of sustainability should be considered. Unlike the economic and environmental aspects, social sustainability has been rarely given attention. The problem surrounding social sustainability and employees’ welfare in Egypt is complex and remains unsolved. The aim of this study is to qualitatively assess the current level of application of social sustainability in the retailing sector in Egypt through using the social sustainability indicators identified in the literature. The purpose of this investigation is to gain knowledge about the complexity of the system involved. A case study is conducted on one of the largest retailers in Egypt. Data were collected through semi-structured interviews with managers and employees to determine the level of application and identify the major obstacles affecting the social sustainability in the retailing context. The work developed gives insights about the details and complexities of the application of social sustainability in developing countries, from the retailing perspective. The outcomes of this study will help managers to understand the enablers of social sustainability and will direct them to methods of sound implementation.

Keywords: developing countries, Egyptian retailing sector, sustainability, social sustainability

Procedia PDF Downloads 140
34967 Enhancing Social Well-Being in Older Adults Through Tailored Technology Interventions: A Future Systematic Review

Authors: Rui Lin, Jimmy Xiangji Huang, Gary Spraakman

Abstract:

This forthcoming systematic review will underscore the imperative of leveraging technology to mitigate social isolation in older adults, particularly in the context of unprecedented global challenges such as the COVID-19 pandemic. With the continual evolution of technology, it becomes crucial to scrutinize the efficacy of interventions and discern how they can alleviate social isolation and augment social well-being among the elderly. This review will strive to clarify the best methods for older adults to utilize cost-effective and user-friendly technology and will investigate how the adaptation and execution of such interventions can be fine-tuned to maximize their positive outcomes. The study will follow the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines to filter pertinent studies. We foresee conducting an analysis of articles and executing a narrative analysis to discover themes and indicators related to quality of life and, technology use and well-being. The review will examine how involving older adults at the community level, applying top practices from community-based participatory research, can establish efficient strategies to implement technology-based interventions designed to diminish social isolation and boost digital use self-efficacy. Applications based on mobile technology and virtual platforms are set to assume a crucial role not only in enhancing connections within families but also in connecting older adults to vital healthcare resources, fostering both physical and mental well-being. The review will investigate how technological devices and platforms can address the cognitive, visual, and auditory requirements of older adults, thus strengthening their confidence and proficiency in digital use—a crucial factor during enforced social distancing or self-isolation periods during pandemics. This review will endeavor to provide insights into the multifaceted benefits of technology for older adults, focusing on how tailored technological interventions can be a beacon of social and mental wellness in times of social restrictions. It will contribute to the growing body of knowledge on the intersection of technology and elderly well-being, offering nuanced understandings and practical implications for developing user-centric, effective, and inclusive technological solutions for older populations.

Keywords: older adults, health service delivery, digital health, social isolation, social well-being

Procedia PDF Downloads 61
34966 Mitigating Denial of Service Attacks in Information Centric Networking

Authors: Bander Alzahrani

Abstract:

Information-centric networking (ICN) using architectures such as Publish-Subscribe Internet Routing Paradigm (PSIRP) is one of the promising candidates for a future Internet, has recently been under the spotlight by the research community to investigate the possibility of redesigning the current Internet architecture to solve many issues such as routing scalability, security, and quality of services issues.. The Bloom filter-based forwarding is a source-routing approach that is used in the PSIRP architecture. This mechanism is vulnerable to brute force attacks which may lead to denial-of-service (DoS) attacks. In this work, we present a new forwarding approach that keeps the advantages of Bloom filter-based forwarding while mitigates attacks on the forwarding mechanism. In practice, we introduce a special type of forwarding nodes called Edge-FW to be placed at the edge of the network. The role of these node is to add an extra security layer by validating and inspecting packets at the edge of the network against brute-force attacks and check whether the packet contains a legitimate forwarding identifier (FId) or not. We leverage Certificateless Aggregate Signature (CLAS) scheme with a small size of 64-bit which is used to sign the FId. Hence, this signature becomes bound to a specific FId. Therefore, malicious nodes that inject packets with random FIds will be easily detected and dropped at the Edge-FW node when the signature verification fails. Our preliminary security analysis suggests that with the proposed approach, the forwarding plane is able to resist attacks such as DoS with very high probability.

Keywords: bloom filter, certificateless aggregate signature, denial-of-service, information centric network

Procedia PDF Downloads 198
34965 Assessing the Social Impacts of a Circular Economy in the Global South

Authors: Dolores Sucozhañay, Gustavo Pacheco, Paul Vanegas

Abstract:

In the context of sustainable development and the transition towards a sustainable circular economy (CE), evaluating the social dimension remains a challenge. Therefore, developing a respective methodology is highly important. First, the change of the economic model may cause significant social effects, which today remain unaddressed. Second, following the current level of globalization, CE implementation requires targeting global material cycles and causes social impacts on potentially vulnerable social groups. A promising methodology is the Social Life Cycle Assessment (SLCA), which embraces the philosophy of life cycle thinking and provides complementary information to environmental and economic assessments. In this context, the present work uses the updated Social Life Cycle Assessment (SLCA) Guidelines 2020 to assess the social performance of the recycling system of Cuenca, Ecuador, to exemplify a social assessment method. Like many other developing countries, Ecuador heavily depends on the work of informal waste pickers (recyclers), who, even contributing to a CE, face harsh socio-economic circumstances, including inappropriate working conditions, social exclusion, exploitation, etc. Under a Reference Scale approach (Type 1), 12 impact subcategories were assessed through 73 site-specific inventory indicators, using an ascending reference scale ranging from -2 to +2. Findings reveal a social performance below compliance levels with local and international laws, basic societal expectations, and practices in the recycling sector; only eight and five indicators present a positive score. In addition, a social hotspot analysis depicts collection as the most time-consuming lifecycle stage and the one with the most hotspots, mainly related to working hours and health and safety aspects. This study provides an integrated view of the recyclers’ contributions, challenges, and opportunities within the recycling system while highlighting the relevance of assessing the social dimension of CE practices. It also fosters an understanding of the social impact of CE operations in developing countries, highlights the need for a close north-south relationship in CE, and enables the connection among the environmental, economic, and social dimensions.

Keywords: SLCA, circular economy, recycling, social impact assessment

Procedia PDF Downloads 151
34964 Studying Relationship between Local Geometry of Decision Boundary with Network Complexity for Robustness Analysis with Adversarial Perturbations

Authors: Tushar K. Routh

Abstract:

If inputs are engineered in certain manners, they can influence deep neural networks’ (DNN) performances by facilitating misclassifications, a phenomenon well-known as adversarial attacks that question networks’ vulnerability. Recent studies have unfolded the relationship between vulnerability of such networks with their complexity. In this paper, the distinctive influence of additional convolutional layers at the decision boundaries of several DNN architectures was investigated. Here, to engineer inputs from widely known image datasets like MNIST, Fashion MNIST, and Cifar 10, we have exercised One Step Spectral Attack (OSSA) and Fast Gradient Method (FGM) techniques. The aftermaths of adding layers to the robustness of the architectures have been analyzed. For reasoning, separation width from linear class partitions and local geometry (curvature) near the decision boundary have been examined. The result reveals that model complexity has significant roles in adjusting relative distances from margins, as well as the local features of decision boundaries, which impact robustness.

Keywords: DNN robustness, decision boundary, local curvature, network complexity

Procedia PDF Downloads 75
34963 Proposing a Boundary Coverage Algorithm ‎for Underwater Sensor Network

Authors: Seyed Mohsen Jameii

Abstract:

Wireless underwater sensor networks are a type of sensor networks that are located in underwater environments and linked together by acoustic waves. The application of these kinds of network includes monitoring of pollutants (chemical, biological, and nuclear), oil fields detection, prediction of the likelihood of a tsunami in coastal areas, the use of wireless sensor nodes to monitor the passing submarines, and determination of appropriate locations for anchoring ships. This paper proposes a boundary coverage algorithm for intrusion detection in underwater sensor networks. In the first phase of the proposed algorithm, optimal deployment of nodes is done in the water. In the second phase, after the employment of nodes at the proper depth, clustering is executed to reduce the exchanges of messages between the sensors. In the third phase, the algorithm of "divide and conquer" is used to save energy and increase network efficiency. The simulation results demonstrate the efficiency of the proposed algorithm.

Keywords: boundary coverage, clustering, divide and ‎conquer, underwater sensor nodes

Procedia PDF Downloads 341
34962 Research on Online Consumption of College Students in China with Stimulate-Organism-Reaction Driven Model

Authors: Wei Lu

Abstract:

With the development of information technology in China, network consumption is becoming more and more popular. As a special group, college students have a high degree of education and distinct opinions and personalities. In the future, the key groups of network consumption have gradually become the focus groups of network consumption. Studying college students’ online consumption behavior has important theoretical significance and practical value. Based on the Stimulus-Organism-Response (SOR) driving model and the structural equation model, this paper establishes the influencing factors model of College students’ online consumption behavior, evaluates and amends the model by using SPSS and AMOS software, analyses and determines the positive factors of marketing college students’ consumption, and provides an effective basis for guiding and promoting college student consumption.

Keywords: college students, online consumption, stimulate-organism-reaction driving model, structural equation model

Procedia PDF Downloads 153
34961 Model and Algorithm for Dynamic Wireless Electric Vehicle Charging Network Design

Authors: Trung Hieu Tran, Jesse O'Hanley, Russell Fowler

Abstract:

When in-wheel wireless charging technology for electric vehicles becomes mature, a need for such integrated charging stations network development is essential. In this paper, we thus investigate the optimisation problem of in-wheel wireless electric vehicle charging network design. A mixed-integer linear programming model is formulated to solve into optimality the problem. In addition, a meta-heuristic algorithm is proposed for efficiently solving large-sized instances within a reasonable computation time. A parallel computing strategy is integrated into the algorithm to speed up its computation time. Experimental results carried out on the benchmark instances show that our model and algorithm can find the optimal solutions and their potential for practical applications.

Keywords: electric vehicle, wireless charging station, mathematical programming, meta-heuristic algorithm, parallel computing

Procedia PDF Downloads 79
34960 A Study of the Attitude Towards Marriage among Young Adults in Indian and Tibetan Society Which Impacted in Social Learning and Cross-Cultural Behavior

Authors: Meenakshi Chaubey

Abstract:

A principle proposed in the cross-cultural adaption of behavior among Indian and Tibetan societies in which there are not any great variations between their young adults on the mindset of day-to-day marriage, Marriage plays a dominant position in constructing the society, which in large part comprises underneath the domain of lifestyle. Way of life is a social behavior and norm located in human societies where an extensive range of phenomena can be transmitted thru social studying. It acts characteristic of the individual has been the diploma day-to-day which they have got cultivated a specific stage of class in arts, science, architecture. The existing studies preliminarily on young adults of each community, wherein we carried out a comparative observe of the mindset of daily marriage among Indian and Tibetan teens. Further, we studied statistics comprehensively on the mindset closer day by day the marriage between Indian adult males and Tibetan younger males. With the extension of a complete look, we considered the mindset of an everyday marriage of Indian girls and Tibetan young ladies. Studies 1 showed that there might be no sizable distinction within the attitude of the day-to-day marriage of Indian and Tibetan teenagers. It, in addition, showed that they followed each different marriage beliefs and customs. Studies 2 showed that there might be no important difference in the attitude toward the everyday marriage of Indian and Tibetan young males. It similarly showcased that day-to-day secular schooling gadget in Tibetan society complements their clinical approach and changes their point of view on distinct social issues along with marriage. Research three confirmed that there is no substantial difference in the mindset of the daily marriage of Indian and Tibetan younger females. It similarly spread out the strict authorities' recommendations that they may no longer be allowed day-to-day comply with their marriage practices, including polygamy and polyandry. Thus, the information showed that there's a shift of lifestyle from one network every day to some other community because of social every day, which affects the conduct and results of daily past cultural adaptation.

Keywords: culture, marriage, attitude, society, young adults, Indian, Tibetan

Procedia PDF Downloads 85
34959 Bounded Rational Heterogeneous Agents in Artificial Stock Markets: Literature Review and Research Direction

Authors: Talal Alsulaiman, Khaldoun Khashanah

Abstract:

In this paper, we provided a literature survey on the artificial stock problem (ASM). The paper began by exploring the complexity of the stock market and the needs for ASM. ASM aims to investigate the link between individual behaviors (micro level) and financial market dynamics (macro level). The variety of patterns at the macro level is a function of the AFM complexity. The financial market system is a complex system where the relationship between the micro and macro level cannot be captured analytically. Computational approaches, such as simulation, are expected to comprehend this connection. Agent-based simulation is a simulation technique commonly used to build AFMs. The paper proceeds by discussing the components of the ASM. We consider the roles of behavioral finance (BF) alongside the traditionally risk-averse assumption in the construction of agent's attributes. Also, the influence of social networks in the developing of agents’ interactions is addressed. Network topologies such as a small world, distance-based, and scale-free networks may be utilized to outline economic collaborations. In addition, the primary methods for developing agents learning and adaptive abilities have been summarized. These incorporated approach such as Genetic Algorithm, Genetic Programming, Artificial neural network and Reinforcement Learning. In addition, the most common statistical properties (the stylized facts) of stock that are used for calibration and validation of ASM are discussed. Besides, we have reviewed the major related previous studies and categorize the utilized approaches as a part of these studies. Finally, research directions and potential research questions are argued. The research directions of ASM may focus on the macro level by analyzing the market dynamic or on the micro level by investigating the wealth distributions of the agents.

Keywords: artificial stock markets, market dynamics, bounded rationality, agent based simulation, learning, interaction, social networks

Procedia PDF Downloads 354
34958 Assessment of the Effects of Urban Development on Urban Heat Islands and Community Perception in Semi-Arid Climates: Integrating Remote Sensing, GIS Tools, and Social Analysis - A Case Study of the Aures Region (Khanchela), Algeria

Authors: Amina Naidja, Zedira Khammar, Ines Soltani

Abstract:

This study investigates the impact of urban development on the urban heat island (UHI) effect in the semi-arid Aures region of Algeria, integrating remote sensing data with statistical analysis and community surveys to examine the interconnected environmental and social dynamics. Using Landsat 8 satellite imagery, temporal variations in the Normalized Difference Vegetation Index (NDVI), Normalized Difference Built-up Index (NDBI), and land use/land cover (LULC) changes are analyzed to understand patterns of urbanization and environmental transformation. These environmental metrics are correlated with land surface temperature (LST) data derived from remote sensing to quantify the UHI effect. To incorporate the social dimension, a structured questionnaire survey is conducted among residents in selected urban areas. The survey assesses community perceptions of urban heat, its impacts on daily life, health concerns, and coping strategies. Statistical analysis is employed to analyze survey responses, identifying correlations between demographic factors, socioeconomic status, and perceived heat stress. Preliminary findings reveal significant correlations between built-up areas (NDBI) and higher LST, indicating the contribution of urbanization to local warming. Conversely, areas with higher vegetation cover (NDVI) exhibit lower LST, highlighting the cooling effect of green spaces. Social survey results provide insights into how UHI affects different demographic groups, with vulnerable populations experiencing greater heat-related challenges. By integrating remote sensing analysis with statistical modeling and community surveys, this study offers a comprehensive understanding of the environmental and social implications of urban development in semi-arid climates. The findings contribute to evidence-based urban planning strategies that prioritize environmental sustainability and social well-being. Future research should focus on policy recommendations and community engagement initiatives to mitigate UHI impacts and promote climate-resilient urban development.

Keywords: urban heat island, remote sensing, social analysis, NDVI, NDBI, LST, community perception

Procedia PDF Downloads 41
34957 Prediction of Compressive Strength Using Artificial Neural Network

Authors: Vijay Pal Singh, Yogesh Chandra Kotiyal

Abstract:

Structures are a combination of various load carrying members which transfer the loads to the foundation from the superstructure safely. At the design stage, the loading of the structure is defined and appropriate material choices are made based upon their properties, mainly related to strength. The strength of materials kept on reducing with time because of many factors like environmental exposure and deformation caused by unpredictable external loads. Hence, to predict the strength of materials used in structures, various techniques are used. Among these techniques, Non-Destructive Techniques (NDT) are the one that can be used to predict the strength without damaging the structure. In the present study, the compressive strength of concrete has been predicted using Artificial Neural Network (ANN). The predicted strength was compared with the experimentally obtained actual compressive strength of concrete and equations were developed for different models. A good co-relation has been obtained between the predicted strength by these models and experimental values. Further, the co-relation has been developed using two NDT techniques for prediction of strength by regression analysis. It was found that the percentage error has been reduced between the predicted strength by using combined techniques in place of single techniques.

Keywords: rebound, ultra-sonic pulse, penetration, ANN, NDT, regression

Procedia PDF Downloads 428
34956 Numerical Investigation of Wastewater ‎Rheological Characteristics on Flow Field ‎Inside a Sewage Network

Authors: Seyed-Mohammad-Kazem Emami, Behrang Saki, Majid Mohammadian

Abstract:

The wastewater flow field inside a sewage network including pipe and ‎manhole was investigated using a Computational Fluid Dynamics ‎‎(CFD) model. The numerical model is developed by incorporating a ‎rheological model to calculate the viscosity of wastewater fluid by ‎means of open source toolbox OpenFOAM. The rheological ‎properties of prepared wastewater fluid suspensions are first measured ‎using a BrookField LVDVII Pro+ viscometer with an enhanced UL ‎adapter and then correlated the suitable rheological viscosity model ‎values from the measured rheological properties. The results show the ‎significant effects of rheological characteristics of wastewater fluid on ‎the flow domain of sewer system. Results were compared and ‎discussed with the commonly used Newtonian model to evaluate the ‎differences for velocity profile, pressure and shear stress. ‎

Keywords: Non-Newtonian flows, Wastewater, Numerical simulation, Rheology, Sewage Network

Procedia PDF Downloads 131
34955 Assessment of Planet Image for Land Cover Mapping Using Soft and Hard Classifiers

Authors: Lamyaa Gamal El-Deen Taha, Ashraf Sharawi

Abstract:

Planet image is a new data source from planet lab. This research is concerned with the assessment of Planet image for land cover mapping. Two pixel based classifiers and one subpixel based classifier were compared. Firstly, rectification of Planet image was performed. Secondly, a comparison between minimum distance, maximum likelihood and neural network classifications for classification of Planet image was performed. Thirdly, the overall accuracy of classification and kappa coefficient were calculated. Results indicate that neural network classification is best followed by maximum likelihood classifier then minimum distance classification for land cover mapping.

Keywords: planet image, land cover mapping, rectification, neural network classification, multilayer perceptron, soft classifiers, hard classifiers

Procedia PDF Downloads 187
34954 In situ Polymerization and Properties of Biobased Polyurethane/Epoxy Interpenetrating Network Nanocomposites

Authors: Aiswarea Mathew, Smita Mohanty, Jr., S. K. Nayak

Abstract:

Polyurethane networks based on castor oil (CO) as a renewable resource polyol were synthesized. Polyurethane/epoxy resin interpenetrating network nanocomposites containing modified montmorillonite organoclay (C30B-PU/EP nanocomposites) were prepared by an in situ intercalation method. The conventional spectroscopic characterization of the synthesized samples using FT-IR confirms the existence of the proposed castor oil based PU structure and also showed that strong interactions existed between C30B and EP/PU matrix. The dispersion degree of C30B in EP/PU matrix was characterized by X-Ray diffraction (XRD) method. Scanning electronic microscopy analysis showed that the interpenetrating process of PU and EP increases the exfoliation degree of C30B, and it improves the compatibility and the phase structure of polyurethane/epoxy resin interpenetrating polymer networks (PU/EP IPNs). The thermal stability improves compared to the polyurethane when the PU/EP IPN is formed. Mechanical properties including the Young’s modulus and tensile strength reflected marked improvement with addition of C30B.

Keywords: castor oil, epoxy, montmorillonite, polyurethane

Procedia PDF Downloads 400
34953 The Social Process of Alternative Dispute Resolution and Collective Conciliation: Unveiling the Theoretical Framework

Authors: Adejoke Yemisi Ige

Abstract:

This study presents a conceptual analysis and investigation into the development of a systematic framework required for better understanding of the social process of Alternative Dispute Resolution (ADR) and collective conciliation. The critical examination presented in this study is significant because; it draws on insight from ADR, negotiation and collective bargaining literature and applies it in our advancement of a methodical outline which gives an insight into the influence of the key actors and other stakeholder strategies and behaviours during dispute resolution in relation to the outcomes which is novel. This study is qualitative and essentially inductive in nature. One of the findings of the study confirms the need to consider ADR and collective conciliation within the context of the characteristic conditions; which focus on the need for some agreement to be reached. Another finding of the study shows the extent which information-sharing, willingness of the parties to negotiate and make concession assist both parties to attain resolution. This paper recommends that in order to overcome deadlock and attain acceptable outcomes at the end of ADR and collective conciliation, the importance of information exchange and sustenance of trade union and management relationship cannot be understated. The need for trade unions and management, the representatives to achieve their expectations in order to build the confidence and assurance of their respective constituents is essential. In conclusion, the analysis presented in this study points towards a set of factors that together can be called the social process of collective conciliation nevertheless; it acknowledges that its application to collective conciliation is new.

Keywords: alternative dispute resolution, collective conciliation, social process, theoretical framework, unveiling

Procedia PDF Downloads 153
34952 A Conceptual Model of Social Entrepreneurial Intention Based on the Social Cognitive Career Theory

Authors: Anh T. P. Tran, Harald Von Korflesch

Abstract:

Entrepreneurial intention play a major role in entrepreneurship academia and practice. The spectrum ranges from the first model of the so-called Entrepreneurial Event, then the Theory of Planned Behavior, the Theory of Planned Behavior Entrepreneurial Model, and the Social Cognitive Career Theory to some typical empirical studies with more or less diverse results. However, little is known so far about the intentions of entrepreneurs in the social areas of venture creation. It is surprising that, since social entrepreneurship is an emerging field with growing importance. Currently, all around the world, there is a big challenge with a lot of urgent soaring social and environmental problems such as poor households, people with disabilities, HIV/AIDS infected people, the lonely elderly, or neglected children, some of them even actual in the Western countries. In addition, the already existing literature on entrepreneurial intentions demonstrates a high level of theoretical diversity in general, especially the missing link to the social dimension of entrepreneurship. Seeking to fill the mentioned gaps in the social entrepreneurial intentions literature, this paper proposes a conceptual model of social entrepreneurial intentions based on the Social Cognitive Career Theory with two main factors influencing entrepreneurial intentions namely self-efficacy and outcome expectation. Moreover, motives, goals and plans do not arise from empty nothingness, but are shaped by interacting with the environment. Hence, personalities (i.e., agreeableness, conscientiousness, extraversion, neuroticism, openness) as well as contextual factors (e.g., role models, education, and perceived support) are also considered as the antecedents of social entrepreneurship intentions.

Keywords: entrepreneurial intention, social cognitive career theory, social entrepreneurial intention, social entrepreneurship

Procedia PDF Downloads 475
34951 An Inverse Optimal Control Approach for the Nonlinear System Design Using ANN

Authors: M. P. Nanda Kumar, K. Dheeraj

Abstract:

The design of a feedback controller, so as to minimize a given performance criterion, for a general non-linear dynamical system is difficult; if not impossible. But for a large class of non-linear dynamical systems, the open loop control that minimizes a performance criterion can be obtained using calculus of variations and Pontryagin’s minimum principle. In this paper, the open loop optimal trajectories, that minimizes a given performance measure, is used to train the neural network whose inputs are state variables of non-linear dynamical systems and the open loop optimal control as the desired output. This trained neural network is used as the feedback controller. In other words, attempts are made here to solve the “inverse optimal control problem” by using the state and control trajectories that are optimal in an open loop sense.

Keywords: inverse optimal control, radial basis function, neural network, controller design

Procedia PDF Downloads 554
34950 Positive Bias and Length Bias in Deep Neural Networks for Premises Selection

Authors: Jiaqi Huang, Yuheng Wang

Abstract:

Premises selection, the task of selecting a set of axioms for proving a given conjecture, is a major bottleneck in automated theorem proving. An array of deep-learning-based methods has been established for premises selection, but a perfect performance remains challenging. Our study examines the inaccuracy of deep neural networks in premises selection. Through training network models using encoded conjecture and axiom pairs from the Mizar Mathematical Library, two potential biases are found: the network models classify more premises as necessary than unnecessary, referred to as the ‘positive bias’, and the network models perform better in proving conjectures that paired with more axioms, referred to as ‘length bias’. The ‘positive bias’ and ‘length bias’ discovered could inform the limitation of existing deep neural networks.

Keywords: automated theorem proving, premises selection, deep learning, interpreting deep learning

Procedia PDF Downloads 183
34949 Integrating Artificial Neural Network and Taguchi Method on Constructing the Real Estate Appraisal Model

Authors: Mu-Yen Chen, Min-Hsuan Fan, Chia-Chen Chen, Siang-Yu Jhong

Abstract:

In recent years, real estate prediction or valuation has been a topic of discussion in many developed countries. Improper hype created by investors leads to fluctuating prices of real estate, affecting many consumers to purchase their own homes. Therefore, scholars from various countries have conducted research in real estate valuation and prediction. With the back-propagation neural network that has been popular in recent years and the orthogonal array in the Taguchi method, this study aimed to find the optimal parameter combination at different levels of orthogonal array after the system presented different parameter combinations, so that the artificial neural network obtained the most accurate results. The experimental results also demonstrated that the method presented in the study had a better result than traditional machine learning. Finally, it also showed that the model proposed in this study had the optimal predictive effect, and could significantly reduce the cost of time in simulation operation. The best predictive results could be found with a fewer number of experiments more efficiently. Thus users could predict a real estate transaction price that is not far from the current actual prices.

Keywords: artificial neural network, Taguchi method, real estate valuation model, investors

Procedia PDF Downloads 489
34948 Discovering Social Entrepreneurship: A Qualitative Study on Stimulants and Obstacles for Social Entrepreneurs in the Hague

Authors: Loes Nijskens

Abstract:

The city of The Hague is coping with several social issues: high unemployment rates, segregation and environmental pollution. The amount of social enterprises in The Hague that want to tackle these issues is increasing, but no clear image exists of the stimulants and obstacles social entrepreneurs encounter. In this qualitative study 20 starting and established social entrepreneurs, investors and stimulators of social entrepreneurship have been interviewed. The findings indicate that the majority of entrepreneurs situated in The Hague focuses on creating jobs (the so called social nurturers) and diminishing food waste. Moreover, the study found smaller groups of social connectors, (who focus on stimulating the social cohesion in the city) and social traders (who create a market for products from developing countries). For the social nurturers, working together with local government to find people with a distance to the labour market is a challenge. The entrepreneurs are missing a governance approach within the local government, wherein space is provided to develop suitable legislation and projects in cooperation with several stakeholders in order to diminish social problems. All entrepreneurs in the sample face(d) the challenge of having a clear purpose of their business in the beginning. Starting social entrepreneurs tend to be idealistic without having defined a business model. Without a defined business model it is difficult to find proper funding for their business. The more advanced enterprises cope with the challenge of measuring social impact. The larger they grow, the more they have to ‘defend’ themselves towards the local government and their customers, of mainly being social. Hence, the more experienced social nurturers still find it difficult to work together with the local government. They tend to settle their business in other municipalities, where they find more effective public-private partnerships. Al this said, the eco-system for social enterprises in The Hague is on the rise. To stimulate the amount and growth of social enterprises the cooperation between entrepreneurs and local government, the developing of social business models and measuring of impact needs more attention.

Keywords: obstacles, social enterprises, stimulants, the Hague

Procedia PDF Downloads 218
34947 Using Geospatial Analysis to Reconstruct the Thunderstorm Climatology for the Washington DC Metropolitan Region

Authors: Mace Bentley, Zhuojun Duan, Tobias Gerken, Dudley Bonsal, Henry Way, Endre Szakal, Mia Pham, Hunter Donaldson, Chelsea Lang, Hayden Abbott, Leah Wilcynzski

Abstract:

Air pollution has the potential to modify the lifespan and intensity of thunderstorms and the properties of lightning. Using data mining and geovisualization, we investigate how background climate and weather conditions shape variability in urban air pollution and how this, in turn, shapes thunderstorms as measured by the intensity, distribution, and frequency of cloud-to-ground lightning. A spatiotemporal analysis was conducted in order to identify thunderstorms using high-resolution lightning detection network data. Over seven million lightning flashes were used to identify more than 196,000 thunderstorms that occurred between 2006 - 2020 in the Washington, DC Metropolitan Region. Each lightning flash in the dataset was grouped into thunderstorm events by means of a temporal and spatial clustering algorithm. Once the thunderstorm event database was constructed, hourly wind direction, wind speed, and atmospheric thermodynamic data were added to the initiation and dissipation times and locations for the 196,000 identified thunderstorms. Hourly aerosol and air quality data for the thunderstorm initiation times and locations were also incorporated into the dataset. Developing thunderstorm climatologies using a lightning tracking algorithm and lightning detection network data was found to be useful for visualizing the spatial and temporal distribution of urban augmented thunderstorms in the region.

Keywords: lightning, urbanization, thunderstorms, climatology

Procedia PDF Downloads 76
34946 Impact of Social Media on Content of Saudi Television News Networks

Authors: Majed Alshaibani

Abstract:

Social media has emerged as a serious contender to TV news networks in Saudi Arabia. The growing usage of social media as a source of news and information has led to significant impact on the content presented by the news networks in Saudi Arabia. This study explored the various ways in which social media has influenced content aired on Saudi news networks. Data were collected by using semi structured interviews with 13 journalists and content editors working for four Saudi TV news networks and six senior academic experts on TV and media teaching in Saudi universities. The findings of the study revealed that social media has affected four aspects of the content on Saudi TV news networks. As a result the content aired on Saudi news networks is more neutral, real time, diverse in terms of sources and includes content on broader subjects and from different parts of the world. This research concludes that social media has contributed positively and significantly to improving the content on Saudi TV news networks.

Keywords: TV news networks, Saudi Arabia, social media, media content

Procedia PDF Downloads 238
34945 Artificial Intelligence Assisted Sentiment Analysis of Hotel Reviews Using Topic Modeling

Authors: Sushma Ghogale

Abstract:

With a surge in user-generated content or feedback or reviews on the internet, it has become possible and important to know consumers' opinions about products and services. This data is important for both potential customers and businesses providing the services. Data from social media is attracting significant attention and has become the most prominent channel of expressing an unregulated opinion. Prospective customers look for reviews from experienced customers before deciding to buy a product or service. Several websites provide a platform for users to post their feedback for the provider and potential customers. However, the biggest challenge in analyzing such data is in extracting latent features and providing term-level analysis of the data. This paper proposes an approach to use topic modeling to classify the reviews into topics and conduct sentiment analysis to mine the opinions. This approach can analyse and classify latent topics mentioned by reviewers on business sites or review sites, or social media using topic modeling to identify the importance of each topic. It is followed by sentiment analysis to assess the satisfaction level of each topic. This approach provides a classification of hotel reviews using multiple machine learning techniques and comparing different classifiers to mine the opinions of user reviews through sentiment analysis. This experiment concludes that Multinomial Naïve Bayes classifier produces higher accuracy than other classifiers.

Keywords: latent Dirichlet allocation, topic modeling, text classification, sentiment analysis

Procedia PDF Downloads 97
34944 Analysis of the Use of a NAO Robot to Improve Social Skills in Children with Autism Spectrum Disorder in Saudi Arabia

Authors: Eman Alarfaj, Hissah Alabdullatif, Huda Alabdullatif, Ghazal Albakri, Nor Shahriza Abdul Karim

Abstract:

Autism Spectrum Disorder is extensively spread amid children; it affects their social, communication and interactive skills. As robotics technology has been proven to be a significant helpful utility those able individuals to overcome their disabilities. Robotic technology is used in ASD therapy. The purpose of this research is to show how Nao robots can improve the social skills for children who suffer from autism in Saudi Arabia by interacting with the autistic child and perform a number of tasks. The objective of this research is to identify, implement, and test the effectiveness of the module for interacting with ASD children in an autism center in Saudi Arabia. The methodology in this study followed the ten layers of protocol that needs to be followed during any human-robot interaction. Also, in order to elicit the scenario module, TEACCH Autism Program was adopted. Six different qualified interaction modules have been elicited and designed in this study; the robot will be programmed to perform these modules in a series of controlled interaction sessions with the Autistic children to enhance their social skills.

Keywords: humanoid robot Nao, ASD, human-robot interaction, social skills

Procedia PDF Downloads 264
34943 Technical and Economic Evaluation of Harmonic Mitigation from Offshore Wind Power Plants by Transmission Owners

Authors: A. Prajapati, K. L. Koo, F. Ghassemi, M. Mulimakwenda

Abstract:

In the UK, as the volume of non-linear loads connected to transmission grid continues to rise steeply, the harmonic distortion levels on transmission network are becoming a serious concern for the network owners and system operators. This paper outlines the findings of the study conducted to verify the proposal that the harmonic mitigation could be optimized and can be managed economically and effectively at the transmission network level by the Transmission Owner (TO) instead of the individual polluter connected to the grid. Harmonic mitigation studies were conducted on selected regions of the transmission network in England for recently connected offshore wind power plants to strategize and optimize selected harmonic filter options. The results – filter volume and capacity – were then compared against the mitigation measures adopted by the individual connections. Estimation ratios were developed based on the actual installed and optimal proposed filters. These estimation ratios were then used to derive harmonic filter requirements for future contracted connections. The study has concluded that a saving of 37% in the filter volume/capacity could be achieved if the TO is to centrally manage the harmonic mitigation instead of individual polluter installing their own mitigation solution.

Keywords: C-type filter, harmonics, optimization, offshore wind farms, interconnectors, HVDC, renewable energy, transmission owner

Procedia PDF Downloads 157
34942 Research on Resilience-Oriented Disintegration in System-of-System

Authors: Hang Yang, Jiahao Liu, Jichao Li, Kewei Yang, Minghao Li, Bingfeng Ge

Abstract:

The system-of-systems (SoS) are utilized to characterize networks formed by integrating individual complex systems that demonstrate interdependence and interconnectedness. Research on the disintegration issue in SoS is significant in improving network survivability, maintaining network security, and optimizing SoS architecture. Accordingly, this study proposes an integrated framework called resilience-oriented disintegration in SoS (SoSRD), for modeling and solving the issue of SoS disintegration. Firstly, a SoS disintegration index (SoSDI) is presented to evaluate the disintegration effect of SoS. This index provides a practical description of the disintegration process and is the first integration of the network disintegration model and resilience models. Subsequently, we propose a resilience-oriented disintegration method based on reinforcement learning (RDRL) to enhance the efficiency of SoS disintegration. This method is not restricted by the problem scenario as well as considering the coexistence of disintegration (node/link removal) and recovery (node/link addition) during the process of SoS disintegration. Finally, the effectiveness and superiority of the proposed SoSRD are demonstrated through a case study. We demonstrate that our proposed framework outperforms existing indexes and methods in both node and link disintegration scenarios, providing a fresh perspective on network disintegration. The findings provide crucial insights into dismantling harmful SoS and designing a more resilient SoS.

Keywords: system-of-systems, disintegration index, resilience, reinforcement learning

Procedia PDF Downloads 16
34941 “Octopub”: Geographical Sentiment Analysis Using Named Entity Recognition from Social Networks for Geo-Targeted Billboard Advertising

Authors: Oussama Hafferssas, Hiba Benyahia, Amina Madani, Nassima Zeriri

Abstract:

Although data nowadays has multiple forms; from text to images, and from audio to videos, yet text is still the most used one at a public level. At an academical and research level, and unlike other forms, text can be considered as the easiest form to process. Therefore, a brunch of Data Mining researches has been always under its shadow, called "Text Mining". Its concept is just like data mining’s, finding valuable patterns in data, from large collections and tremendous volumes of data, in this case: Text. Named entity recognition (NER) is one of Text Mining’s disciplines, it aims to extract and classify references such as proper names, locations, expressions of time and dates, organizations and more in a given text. Our approach "Octopub" does not aim to find new ways to improve named entity recognition process, rather than that it’s about finding a new, and yet smart way, to use NER in a way that we can extract sentiments of millions of people using Social Networks as a limitless information source, and Marketing for product promotion as the main domain of application.

Keywords: textmining, named entity recognition(NER), sentiment analysis, social media networks (SN, SMN), business intelligence(BI), marketing

Procedia PDF Downloads 589
34940 Use of Multivariate Statistical Techniques for Water Quality Monitoring Network Assessment, Case of Study: Jequetepeque River Basin

Authors: Jose Flores, Nadia Gamboa

Abstract:

A proper water quality management requires the establishment of a monitoring network. Therefore, evaluation of the efficiency of water quality monitoring networks is needed to ensure high-quality data collection of critical quality chemical parameters. Unfortunately, in some Latin American countries water quality monitoring programs are not sustainable in terms of recording historical data or environmentally representative sites wasting time, money and valuable information. In this study, multivariate statistical techniques, such as principal components analysis (PCA) and hierarchical cluster analysis (HCA), are applied for identifying the most significant monitoring sites as well as critical water quality parameters in the monitoring network of the Jequetepeque River basin, in northern Peru. The Jequetepeque River basin, like others in Peru, shows socio-environmental conflicts due to economical activities developed in this area. Water pollution by trace elements in the upper part of the basin is mainly related with mining activity, and agricultural land lost due to salinization is caused by the extensive use of groundwater in the lower part of the basin. Since the 1980s, the water quality in the basin has been non-continuously assessed by public and private organizations, and recently the National Water Authority had established permanent water quality networks in 45 basins in Peru. Despite many countries use multivariate statistical techniques for assessing water quality monitoring networks, those instruments have never been applied for that purpose in Peru. For this reason, the main contribution of this study is to demonstrate that application of the multivariate statistical techniques could serve as an instrument that allows the optimization of monitoring networks using least number of monitoring sites as well as the most significant water quality parameters, which would reduce costs concerns and improve the water quality management in Peru. Main socio-economical activities developed and the principal stakeholders related to the water management in the basin are also identified. Finally, water quality management programs will also be discussed in terms of their efficiency and sustainability.

Keywords: PCA, HCA, Jequetepeque, multivariate statistical

Procedia PDF Downloads 355