Search results for: rapid detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5765

Search results for: rapid detection

4055 Computer Countenanced Diagnosis of Skin Nodule Detection and Histogram Augmentation: Extracting System for Skin Cancer

Authors: S. Zith Dey Babu, S. Kour, S. Verma, C. Verma, V. Pathania, A. Agrawal, V. Chaudhary, A. Manoj Puthur, R. Goyal, A. Pal, T. Danti Dey, A. Kumar, K. Wadhwa, O. Ved

Abstract:

Background: Skin cancer is now is the buzzing button in the field of medical science. The cyst's pandemic is drastically calibrating the body and well-being of the global village. Methods: The extracted image of the skin tumor cannot be used in one way for diagnosis. The stored image contains anarchies like the center. This approach will locate the forepart of an extracted appearance of skin. Partitioning image models has been presented to sort out the disturbance in the picture. Results: After completing partitioning, feature extraction has been formed by using genetic algorithm and finally, classification can be performed between the trained and test data to evaluate a large scale of an image that helps the doctors for the right prediction. To bring the improvisation of the existing system, we have set our objectives with an analysis. The efficiency of the natural selection process and the enriching histogram is essential in that respect. To reduce the false-positive rate or output, GA is performed with its accuracy. Conclusions: The objective of this task is to bring improvisation of effectiveness. GA is accomplishing its task with perfection to bring down the invalid-positive rate or outcome. The paper's mergeable portion conflicts with the composition of deep learning and medical image processing, which provides superior accuracy. Proportional types of handling create the reusability without any errors.

Keywords: computer-aided system, detection, image segmentation, morphology

Procedia PDF Downloads 150
4054 Platelet Transfusion Thresholds for Pediatrics; A Retrospective Study

Authors: Hessah Alsulami, Majedah Aldosari

Abstract:

Introduction: Platelet threshold of 10x109 /L is recommended for clinically stable thrombocytopenic pediatric patients. Transfusions at a higher level (given the absence of research evidence, as determined by clinical circumstances, generally at threshold of 40x109 /L) may be required for patients with signs of bleeding, high fever, hyper-leukocytosis, rapid fall in platelet count, concomitant coagulation abnormality, critically ill patients, and those with impaired platelet function (including drug induced). Transfusions at a higher level may be also required for patients undergoing invasive procedures. Method: This study is a retrospective observational analysis of platelet transfusion thresholds in a single secondary pediatric hospital in Riyadh. From the blood bank database, the list of the patients who received platelet transfusions in the second half of 2018 was retrieved. Patients were divided into two groups; group A, those belong to the category of high platelet level for transfusion (such as those with bleeding, high fever, rapid fall in platelet count, impaired platelet function or undergoing invasive procedures) and group B, those who were not. Then we looked at the pre and post transfusion platelet levels for each group. The data was analyzed using GraphPad software and the data expressed as Mean ± SD. Result: A total of 112 of transfusion episodes in 61 patients (38% female) were analyzed. The age ranged from 24 days to 8 years. The distribution of platelet transfusion episodes was 64% (n=72) for group A and 36% (n= 40) for group B. The mean pre-transfusion platelet count was 46x103 ± (11x 103) for group A and 28x103 ± (6x103) for group B. the post-transfusion mean platelet count was 61 x 103 ± (14 x 103) and 60 x103 ± (24 x 103) for group A and B respectively. Among the groups the rise in the mean platelet count after transfusion was significant among stable patients (group B) compared to unstable patients (group A) (P < 0.001). Conclusion: The platelet count threshold for transfusion varied with the clinical condition and is higher among unstable patients’ group which is expected. For stable patients the threshold was higher than what it should be which means that the clinicians don’t follow the guidelines in this regard. The rise of platelet count after transfusion was higher among stable patients.

Keywords: platelet, transfusion, threshold, pediatric

Procedia PDF Downloads 71
4053 Model-Based Diagnostics of Multiple Tooth Cracks in Spur Gears

Authors: Ahmed Saeed Mohamed, Sadok Sassi, Mohammad Roshun Paurobally

Abstract:

Gears are important machine components that are widely used to transmit power and change speed in many rotating machines. Any breakdown of these vital components may cause severe disturbance to production and incur heavy financial losses. One of the most common causes of gear failure is the tooth fatigue crack. Early detection of teeth cracks is still a challenging task for engineers and maintenance personnel. So far, to analyze the vibration behavior of gears, different approaches have been tried based on theoretical developments, numerical simulations, or experimental investigations. The objective of this study was to develop a numerical model that could be used to simulate the effect of teeth cracks on the resulting vibrations and hence to permit early fault detection for gear transmission systems. Unlike the majority of published papers, where only one single crack has been considered, this work is more realistic, since it incorporates the possibility of multiple simultaneous cracks with different lengths. As cracks significantly alter the gear mesh stiffness, we performed a finite element analysis using SolidWorks software to determine the stiffness variation with respect to the angular position for different combinations of crack lengths. A simplified six degrees of freedom non-linear lumped parameter model of a one-stage gear system is proposed to study the vibration of a pair of spur gears, with and without tooth cracks. The model takes several physical properties into account, including variable gear mesh stiffness and the effect of friction, but ignores the lubrication effect. The vibration simulation results of the gearbox were obtained via Matlab and Simulink. The results were found to be consistent with the results from previously published works. The effect of one crack with different levels was studied and very similar changes in the total mesh stiffness and the vibration response, both were observed and compared to what has been found in previous studies. The effect of the crack length on various statistical time domain parameters was considered and the results show that these parameters were not equally sensitive to the crack percentage. Multiple cracks are introduced at different locations and the vibration response and the statistical parameters were obtained.

Keywords: dynamic simulation, gear mesh stiffness, simultaneous tooth cracks, spur gear, vibration-based fault detection

Procedia PDF Downloads 211
4052 In Vitro Propagation of Aloe vera and Aloe littoralis Plants: Gamma Radiation, Biochemical and Genetic Changes

Authors: Z. Nourmohammadi, F. Farahani, M. Shaker

Abstract:

Aloe is an important commercial crop available in a wide range of species and varieties in international markets. The applications of this plant have been recorded in the ancient cultures of India, Egypt, Greece, Rome and China. Aloe has been used for centuries and is currently being actively studied for medicinal purposes. Aloe is propagated through lateral buds, which is slow, very expensive and low income practice. Nowadays, it has been cultured by in vitro propagation for rapid multiplication of plants, genetic improvement of crops, obtaining disease-free clones and for progressive valuable germplasm. The present study focused on the influence of different phytohormones on rapid in vitro propagation of Aloe plants. We also investigated the effect of gamma radiation on biochemical characters as well as genetic changes. Shoot tip of 2-3 cm were collected from offshoot of Aloe barbadensis and Aloe littoralis, and were inoculated with MS medium containing various concentrations of BA (0.5, 1, 2 mg/l), IAA (0.5, 1 mg/l). The best treatment for a highest shoot number and bud proliferation was MS medium containing 2 mg/l BAP and 0.5 mg/l IAA in A. barbadensis and A. littoralis. Maximum percentage of proliferated shoot buds (90% and 95%) from a single explant were obtained in MS medium after 4-5 weeks of the second and the first subcultures, respectively. Different genome sizes were also indicated among treatments and subcultures. The mixoploids identified in flow cytometery histograms in different treatments. The effect of gamma radiation on A. littoralis showed that by increasing the dose of gamma radiation, amounts of chlorophyll A, B, carotenoids, total protein content and superoxide dismutase were significantly increased compared to control plants. Genetic variation analysis also revealed significant genetic differences between control and gamma radiation treated regenerated plants by AMOVA test. Higher genetic heterozygocity was observed in radiation treated plants. Our findings may provide useful method for improving of Aloe plant proliferation with increasing of useful material such as antioxidant enzymes.

Keywords: aloe, antioxidant enzyme, micropropagation, gamma radiation, genetic variation

Procedia PDF Downloads 429
4051 Fabrication of a New Electrochemical Sensor Based on New Nanostructured Molecularly Imprinted Polypyrrole for Selective and Sensitive Determination of Morphine

Authors: Samaneh Nabavi, Hadi Shirzad, Arash Ghoorchian, Maryam Shanesaz, Reza Naderi

Abstract:

Morphine (MO), the most effective painkiller, is considered the reference by which analgesics are assessed. It is very necessary for the biomedical applications to detect and maintain the MO concentrations in the blood and urine with in safe ranges. To date, there are many expensive techniques for detecting MO. Recently, many electrochemical sensors for direct determination of MO were constructed. The molecularly imprinted polymer (MIP) is a polymeric material, which has a built-in functionality for the recognition of a particular chemical substance with its complementary cavity.This paper reports a sensor for MO using a combination of a molecularly imprinted polymer (MIP) and differential-pulse voltammetry (DPV). Electropolymerization of MO doped polypyrrole yielded poor quality, but a well-doped, nanostructure and increased impregnation has been obtained in the pH=12. Above a pH of 11, MO is in the anionic forms. The effect of various experimental parameters including pH, scan rate and accumulation time on the voltammetric response of MO was investigated. At the optimum conditions, the concentration of MO was determined using DPV in a linear range of 7.07 × 10−6 to 2.1 × 10−4 mol L−1 with a correlation coefficient of 0.999, and a detection limit of 13.3 × 10-8 mol L−1, respectively. The effect of common interferences on the current response of MO namely ascorbic acid (AA) and uric acid (UA) is studied. The modified electrode can be used for the determination of MO spiked into urine samples, and excellent recovery results were obtained. The nanostructured polypyrrole films were characterized by field emission scanning electron microscopy (FESEM) and furrier transforms infrared (FTIR).

Keywords: morphine detection, sensor, polypyrrole, nanostructure, molecularly imprinted polymer

Procedia PDF Downloads 423
4050 Spectrophotometric Determination of Phenylephrine Hydrochloride by Coupling with Diazotized 2,4-Dinitroaniline

Authors: Sulaiman Gafar Muhamad

Abstract:

A rapid spectrophotometric method for the micro-determination of phenylephrine-HCl (PHE) has been developed. The proposed method involves the coupling of phenylephrine-HCl with diazotized 2,4-dinitroaniline in alkaline medium at λmax 455 nm. Under the present optimum condition, Beer’s law was obeyed in the range of 1.0-20 μg/ml of PHE with molar absorptivity of 1.915 ×104 l. mol-1.cm-1, with a relative error of 0.015 and a relative standard deviation of 0.024%. The current method has been applied successfully to estimate phenylephrine-HCl in pharmaceutical preparations (nose drop and syrup).

Keywords: diazo-coupling, 2, 4-dinitroaniline, phenylephrine-HCl, spectrophotometry

Procedia PDF Downloads 258
4049 FracXpert: Ensemble Machine Learning Approach for Localization and Classification of Bone Fractures in Cricket Athletes

Authors: Madushani Rodrigo, Banuka Athuraliya

Abstract:

In today's world of medical diagnosis and prediction, machine learning stands out as a strong tool, transforming old ways of caring for health. This study analyzes the use of machine learning in the specialized domain of sports medicine, with a focus on the timely and accurate detection of bone fractures in cricket athletes. Failure to identify bone fractures in real time can result in malunion or non-union conditions. To ensure proper treatment and enhance the bone healing process, accurately identifying fracture locations and types is necessary. When interpreting X-ray images, it relies on the expertise and experience of medical professionals in the identification process. Sometimes, radiographic images are of low quality, leading to potential issues. Therefore, it is necessary to have a proper approach to accurately localize and classify fractures in real time. The research has revealed that the optimal approach needs to address the stated problem and employ appropriate radiographic image processing techniques and object detection algorithms. These algorithms should effectively localize and accurately classify all types of fractures with high precision and in a timely manner. In order to overcome the challenges of misidentifying fractures, a distinct model for fracture localization and classification has been implemented. The research also incorporates radiographic image enhancement and preprocessing techniques to overcome the limitations posed by low-quality images. A classification ensemble model has been implemented using ResNet18 and VGG16. In parallel, a fracture segmentation model has been implemented using the enhanced U-Net architecture. Combining the results of these two implemented models, the FracXpert system can accurately localize exact fracture locations along with fracture types from the available 12 different types of fracture patterns, which include avulsion, comminuted, compressed, dislocation, greenstick, hairline, impacted, intraarticular, longitudinal, oblique, pathological, and spiral. This system will generate a confidence score level indicating the degree of confidence in the predicted result. Using ResNet18 and VGG16 architectures, the implemented fracture segmentation model, based on the U-Net architecture, achieved a high accuracy level of 99.94%, demonstrating its precision in identifying fracture locations. Simultaneously, the classification ensemble model achieved an accuracy of 81.0%, showcasing its ability to categorize various fracture patterns, which is instrumental in the fracture treatment process. In conclusion, FracXpert has become a promising ML application in sports medicine, demonstrating its potential to revolutionize fracture detection processes. By leveraging the power of ML algorithms, this study contributes to the advancement of diagnostic capabilities in cricket athlete healthcare, ensuring timely and accurate identification of bone fractures for the best treatment outcomes.

Keywords: multiclass classification, object detection, ResNet18, U-Net, VGG16

Procedia PDF Downloads 121
4048 Infrared Spectroscopy in Tandem with Machine Learning for Simultaneous Rapid Identification of Bacteria Isolated Directly from Patients' Urine Samples and Determination of Their Susceptibility to Antibiotics

Authors: Mahmoud Huleihel, George Abu-Aqil, Manal Suleiman, Klaris Riesenberg, Itshak Lapidot, Ahmad Salman

Abstract:

Urinary tract infections (UTIs) are considered to be the most common bacterial infections worldwide, which are caused mainly by Escherichia (E.) coli (about 80%). Klebsiella pneumoniae (about 10%) and Pseudomonas aeruginosa (about 6%). Although antibiotics are considered as the most effective treatment for bacterial infectious diseases, unfortunately, most of the bacteria already have developed resistance to the majority of the commonly available antibiotics. Therefore, it is crucial to identify the infecting bacteria and to determine its susceptibility to antibiotics for prescribing effective treatment. Classical methods are time consuming, require ~48 hours for determining bacterial susceptibility. Thus, it is highly urgent to develop a new method that can significantly reduce the time required for determining both infecting bacterium at the species level and diagnose its susceptibility to antibiotics. Fourier-Transform Infrared (FTIR) spectroscopy is well known as a sensitive and rapid method, which can detect minor molecular changes in bacterial genome associated with the development of resistance to antibiotics. The main goal of this study is to examine the potential of FTIR spectroscopy, in tandem with machine learning algorithms, to identify the infected bacteria at the species level and to determine E. coli susceptibility to different antibiotics directly from patients' urine in about 30minutes. For this goal, 1600 different E. coli isolates were isolated for different patients' urine sample, measured by FTIR, and analyzed using different machine learning algorithm like Random Forest, XGBoost, and CNN. We achieved 98% success in isolate level identification and 89% accuracy in susceptibility determination.

Keywords: urinary tract infections (UTIs), E. coli, Klebsiella pneumonia, Pseudomonas aeruginosa, bacterial, susceptibility to antibiotics, infrared microscopy, machine learning

Procedia PDF Downloads 170
4047 Barriers to Tuberculosis Detection in Portuguese Prisons

Authors: M. F. Abreu, A. I. Aguiar, R. Gaio, R. Duarte

Abstract:

Background: Prison establishments constitute high-risk environments for the transmission and spread of tuberculosis (TB), given their epidemiological context and the difficulty of implementing preventive and control measures. Guidelines for control and prevention of tuberculosis in prisons have been described as incomplete and heterogeneous internationally, due to several identified obstacles, for example scarcity of human resources and funding of prisoner health services. In Portugal, a protocol was created in 2014 with the aim to define and standardize procedures of detection and prevention of tuberculosis within prisons. Objective: The main objective of this study was to identify and describe barriers to tuberculosis detection in prisons of Porto and Lisbon districts in Portugal. Methods: A cross-sectional study was conducted from 2ⁿᵈ January 2018 till 30ᵗʰ June 2018. Semi-structured questionnaires were applied to health care professionals working in the prisons of the districts of Porto (n=6) and Lisbon (n=8). As inclusion criteria we considered having work experience in the area of tuberculosis (either in diagnosis, treatment, or follow up). The questionnaires were self-administered, in paper format. Descriptive analyses of the questionnaire variables were made using frequencies and median. Afterwards, a hierarchical agglomerative clusters analysis was performed. After obtaining the clusters, the chi-square test was applied to study the association between the variables collected and the clusters. The level of significance considered was 0.05. Results: From the total of 186 health professionals, 139 met the criteria of inclusion and 82 health professionals were interviewed (62,2% of participation). Most were female, nurses, with a median age of 34 years, with term employment contract. From the cluster analysis, two groups were identified with different characteristics and behaviors for the procedures of this protocol. Statistically significant results were found in: elements of cluster 1 (78% of the total participants) work in prisons for a longer time (p=0.003), 45,3% work > 4 years while 50% of the elements of cluster 2 work for less than a year, and more frequently answered they know and apply the procedures of the protocol (p=0.000). Both clusters answered frequently the need of having theoretical-practical training for TB (p=0.000), especially in the areas of diagnosis, treatment and prevention and that there is scarcity of funding to prisoner health services (p=0.000). Regarding procedures for TB screening (periodic and contact screening) and procedures for transferring a prisoner with this disease, cluster 1 also answered more frequently to perform them (p=0.000). They also referred that the material/equipment for TB screening is accessible and available (p=0.000). From this clusters we identified as barriers scarcity of human resources, the need to theoretical-practical training for tuberculosis, inexperience in working in health services prisons and limited knowledge of protocol procedures. Conclusions: The barriers found in this study are the same described internationally. This protocol is mostly being applied in portuguese prisons. The study also showed the need to invest in human and material resources. This investigation bridged gaps in knowledge that could help prison health services optimize the care provided for early detection and adherence of prisoners to treatment of tuberculosis.

Keywords: barriers, health care professionals, prisons, protocol, tuberculosis

Procedia PDF Downloads 147
4046 A Geometric Based Hybrid Approach for Facial Feature Localization

Authors: Priya Saha, Sourav Dey Roy Jr., Debotosh Bhattacharjee, Mita Nasipuri, Barin Kumar De, Mrinal Kanti Bhowmik

Abstract:

Biometric face recognition technology (FRT) has gained a lot of attention due to its extensive variety of applications in both security and non-security perspectives. It has come into view to provide a secure solution in identification and verification of person identity. Although other biometric based methods like fingerprint scans, iris scans are available, FRT is verified as an efficient technology for its user-friendliness and contact freeness. Accurate facial feature localization plays an important role for many facial analysis applications including biometrics and emotion recognition. But, there are certain factors, which make facial feature localization a challenging task. On human face, expressions can be seen from the subtle movements of facial muscles and influenced by internal emotional states. These non-rigid facial movements cause noticeable alterations in locations of facial landmarks, their usual shapes, which sometimes create occlusions in facial feature areas making face recognition as a difficult problem. The paper proposes a new hybrid based technique for automatic landmark detection in both neutral and expressive frontal and near frontal face images. The method uses the concept of thresholding, sequential searching and other image processing techniques for locating the landmark points on the face. Also, a Graphical User Interface (GUI) based software is designed that could automatically detect 16 landmark points around eyes, nose and mouth that are mostly affected by the changes in facial muscles. The proposed system has been tested on widely used JAFFE and Cohn Kanade database. Also, the system is tested on DeitY-TU face database which is created in the Biometrics Laboratory of Tripura University under the research project funded by Department of Electronics & Information Technology, Govt. of India. The performance of the proposed method has been done in terms of error measure and accuracy. The method has detection rate of 98.82% on JAFFE database, 91.27% on Cohn Kanade database and 93.05% on DeitY-TU database. Also, we have done comparative study of our proposed method with other techniques developed by other researchers. This paper will put into focus emotion-oriented systems through AU detection in future based on the located features.

Keywords: biometrics, face recognition, facial landmarks, image processing

Procedia PDF Downloads 412
4045 Times2D: A Time-Frequency Method for Time Series Forecasting

Authors: Reza Nematirad, Anil Pahwa, Balasubramaniam Natarajan

Abstract:

Time series data consist of successive data points collected over a period of time. Accurate prediction of future values is essential for informed decision-making in several real-world applications, including electricity load demand forecasting, lifetime estimation of industrial machinery, traffic planning, weather prediction, and the stock market. Due to their critical relevance and wide application, there has been considerable interest in time series forecasting in recent years. However, the proliferation of sensors and IoT devices, real-time monitoring systems, and high-frequency trading data introduce significant intricate temporal variations, rapid changes, noise, and non-linearities, making time series forecasting more challenging. Classical methods such as Autoregressive integrated moving average (ARIMA) and Exponential Smoothing aim to extract pre-defined temporal variations, such as trends and seasonality. While these methods are effective for capturing well-defined seasonal patterns and trends, they often struggle with more complex, non-linear patterns present in real-world time series data. In recent years, deep learning has made significant contributions to time series forecasting. Recurrent Neural Networks (RNNs) and their variants, such as Long short-term memory (LSTMs) and Gated Recurrent Units (GRUs), have been widely adopted for modeling sequential data. However, they often suffer from the locality, making it difficult to capture local trends and rapid fluctuations. Convolutional Neural Networks (CNNs), particularly Temporal Convolutional Networks (TCNs), leverage convolutional layers to capture temporal dependencies by applying convolutional filters along the temporal dimension. Despite their advantages, TCNs struggle with capturing relationships between distant time points due to the locality of one-dimensional convolution kernels. Transformers have revolutionized time series forecasting with their powerful attention mechanisms, effectively capturing long-term dependencies and relationships between distant time points. However, the attention mechanism may struggle to discern dependencies directly from scattered time points due to intricate temporal patterns. Lastly, Multi-Layer Perceptrons (MLPs) have also been employed, with models like N-BEATS and LightTS demonstrating success. Despite this, MLPs often face high volatility and computational complexity challenges in long-horizon forecasting. To address intricate temporal variations in time series data, this study introduces Times2D, a novel framework that parallelly integrates 2D spectrogram and derivative heatmap techniques. The spectrogram focuses on the frequency domain, capturing periodicity, while the derivative patterns emphasize the time domain, highlighting sharp fluctuations and turning points. This 2D transformation enables the utilization of powerful computer vision techniques to capture various intricate temporal variations. To evaluate the performance of Times2D, extensive experiments were conducted on standard time series datasets and compared with various state-of-the-art algorithms, including DLinear (2023), TimesNet (2023), Non-stationary Transformer (2022), PatchTST (2023), N-HiTS (2023), Crossformer (2023), MICN (2023), LightTS (2022), FEDformer (2022), FiLM (2022), SCINet (2022a), Autoformer (2021), and Informer (2021) under the same modeling conditions. The initial results demonstrated that Times2D achieves consistent state-of-the-art performance in both short-term and long-term forecasting tasks. Furthermore, the generality of the Times2D framework allows it to be applied to various tasks such as time series imputation, clustering, classification, and anomaly detection, offering potential benefits in any domain that involves sequential data analysis.

Keywords: derivative patterns, spectrogram, time series forecasting, times2D, 2D representation

Procedia PDF Downloads 42
4044 Analyzing Land use change and its impacts on the Urban Environment in a Fast Growing Metropolitan City of Pakistan

Authors: Muhammad Nasar-u-Minallah, Dagmar Haase, Salman Qureshi

Abstract:

In a rapidly growing developing country cities are becoming more urbanized leading to modifications in urban climate. Rapid urbanization, especially unplanned urban land expansion, together with climate change has a profound impact on the urban settlement and urban thermal environment. Cities, particularly Pakistan are facing remarkably environmental issues and uneven development, and thus it is important to strengthen the investigation of urban environmental pressure brought by land-use changes and urbanization. The present study investigated the long term modification of the urban environment by urbanization utilizing Spatio-temporal dynamics of land-use change, urban population data, urban heat islands, monthly maximum, and minimum temperature of thirty years, multi remote sensing imageries, and spectral indices such as Normalized Difference Built-up Index and Normalized Difference Vegetation Index. The results indicate rapid growth in an urban built-up area and a reduction in vegetation cover in the last three decades (1990-2020). A positive correlation between urban heat islands and Normalized Difference Built-up Index, whereas a negative correlation between urban heat islands and the Normalized Difference Vegetation Index clearly shows how urbanization is affecting the local environment. The increase in air and land surface temperature temperatures is dangerous to human comfort. Practical approaches, such as increasing the urban green spaces and proper planning of the cities, have been suggested to help prevent further modification of the urban thermal environment by urbanization. The findings of this work are thus important for multi-sectorial use in the cities of Pakistan. By taking into consideration these results, the urban planners, decision-makers, and local government can make different policies to mitigate the urban land use impacts on the urban thermal environment in Pakistan.

Keywords: land use, urban environment, local climate, Lahore

Procedia PDF Downloads 111
4043 Automated Video Surveillance System for Detection of Suspicious Activities during Academic Offline Examination

Authors: G. Sandhya Devi, G. Suvarna Kumar, S. Chandini

Abstract:

This research work aims to develop a system that will analyze and identify students who indulge in malpractices/suspicious activities during the course of an academic offline examination. Automated Video Surveillance provides an optimal solution which helps in monitoring the students and identifying the malpractice event immediately. This work is organized into three modules. The first module deals with performing an impersonation check using a PCA-based face recognition method which is done by cross checking his profile with the database. The presence or absence of the student is even determined in this module by implementing an image registration technique wherein a grid is formed by considering all the images registered using the frontal camera at the determined positions. Second, detecting such facial malpractices in which a student gets involved in conversation with another, trying to obtain unauthorized information etc., based on the threshold range evaluated by considering his/her mouth state whether open or closed. The third module deals with identification of unauthorized material or gadgets used in the examination hall by training the positive samples of the object through various stages. Here, a top view camera feed is analyzed to detect the suspicious activities. The system automatically alerts the administration when any suspicious activities are identified, thereby reducing the error rate caused due to manual monitoring. This work is an improvement over our previous work published in identifying suspicious activities done by examinees in an offline examination.

Keywords: impersonation, image registration, incrimination, object detection, threshold evaluation

Procedia PDF Downloads 231
4042 Recognition and Counting Algorithm for Sub-Regional Objects in a Handwritten Image through Image Sets

Authors: Kothuri Sriraman, Mattupalli Komal Teja

Abstract:

In this paper, a novel algorithm is proposed for the recognition of hulls in a hand written images that might be irregular or digit or character shape. Identification of objects and internal objects is quite difficult to extract, when the structure of the image is having bulk of clusters. The estimation results are easily obtained while going through identifying the sub-regional objects by using the SASK algorithm. Focusing mainly to recognize the number of internal objects exist in a given image, so as it is shadow-free and error-free. The hard clustering and density clustering process of obtained image rough set is used to recognize the differentiated internal objects, if any. In order to find out the internal hull regions it involves three steps pre-processing, Boundary Extraction and finally, apply the Hull Detection system. By detecting the sub-regional hulls it can increase the machine learning capability in detection of characters and it can also be extend in order to get the hull recognition even in irregular shape objects like wise black holes in the space exploration with their intensities. Layered hulls are those having the structured layers inside while it is useful in the Military Services and Traffic to identify the number of vehicles or persons. This proposed SASK algorithm is helpful in making of that kind of identifying the regions and can useful in undergo for the decision process (to clear the traffic, to identify the number of persons in the opponent’s in the war).

Keywords: chain code, Hull regions, Hough transform, Hull recognition, Layered Outline Extraction, SASK algorithm

Procedia PDF Downloads 349
4041 Long Short-Term Memory Stream Cruise Control Method for Automated Drift Detection and Adaptation

Authors: Mohammad Abu-Shaira, Weishi Shi

Abstract:

Adaptive learning, a commonly employed solution to drift, involves updating predictive models online during their operation to react to concept drifts, thereby serving as a critical component and natural extension for online learning systems that learn incrementally from each example. This paper introduces LSTM-SCCM “Long Short-Term Memory Stream Cruise Control Method”, a drift adaptation-as-a-service framework for online learning. LSTM-SCCM automates drift adaptation through prompt detection, drift magnitude quantification, dynamic hyperparameter tuning, performing shortterm optimization and model recalibration for immediate adjustments, and, when necessary, conducting long-term model recalibration to ensure deeper enhancements in model performance. LSTM-SCCM is incorporated into a suite of cutting-edge online regression models, assessing their performance across various types of concept drift using diverse datasets with varying characteristics. The findings demonstrate that LSTM-SCCM represents a notable advancement in both model performance and efficacy in handling concept drift occurrences. LSTM-SCCM stands out as the sole framework adept at effectively tackling concept drifts within regression scenarios. Its proactive approach to drift adaptation distinguishes it from conventional reactive methods, which typically rely on retraining after significant degradation to model performance caused by drifts. Additionally, LSTM-SCCM employs an in-memory approach combined with the Self-Adjusting Memory (SAM) architecture to enhance real-time processing and adaptability. The framework incorporates variable thresholding techniques and does not assume any particular data distribution, making it an ideal choice for managing high-dimensional datasets and efficiently handling large-scale data. Our experiments, which include abrupt, incremental, and gradual drifts across both low- and high-dimensional datasets with varying noise levels, and applied to four state-of-the-art online regression models, demonstrate that LSTM-SCCM is versatile and effective, rendering it a valuable solution for online regression models to address concept drift.

Keywords: automated drift detection and adaptation, concept drift, hyperparameters optimization, online and adaptive learning, regression

Procedia PDF Downloads 13
4040 Detection of Leptospira interrogans in Kidney and Urine of water Buffalo and its Relationship with Histopathological and Serological Findings

Authors: M. R. Haji Hajikolaei, A. A. Nikvand, A. R. Ghadrdan, M. Ghorbanpoor, B. Mohammadian

Abstract:

This study was carried out on water buffalo for detection of Leptospira interrogans in kidney and urine and its relationship with serological findings. Blood, urine and kidney samples were taken immediately after slaughter from 353 water buffalos at Ahvaz abattoir in Khouzestan province, Iran. Sera were initially screened at serum dilution of 1:100 against seven live antigens of Leptospira interrogans: pomona, hardjo, ballum, icterohemorrhagiae, tarasovi, australis and grippotyphosa using the microscopic agglutination test (MAT) and sera with positive results were titrated against reacting antigens in serial twofold dilution from 1:100 to 1:800. The samples of kidney were embedded in paraffin wax and 5µm thick sections were stained routinely with Haematoxylin and Eosin (H&E). Polymerase chain reaction (PCR) examination was done on urine and kidney by using LipL32 gene primers. Antibodies against one or more serovars at dilution >:100 were detected in sera. The most frequent reactor was hardjo (56.2%), followed by pomona (52.3%), australis (9.8%), tarassovi (5.9%), grippotyphosa (4.5%) and icterohaemorrhagiae (3.9%). The L. interrogans were detected in 43 (12.2%) of examined buffaloes, so that 26 (8.2%) of kidney tissues, 14 (4.8%) of urine samples separately and 3 (0.84%) of both kidney and urine samples were positive in PCR. From 153 (43.3%) buffaloes with positive MAT, 24 cases were positive by PCR of kidney and/or urine samples, synchronously. Renal lesions such as interstitial nephritis, acute tubular necrosis (ATN), pyelonephritis, glomerolonephritis, renal fibrosis and hydronephrosis were found in 128 (36.3%) cases. Statistical analysis indicated that there was no significant association between results of MAT, PCR and interstitial nephritis.

Keywords: leptospiral infection, PCR, MAT, histopathology, river buffalo

Procedia PDF Downloads 332
4039 Cybersecurity Strategies for Protecting Oil and Gas Industrial Control Systems

Authors: Gaurav Kumar Sinha

Abstract:

The oil and gas industry is a critical component of the global economy, relying heavily on industrial control systems (ICS) to manage and monitor operations. However, these systems are increasingly becoming targets for cyber-attacks, posing significant risks to operational continuity, safety, and environmental integrity. This paper explores comprehensive cybersecurity strategies for protecting oil and gas industrial control systems. It delves into the unique vulnerabilities of ICS in this sector, including outdated legacy systems, integration with IT networks, and the increased connectivity brought by the Industrial Internet of Things (IIoT). We propose a multi-layered defense approach that includes the implementation of robust network security protocols, regular system updates and patch management, advanced threat detection and response mechanisms, and stringent access control measures. We illustrate the effectiveness of these strategies in mitigating cyber risks and ensuring the resilient and secure operation of oil and gas industrial control systems. The findings underscore the necessity for a proactive and adaptive cybersecurity framework to safeguard critical infrastructure in the face of evolving cyber threats.

Keywords: cybersecurity, industrial control systems, oil and gas, cyber-attacks, network security, IoT, threat detection, system updates, patch management, access control, cybersecurity awareness, critical infrastructure, resilience, cyber threats, legacy systems, IT integration, multi-layered defense, operational continuity, safety, environmental integrity

Procedia PDF Downloads 44
4038 Development of Biosensor Chip for Detection of Specific Antibodies to HSV-1

Authors: Zatovska T. V., Nesterova N. V., Baranova G. V., Zagorodnya S. D.

Abstract:

In recent years, biosensor technologies based on the phenomenon of surface plasmon resonance (SPR) are becoming increasingly used in biology and medicine. Their application facilitates exploration in real time progress of binding of biomolecules and identification of agents that specifically interact with biologically active substances immobilized on the biosensor surface (biochips). Special attention is paid to the use of Biosensor analysis in determining the antibody-antigen interaction in the diagnostics of diseases caused by viruses and bacteria. According to WHO, the diseases that are caused by the herpes simplex virus (HSV), take second place (15.8%) after influenza as a cause of death from viral infections. Current diagnostics of HSV infection include PCR and ELISA assays. The latter allows determination the degree of immune response to viral infection and respective stages of its progress. In this regard, the searches for new and available diagnostic methods are very important. This work was aimed to develop Biosensor chip for detection of specific antibodies to HSV-1 in the human blood serum. The proteins of HSV1 (strain US) were used as antigens. The viral particles were accumulated in cell culture MDBK and purified by differential centrifugation in cesium chloride density gradient. Analysis of the HSV1 proteins was performed by polyacrylamide gel electrophoresis and ELISA. The protein concentration was measured using De Novix DS-11 spectrophotometer. The device for detection of antigen-antibody interactions was an optoelectronic two-channel spectrometer ‘Plasmon-6’, using the SPR phenomenon in the Krechman optical configuration. It was developed at the Lashkarev Institute of Semiconductor Physics of NASU. The used carrier was a glass plate covered with 45 nm gold film. Screening of human blood serums was performed using the test system ‘HSV-1 IgG ELISA’ (GenWay, USA). Development of Biosensor chip included optimization of conditions of viral antigen sorption and analysis steps. For immobilization of viral proteins 0.2% solution of Dextran 17, 200 (Sigma, USA) was used. Sorption of antigen took place at 4-8°C within 18-24 hours. After washing of chip, three times with citrate buffer (pH 5,0) 1% solution of BSA was applied to block the sites not occupied by viral antigen. It was found direct dependence between the amount of immobilized HSV1 antigen and SPR response. Using obtained biochips, panels of 25 positive and 10 negative for the content of antibodies to HSV-1 human sera were analyzed. The average value of SPR response was 185 a.s. for negative sera and from 312 to. 1264 a.s. for positive sera. It was shown that SPR data were agreed with ELISA results in 96% of samples proving the great potential of SPR in such researches. It was investigated the possibility of biochip regeneration and it was shown that application of 10 mM NaOH solution leads to rupture of intermolecular bonds. This allows reuse the chip several times. Thus, in this study biosensor chip for detection of specific antibodies to HSV1 was successfully developed expanding a range of diagnostic methods for this pathogen.

Keywords: biochip, herpes virus, SPR

Procedia PDF Downloads 417
4037 Molecular Characterization and Phylogenetic Analysis of Capripoxviruses from Outbreak in Iran 2021

Authors: Maryam Torabi, Habibi, Abdolahi, Mohammadi, Hassanzadeh, Darban Maghami, Baghi

Abstract:

Sheeppox Virus (SPPV) and goatpox virus (GTPV) are considerable diseases of sheep, and goats, caused by viruses of the Capripoxvirus (CaPV) genus. They are responsible for economic losses. Animal mortality, morbidity, cost of vaccinations, and restrictions in animal products’ trade are the reasons of economic losses. Control and eradication of CaPV depend on early detection of outbreaks so that molecular detection and genetic analysis could be effective to this aim. This study was undertaken to molecularly characterize SPPV and GTPV strains that have been circulating in Iran. 120 skin papules and nodule biopsies were collected from different regions of Iran and were examined for SPPV, GTPV viruses using TaqMan Real -Time PCR. Some of these amplified genes were sequenced, and phylogenetic trees were constructed. Out of the 120 samples analysed, 98 were positive for CaPV by Real- Time PCR (81.6%), and most of them wereSPPV. then 10 positive samples were sequenced and characterized by amplifying the ORF 103CaPV gene. sequencing and phylogenetic analysis for these positive samples revealed a high percentage of identity with SPPV isolated from different countries in Middle East. In conclusions, molecular characterization revealed nearly complete identity with all recent SPPVs strains in local countries that requires further studies to monitor the virus evolution and transmission pathways to better understand the virus pathobiology that will help for SPPV control.

Keywords: molecular epidemiology, Real-Time PCR, phylogenetic analysis, capripoxviruses

Procedia PDF Downloads 149
4036 Detection of Muscle Swelling Using the Cnts-Based Poc Wearable Strain Sensor

Authors: Nadeem Qaiser, Sherjeel Munsif Khan, Muhammad Mustafa Hussian, Vincent Tung

Abstract:

One of the emerging fields in the detection of chronic diseases is based on the point-of-care (POC) early monitoring of the symptoms and thus provides a state-of-the-art personalized healthcare system. Nowadays, wearable and flexible sensors are being used for analyzing sweat, glucose, blood pressure, and other skin conditions. However, localized jaw-bone swelling called parotid-swelling caused by some viruses has never been tracked before. To track physical motion or deformations, strain sensors, especially piezoresistive ones, are widely used. This work, for the first time, reports carbon nanotubes (CNTs)-based piezoresistive sensing patch that is highly flexible and stretchable and can record muscle deformations in real-time. The developed patch offers an excellent gauge factor for in-plane stretching and spatial expansion with low hysteresis. To calibrate the volumetric muscle expansion, we fabricated the pneumatic actuator that experienced volumetric expansion and thus redefined the gauge factor. Moreover, we employ a Bluetooth-low-energy system that can send information about muscle activity in real-time to a smartphone app. We utilized COMSOL calculations to reveal the mechanical robustness of the patch. The experiments showed the sensing patch's greater cyclability, making it a patch for personal healthcare and an excellent choice for monitoring the real-time POC monitoring of the human muscle swelling.

Keywords: piezoresistive strain sensor, FEM simulations, CNTs sensor, flexible

Procedia PDF Downloads 88
4035 Pale, Soft, Exudative (PSE) Turkey Meat in a Brazilian Commercial Processing Plant

Authors: Danielle C. B. Honorato, Rafael H. Carvalho, Adriana L. Soares, Ana Paula F. R. L. Bracarense, Paulo D. Guarnieri, Massami Shimokomaki, Elza I. Ida

Abstract:

Over the past decade, the Brazilian production of turkey meat increased by more than 50%, indicating that the turkey meat is considered a great potential for the Brazilian economy contributing to the growth of agribusiness at the marketing international scenario. However, significant color changes may occur during its processing leading to the pale, soft and exudative (PSE) appearance on the surface of breast meat due to the low water holding capacity (WHC). Changes in PSE meat functional properties occur due to the myofibrils proteins denaturation caused by a rapid postmortem glycolysis resulting in a rapid pH decline while the carcass temperature is still warm. The aim of this study was to analyze the physical, chemical and histological characteristics of PSE turkey meat obtained from a Brazilian commercial processing plant. The turkey breasts samples were collected (n=64) at the processing line and classified as PSE at L* ≥ 53 value. The pH was also analyzed after L* measurement. In sequence, PSE meat samples were evaluated for WHC, cooking loss (CL), shear force (SF), myofibril fragmentation index (MFI), protein denaturation (PD) and histological evaluation. The abnormal color samples presented lower pH values, 16% lower fiber diameter, 11% lower SF and 2% lower WHC than those classified as normal. The CL, PD and MFI were, respectively, 9%, 18% and 4% higher in PSE samples. The Pearson correlation between the L* values and CL, PD and MFI was positive, while that SF and pH values presented negative correlation. Under light microscopy, a shrinking of PSE muscle cell diameter was approximately 16% shorter in relation to normal samples and an extracellular enlargement of endomysium and perimysium sheaths as the consequence of higher water contents lost as observed previously by lower WHC values. Thus, the results showed that PSE turkey breast meat presented significant changes in their physical, chemical and histological characteristics that may impair its functional properties.

Keywords: functional properties, histological evaluation, meat quality, PSE

Procedia PDF Downloads 460
4034 Introduction, Establishment, and Transformation: An Initial Exploration of the Cultural Shifts and Influence of Fa Yi Chong De, Yi-Kuan-Tao in Malaysian Chinese Community

Authors: Lim Pey Huan

Abstract:

Yi-Kuan-Tao has been developing in Malaysia for nearly 60 years. It was initially introduced from mainland China and later from Taiwan starting from the 1970s. Yi-Kuan-Tao was considered a 'new religion' for the local Chinese community in Malaysia in its early stages, as Chinese immigrants primarily practiced Taoism, Buddhism, Christianity, or Catholicism upon settling in the region. The overseas propagation and development of Yi-Kuan-Tao today primarily occur through Taiwanese temples, which began spreading abroad as early as 1949. Particularly since the 1970s, with the rapid economic growth of Taiwan, various branches of Taiwanese Yi-Kuan-Tao have gained economic strength to propagate abroad, further expanding the influence of Yi-Kuan-Tao overseas. Southeast Asia is the region out from Taiwan where the propagation and development of Yi-Kuan-Tao are fastest and most concentrated. With approximately over 6 million Chinese inhabitants, Malaysia's pursuit of traditional Chinese culture has led to a flourishing interest in Yi-Kuan-Tao, particularly its advocacy of the unity of Confucianism, Buddhism, and Taoism, with an emphasis on promoting Confucian thought. Moreover, Taiwan's rapid economic development since the 1970s has enabled Yi-Kuan-Tao to allocate significant human and financial resources for external propagation efforts. Additionally, Malaysia's government has adopted a relatively tolerant policy towards religion since that time, further fostering the flourishing development of Yi-Kuan-Tao in Malaysia. Furthermore, this thesis aims to strengthen the lineage and continuity of the Yi-Kuan-Tao tradition, particularly the branch of Fa Yi Chong De, through the perspective of Heavenly Mandate (天命). By examining the different origins and ethnic backgrounds, it investigates how the Malaysian Chinese community has experienced different changes through the cultural baptism of religion, thus delving into the religious influence of Yi-Kuan-Tao. Given that the Fa Yi Chong De Academy in Taiwan is currently in an active development and construction phase, academic works related to Yi-Kuan-Tao will lay a more solid academic foundation for the future establishment of the academy.

Keywords: initial exploration, cultural shifts, Yi-Kuan-Tao, Malaysian Chinese community

Procedia PDF Downloads 79
4033 Applying Multiple Kinect on the Development of a Rapid 3D Mannequin Scan Platform

Authors: Shih-Wen Hsiao, Yi-Cheng Tsao

Abstract:

In the field of reverse engineering and creative industries, applying 3D scanning process to obtain geometric forms of the objects is a mature and common technique. For instance, organic objects such as faces and nonorganic objects such as products could be scanned to acquire the geometric information for further application. However, although the data resolution of 3D scanning device is increasing and there are more and more abundant complementary applications, the penetration rate of 3D scanning for the public is still limited by the relative high price of the devices. On the other hand, Kinect, released by Microsoft, is known for its powerful functions, considerably low price, and complete technology and database support. Therefore, related studies can be done with the applying of Kinect under acceptable cost and data precision. Due to the fact that Kinect utilizes optical mechanism to extracting depth information, limitations are found due to the reason of the straight path of the light. Thus, various angles are required sequentially to obtain the complete 3D information of the object when applying a single Kinect for 3D scanning. The integration process which combines the 3D data from different angles by certain algorithms is also required. This sequential scanning process costs much time and the complex integration process often encounter some technical problems. Therefore, this paper aimed to apply multiple Kinects simultaneously on the field of developing a rapid 3D mannequin scan platform and proposed suggestions on the number and angles of Kinects. In the content, a method of establishing the coordination based on the relation between mannequin and the specifications of Kinect is proposed, and a suggestion of angles and number of Kinects is also described. An experiment of applying multiple Kinect on the scanning of 3D mannequin is constructed by Microsoft API, and the results show that the time required for scanning and technical threshold can be reduced in the industries of fashion and garment design.

Keywords: 3D scan, depth sensor, fashion and garment design, mannequin, multiple Kinect sensor

Procedia PDF Downloads 366
4032 Simple Assessments to Demystify Complementary Feeding: Leveraging a Successful Literacy Initiative Assessment Approach in Gujarat, India

Authors: Smriti Pahwa, Karishma Vats, Aditi Macwan, Jija Dutt, Sumukhi Vaid

Abstract:

Age approporiate complementary feeding has been stressed upon for sound young child nutrition and appropriate growth. National Infant and Young Child Feeding guidelines, policies and programs indicate cognizance of the issue taken by the country’s government, policy makers and technical experts. However, it is important that ordinary people, the caregivers of young children too understand the importance of appropriate feeding. For this, an interface might be required where ordinary people could participate in assessing the gaps in IYCF as a first step to take subsequent action. In this context an attempt was made to extrapolate a citizen led learning level survey that has been involving around 25000 ordinary citizens to reach out to 600,000 children annually for over a decade in India. Based on this philosophy of involving ordinary people in simple assessments to produce understandable actionable evidence, a rapid diet assessment tool was developed and collected from caregivers of 90 < 3year children from two urban clusters in Ahmedabad and Baroda, Gujarat. Target sample for pilot was selected after cluster census. Around half the mothers reported that they had not yet introduced water or other fluids to their < 6 month babies. However, about a third were already feeding them food other than mother’s milk. Although complementary feeding was initiated in almost all (95%) children more than 6 months old, frequency was suboptimal in 60%; in 80% cases no measure was taken to either improve energy or nutrient density; only 33% were fed protective foods; Green Leafy Vegetables consumption was negligible (1.4%). Anganwadi food was not consumed. By engaging ordinary people to generate evidence and understand the gaps, such assessments have the potential to be used to generate useful evidence for action at scale as well as locally.

Keywords: citizen led, grass root engagement, IYCF (Infant and Young Child Feeding), rapid diet assessment, under nutrition

Procedia PDF Downloads 172
4031 Muslim Husbands’ Participation in Women’s Health and Illness: A Descriptive Exploratory Study Applied to Muslim Women in Indonesia

Authors: Restuning Widiasih, Katherine Nelson, Joan Skinner

Abstract:

Muslim husbands have significant roles in the family including their roles in women’s health and illness. However, studies that explore Muslim husbands’ participation in women’s health is limited. The objective of this study was to uncover Muslim husbands’ participation in women’ health and illness including cancer prevention and screening. A descriptive exploratory approach was used involving 20 Muslim women from urban and rural areas of West Java Province, Indonesia. Muslim women shared experience related to their husbands support and activities in women’s health and illness. The data from the interviews were analyzed using the Comparative Analysis for Interview (CAI). Women perceived that husbands fully supported their health by providing opportunities for activities, and reminding them about healthy food, their workloads, and family planning. Husbands actively involved when women faced health issues including sharing knowledge and experience, discussing any health problems, advising for medical check-ups, and accompanying them for treatments. The analysis also found that husbands were less active and offered less advice regarding prevention and early detection of cancer. This study highlights the significant involvement of Muslim husbands in women’s health and illness, yet a lack of support from husbands related to screening and cancer prevention. This condition could be a burden for Muslim women to participate in health programs related to cancer prevention and early detection. Health education programs to improve Muslim husbands’ understanding of women’s health is needed.

Keywords: descriptive exploratory study, Muslim husbands, Muslim women, women's health and illness

Procedia PDF Downloads 513
4030 Sustainable Design Solutions for Tall Residential Buildings to Improve Quality of Life: A Case of Developing Community: Karachi, Pakistan

Authors: Mahnoor Shoaib

Abstract:

Sustainable development involves meeting present needs without compromising future generations’ capacity to meet their own while enhancing the quality of life through a healthy and safe environment. In the context of rapid urbanization and globalization, architects and planners bear the responsibility of designing residential buildings that are sustainable and conducive to quality living. Residential buildings serve as multifunctional spaces for personal and family life, making them essential for fostering healthy communities. Therefore, sustainable housing must address not only economic and environmental factors but also social, historical, and cultural dimensions to enhance residents' social lives. This research investigates the socio-cultural aspects of tall residential buildings in Karachi, Pakistan, a developing community characterized by rapid population growth and urbanization. A mixed-methods approach, including qualitative interviews and surveys, was employed to assess residents' perceptions of sustainability in tall buildings, focusing on socio-cultural design constraints and their impact on residential satisfaction. The study finds that socio-cultural elements, such as liveability, social cohesion, and spatial agency, significantly influence residents’ satisfaction with high-rise developments. Moreover, it highlights the need for contextual design solutions that integrate local cultural values into the architecture of tall buildings rather than imposing Western design principles. In conclusion, this research provides valuable insights for architects, designers, and urban planners, emphasizing the importance of understanding community needs and preferences in developing sustainable residential environments. By prioritizing socio-cultural sustainability, we can enhance the overall quality of life for residents in tall buildings, contributing to healthier and more vibrant communities.

Keywords: high-rise residential buildings, quality of life, social cohesion, socio-cultural sustainability

Procedia PDF Downloads 26
4029 Development and Validation of a HPLC Method for Standardization of Methanolic Extract of Hypericum sinaicum Hochst

Authors: Taghreed A. Ibrahim, Atef A. El-Hela, Hala M. El-Hefnawy

Abstract:

The chromatographic profile of methanol extract of Hypericum sinaicum was determined using HPLC-DAD. Apigenin was used as an external standard in the development and validation of the HPLC method. The proposed method is simple, rapid and reliable and can be successfully applied for standardization of Hypericum sinaicum methanol extract.

Keywords: quality control, standardization, falvonoids, methanol extract

Procedia PDF Downloads 504
4028 Agarose Amplification Based Sequencing (AG-seq) Characterization Cell-free RNA in Preimplantation Spent Embryo Medium

Authors: Huajuan Shi

Abstract:

Background: The biopsy of the preimplantation embryo may increase the potential risk and concern of embryo viability. Clinically discarded spent embryo medium (SEM) has entered the view of researchers, sparking an interest in noninvasive embryo screening. However, one of the major restrictions is the extremelty low quantity of cf-RNA, which is difficult to efficiently and unbiased amplify cf-RNA using traditional methods. Hence, there is urgently need to an efficient and low bias amplification method which can comprehensively and accurately obtain cf-RNA information to truly reveal the state of SEM cf-RNA. Result: In this present study, we established an agarose PCR amplification system, and has significantly improved the amplification sensitivity and efficiency by ~90 fold and 9.29 %, respectively. We applied agarose to sequencing library preparation (named AG-seq) to quantify and characterize cf-RNA in SEM. The number of detected cf-RNAs (3533 vs 598) and coverage of 3' end were significantly increased, and the noise of low abundance gene detection was reduced. The increasing percentage 5' end adenine and alternative splicing (AS) events of short fragments (< 400 bp) were discovered by AG-seq. Further, the profiles and characterizations of cf-RNA in spent cleavage medium (SCM) and spent blastocyst medium (SBM) indicated that 4‐mer end motifs of cf-RNA fragments could remarkably differentiate different embryo development stages. Significance: This study established an efficient and low-cost SEM amplification and library preparation method. Not only that, we successfully described the characterizations of SEM cf-RNA of preimplantation embryo by using AG-seq, including abundance features fragment lengths. AG-seq facilitates the study of cf-RNA as a noninvasive embryo screening biomarker and opens up potential clinical utilities of trace samples.

Keywords: cell-free RNA, agarose, spent embryo medium, RNA sequencing, non-invasive detection

Procedia PDF Downloads 92
4027 Rapid Algorithm for GPS Signal Acquisition

Authors: Fabricio Costa Silva, Samuel Xavier de Souza

Abstract:

A Global Positioning System (GPS) receiver is responsible to determine position, velocity and timing information by using satellite information. To get this information are necessary to combine an incoming and a locally generated signal. The procedure called acquisition need to found two information, the frequency and phase of the incoming signal. This is very time consuming, so there are several techniques to reduces the computational complexity, but each of then put projects issues in conflict. I this papers we present a method that can reduce the computational complexity by reducing the search space and paralleling the search.

Keywords: GPS, acquisition, complexity, parallelism

Procedia PDF Downloads 538
4026 Fiber Stiffness Detection of GFRP Using Combined ABAQUS and Genetic Algorithms

Authors: Gyu-Dong Kim, Wuk-Jae Yoo, Sang-Youl Lee

Abstract:

Composite structures offer numerous advantages over conventional structural systems in the form of higher specific stiffness and strength, lower life-cycle costs, and benefits such as easy installation and improved safety. Recently, there has been a considerable increase in the use of composites in engineering applications and as wraps for seismic upgrading and repairs. However, these composites deteriorate with time because of outdated materials, excessive use, repetitive loading, climatic conditions, manufacturing errors, and deficiencies in inspection methods. In particular, damaged fibers in a composite result in significant degradation of structural performance. In order to reduce the failure probability of composites in service, techniques to assess the condition of the composites to prevent continual growth of fiber damage are required. Condition assessment technology and nondestructive evaluation (NDE) techniques have provided various solutions for the safety of structures by means of detecting damage or defects from static or dynamic responses induced by external loading. A variety of techniques based on detecting the changes in static or dynamic behavior of isotropic structures has been developed in the last two decades. These methods, based on analytical approaches, are limited in their capabilities in dealing with complex systems, primarily because of their limitations in handling different loading and boundary conditions. Recently, investigators have introduced direct search methods based on metaheuristics techniques and artificial intelligence, such as genetic algorithms (GA), simulated annealing (SA) methods, and neural networks (NN), and have promisingly applied these methods to the field of structural identification. Among them, GAs attract our attention because they do not require a considerable amount of data in advance in dealing with complex problems and can make a global solution search possible as opposed to classical gradient-based optimization techniques. In this study, we propose an alternative damage-detection technique that can determine the degraded stiffness distribution of vibrating laminated composites made of Glass Fiber-reinforced Polymer (GFRP). The proposed method uses a modified form of the bivariate Gaussian distribution function to detect degraded stiffness characteristics. In addition, this study presents a method to detect the fiber property variation of laminated composite plates from the micromechanical point of view. The finite element model is used to study free vibrations of laminated composite plates for fiber stiffness degradation. In order to solve the inverse problem using the combined method, this study uses only first mode shapes in a structure for the measured frequency data. In particular, this study focuses on the effect of the interaction among various parameters, such as fiber angles, layup sequences, and damage distributions, on fiber-stiffness damage detection.

Keywords: stiffness detection, fiber damage, genetic algorithm, layup sequences

Procedia PDF Downloads 274