Search results for: circular business models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10070

Search results for: circular business models

8360 Co-payment Strategies for Chronic Medications: A Qualitative and Comparative Analysis at European Level

Authors: Pedro M. Abreu, Bruno R. Mendes

Abstract:

The management of pharmacotherapy and the process of dispensing medicines is becoming critical in clinical pharmacy due to the increase of incidence and prevalence of chronic diseases, the complexity and customization of therapeutic regimens, the introduction of innovative and more expensive medicines, the unbalanced relation between expenditure and revenue as well as due to the lack of rationalization associated with medication use. For these reasons, co-payments emerged in Europe in the 70s and have been applied over the past few years in healthcare. Co-payments lead to a rationing and rationalization of user’s access under healthcare services and products, and simultaneously, to a qualification and improvement of the services and products for the end-user. This analysis, under hospital practices particularly and co-payment strategies in general, was carried out on all the European regions and identified four reference countries, that apply repeatedly this tool and with different approaches. The structure, content and adaptation of European co-payments were analyzed through 7 qualitative attributes and 19 performance indicators, and the results expressed in a scorecard, allowing to conclude that the German models (total score of 68,2% and 63,6% in both elected co-payments) can collect more compliance and effectiveness, the English models (total score of 50%) can be more accessible, and the French models (total score of 50%) can be more adequate to the socio-economic and legal framework. Other European models did not show the same quality and/or performance, so were not taken as a standard in the future design of co-payments strategies. In this sense, we can see in the co-payments a strategy not only to moderate the consumption of healthcare products and services, but especially to improve them, as well as a strategy to increment the value that the end-user assigns to these services and products, such as medicines.

Keywords: clinical pharmacy, co-payments, healthcare, medicines

Procedia PDF Downloads 251
8359 Fuzzy-Machine Learning Models for the Prediction of Fire Outbreak: A Comparative Analysis

Authors: Uduak Umoh, Imo Eyoh, Emmauel Nyoho

Abstract:

This paper compares fuzzy-machine learning algorithms such as Support Vector Machine (SVM), and K-Nearest Neighbor (KNN) for the predicting cases of fire outbreak. The paper uses the fire outbreak dataset with three features (Temperature, Smoke, and Flame). The data is pre-processed using Interval Type-2 Fuzzy Logic (IT2FL) algorithm. Min-Max Normalization and Principal Component Analysis (PCA) are used to predict feature labels in the dataset, normalize the dataset, and select relevant features respectively. The output of the pre-processing is a dataset with two principal components (PC1 and PC2). The pre-processed dataset is then used in the training of the aforementioned machine learning models. K-fold (with K=10) cross-validation method is used to evaluate the performance of the models using the matrices – ROC (Receiver Operating Curve), Specificity, and Sensitivity. The model is also tested with 20% of the dataset. The validation result shows KNN is the better model for fire outbreak detection with an ROC value of 0.99878, followed by SVM with an ROC value of 0.99753.

Keywords: Machine Learning Algorithms , Interval Type-2 Fuzzy Logic, Fire Outbreak, Support Vector Machine, K-Nearest Neighbour, Principal Component Analysis

Procedia PDF Downloads 182
8358 Survival and Growth Factors of Korean Start-Ups: Focusing on the Industrial Characteristics

Authors: Hanei Son

Abstract:

Since the beginning of the 2010s, ‘start-up boom’ has continued with the creation of many new enterprises in Korea. Such tendency was led by various changes in society such as emergence and diffusion of smartphones. Especially, the Korean government has been interested in start-ups and entrepreneurship as an alternative engine for Korea's economic growth. With strong support from the government, as a result, many new enterprises have been established for recent years and the Korean government seems to have achieved its goal: expanding the basis of start-ups. However, it is unclear which factors affect the survival and growth of these new enterprises after their creation. Therefore, this study aims to identify which start-ups from early 2010s survived and which factors influenced their survival and growth. The study will strongly focus on which industries the new enterprises were in, as environmental elements are expected to be critical factors for business of start-ups in Korean context. For this purpose, 105 companies which were introduced as high potential start-ups from 2010 to 2012 were considered in the analysis. According to their current status, dead or alive, the start-ups were categorized by their industries and service area. Through this analysis, it was observed that many start-ups that are still in business are in internet or mobile platform businesses and four major sectors. In each group, a representative case has been studied to reveal its survival and growth factors. The results point to the importance of industrial characteristics for the survival and success of Korean startups and offer political implications in which sector and business more potentials for start-ups in Korea lie in.

Keywords: government support for start-ups, industrial characteristics, Korean start-ups, survival of start-ups

Procedia PDF Downloads 186
8357 Impact of Artificial Intelligence Technologies on Information-Seeking Behaviors and the Need for a New Information Seeking Model

Authors: Mohammed Nasser Al-Suqri

Abstract:

Former information-seeking models are proposed more than two decades ago. These already existed models were given prior to the evolution of digital information era and Artificial Intelligence (AI) technologies. Lack of current information seeking models within Library and Information Studies resulted in fewer advancements for teaching students about information-seeking behaviors, design of library tools and services. In order to better facilitate the aforementioned concerns, this study aims to propose state-of-the-art model while focusing on the information seeking behavior of library users in the Sultanate of Oman. This study aims for the development, designing and contextualizing the real-time user-centric information seeking model capable of enhancing information needs and information usage along with incorporating critical insights for the digital library practices. Another aim is to establish far-sighted and state-of-the-art frame of reference covering Artificial Intelligence (AI) while synthesizing digital resources and information for optimizing information-seeking behavior. The proposed study is empirically designed based on a mix-method process flow, technical surveys, in-depth interviews, focus groups evaluations and stakeholder investigations. The study data pool is consist of users and specialist LIS staff at 4 public libraries and 26 academic libraries in Oman. The designed research model is expected to facilitate LIS by assisting multi-dimensional insights with AI integration for redefining the information-seeking process, and developing a technology rich model.

Keywords: artificial intelligence, information seeking, information behavior, information seeking models, libraries, Sultanate of Oman

Procedia PDF Downloads 115
8356 Restricted Boltzmann Machines and Deep Belief Nets for Market Basket Analysis: Statistical Performance and Managerial Implications

Authors: H. Hruschka

Abstract:

This paper presents the first comparison of the performance of the restricted Boltzmann machine and the deep belief net on binary market basket data relative to binary factor analysis and the two best-known topic models, namely Dirichlet allocation and the correlated topic model. This comparison shows that the restricted Boltzmann machine and the deep belief net are superior to both binary factor analysis and topic models. Managerial implications that differ between the investigated models are treated as well. The restricted Boltzmann machine is defined as joint Boltzmann distribution of hidden variables and observed variables (purchases). It comprises one layer of observed variables and one layer of hidden variables. Note that variables of the same layer are not connected. The comparison also includes deep belief nets with three layers. The first layer is a restricted Boltzmann machine based on category purchases. Hidden variables of the first layer are used as input variables by the second-layer restricted Boltzmann machine which then generates second-layer hidden variables. Finally, in the third layer hidden variables are related to purchases. A public data set is analyzed which contains one month of real-world point-of-sale transactions in a typical local grocery outlet. It consists of 9,835 market baskets referring to 169 product categories. This data set is randomly split into two halves. One half is used for estimation, the other serves as holdout data. Each model is evaluated by the log likelihood for the holdout data. Performance of the topic models is disappointing as the holdout log likelihood of the correlated topic model – which is better than Dirichlet allocation - is lower by more than 25,000 compared to the best binary factor analysis model. On the other hand, binary factor analysis on its own is clearly surpassed by both the restricted Boltzmann machine and the deep belief net whose holdout log likelihoods are higher by more than 23,000. Overall, the deep belief net performs best. We also interpret hidden variables discovered by binary factor analysis, the restricted Boltzmann machine and the deep belief net. Hidden variables characterized by the product categories to which they are related differ strongly between these three models. To derive managerial implications we assess the effect of promoting each category on total basket size, i.e., the number of purchased product categories, due to each category's interdependence with all the other categories. The investigated models lead to very different implications as they disagree about which categories are associated with higher basket size increases due to a promotion. Of course, recommendations based on better performing models should be preferred. The impressive performance advantages of the restricted Boltzmann machine and the deep belief net suggest continuing research by appropriate extensions. To include predictors, especially marketing variables such as price, seems to be an obvious next step. It might also be feasible to take a more detailed perspective by considering purchases of brands instead of purchases of product categories.

Keywords: binary factor analysis, deep belief net, market basket analysis, restricted Boltzmann machine, topic models

Procedia PDF Downloads 199
8355 Elastoplastic and Ductile Damage Model Calibration of Steels for Bolt-Sphere Joints Used in China’s Space Structure Construction

Authors: Huijuan Liu, Fukun Li, Hao Yuan

Abstract:

The bolted spherical node is a common type of joint in space steel structures. The bolt-sphere joint portion almost always controls the bearing capacity of the bolted spherical node. The investigation of the bearing performance and progressive failure in service often requires high-fidelity numerical models. This paper focuses on the constitutive models of bolt steel and sphere steel used in China’s space structure construction. The elastoplastic model is determined by a standard tensile test and calibrated Voce saturated hardening rule. The ductile damage is found dominant based on the fractography analysis. Then Rice-Tracey ductile fracture rule is selected and the model parameters are calibrated based on tensile tests of notched specimens. These calibrated material models can benefit research or engineering work in similar fields.

Keywords: bolt-sphere joint, steel, constitutive model, ductile damage, model calibration

Procedia PDF Downloads 136
8354 Adding Business Value in Enterprise Applications through Quality Matrices Using Agile

Authors: Afshan Saad, Muhammad Saad, Shah Muhammad Emaduddin

Abstract:

Nowadays the business condition is so quick paced that enhancing ourselves consistently has turned into a huge factor for the presence of an undertaking. We can check this for structural building and significantly more so in the quick-paced universe of data innovation and programming designing. The lithe philosophies, similar to Scrum, have a devoted advance in the process that objectives the enhancement of the improvement procedure and programming items. Pivotal to process enhancement is to pick up data that grants you to assess the condition of the procedure and its items. From the status data, you can design activities for the upgrade and furthermore assess the accomplishment of those activities. This investigation builds a model that measures the product nature of the improvement procedure. The product quality is dependent on the useful and auxiliary nature of the product items, besides the nature of the advancement procedure is likewise vital to enhance programming quality. Utilitarian quality covers the adherence to client prerequisites, while the auxiliary quality tends to the structure of the product item's source code with reference to its practicality. The procedure quality is identified with the consistency and expectedness of the improvement procedure. The product quality model is connected in a business setting by social occasion the information for the product measurements in the model. To assess the product quality model, we investigate the information and present it to the general population engaged with the light-footed programming improvement process. The outcomes from the application and the client input recommend that the model empowers a reasonable evaluation of the product quality and that it very well may be utilized to help the persistent enhancement of the advancement procedure and programming items.

Keywords: Agile SDLC Tools, Agile Software development, business value, enterprise applications, IBM, IBM Rational Team Concert, RTC, software quality, software metrics

Procedia PDF Downloads 174
8353 Modeling Core Flooding Experiments for Co₂ Geological Storage Applications

Authors: Avinoam Rabinovich

Abstract:

CO₂ geological storage is a proven technology for reducing anthropogenic carbon emissions, which is paramount for achieving the ambitious net zero emissions goal. Core flooding experiments are an important step in any CO₂ storage project, allowing us to gain information on the flow of CO₂ and brine in the porous rock extracted from the reservoir. This information is important for understanding basic mechanisms related to CO₂ geological storage as well as for reservoir modeling, which is an integral part of a field project. In this work, a different method for constructing accurate models of CO₂-brine core flooding will be presented. Results for synthetic cases and real experiments will be shown and compared with numerical models to exhibit their predictive capabilities. Furthermore, the various mechanisms which impact the CO₂ distribution and trapping in the rock samples will be discussed, and examples from models and experiments will be provided. The new method entails solving an inverse problem to obtain a three-dimensional permeability distribution which, along with the relative permeability and capillary pressure functions, constitutes a model of the flow experiments. The model is more accurate when data from a number of experiments are combined to solve the inverse problem. This model can then be used to test various other injection flow rates and fluid fractions which have not been tested in experiments. The models can also be used to bridge the gap between small-scale capillary heterogeneity effects (sub-core and core scale) and large-scale (reservoir scale) effects, known as the upscaling problem.

Keywords: CO₂ geological storage, residual trapping, capillary heterogeneity, core flooding, CO₂-brine flow

Procedia PDF Downloads 70
8352 Developing A Third Degree Of Freedom For Opinion Dynamics Models Using Scales

Authors: Dino Carpentras, Alejandro Dinkelberg, Michael Quayle

Abstract:

Opinion dynamics models use an agent-based modeling approach to model people’s opinions. Model's properties are usually explored by testing the two 'degrees of freedom': the interaction rule and the network topology. The latter defines the connection, and thus the possible interaction, among agents. The interaction rule, instead, determines how agents select each other and update their own opinion. Here we show the existence of the third degree of freedom. This can be used for turning one model into each other or to change the model’s output up to 100% of its initial value. Opinion dynamics models represent the evolution of real-world opinions parsimoniously. Thus, it is fundamental to know how real-world opinion (e.g., supporting a candidate) could be turned into a number. Specifically, we want to know if, by choosing a different opinion-to-number transformation, the model’s dynamics would be preserved. This transformation is typically not addressed in opinion dynamics literature. However, it has already been studied in psychometrics, a branch of psychology. In this field, real-world opinions are converted into numbers using abstract objects called 'scales.' These scales can be converted one into the other, in the same way as we convert meters to feet. Thus, in our work, we analyze how this scale transformation may affect opinion dynamics models. We perform our analysis both using mathematical modeling and validating it via agent-based simulations. To distinguish between scale transformation and measurement error, we first analyze the case of perfect scales (i.e., no error or noise). Here we show that a scale transformation may change the model’s dynamics up to a qualitative level. Meaning that a researcher may reach a totally different conclusion, even using the same dataset just by slightly changing the way data are pre-processed. Indeed, we quantify that this effect may alter the model’s output by 100%. By using two models from the standard literature, we show that a scale transformation can transform one model into the other. This transformation is exact, and it holds for every result. Lastly, we also test the case of using real-world data (i.e., finite precision). We perform this test using a 7-points Likert scale, showing how even a small scale change may result in different predictions or a number of opinion clusters. Because of this, we think that scale transformation should be considered as a third-degree of freedom for opinion dynamics. Indeed, its properties have a strong impact both on theoretical models and for their application to real-world data.

Keywords: degrees of freedom, empirical validation, opinion scale, opinion dynamics

Procedia PDF Downloads 155
8351 Understanding the Role of Gas Hydrate Morphology on the Producibility of a Hydrate-Bearing Reservoir

Authors: David Lall, Vikram Vishal, P. G. Ranjith

Abstract:

Numerical modeling of gas production from hydrate-bearing reservoirs requires the solution of various thermal, hydrological, chemical, and mechanical phenomena in a coupled manner. Among the various reservoir properties that influence gas production estimates, the distribution of permeability across the domain is one of the most crucial parameters since it determines both heat transfer and mass transfer. The aspect of permeability in hydrate-bearing reservoirs is particularly complex compared to conventional reservoirs since it depends on the saturation of gas hydrates and hence, is dynamic during production. The dependence of permeability on hydrate saturation is mathematically represented using permeability-reduction models, which are specific to the expected morphology of hydrate accumulations (such as grain-coating or pore-filling hydrates). In this study, we demonstrate the impact of various permeability-reduction models, and consequently, different morphologies of hydrate deposits on the estimates of gas production using depressurization at the reservoir scale. We observe significant differences in produced water volumes and cumulative mass of produced gas between the models, thereby highlighting the uncertainty in production behavior arising from the ambiguity in the prevalent gas hydrate morphology.

Keywords: gas hydrate morphology, multi-scale modeling, THMC, fluid flow in porous media

Procedia PDF Downloads 220
8350 The Modern Era in the Cricket World: How Far Have We Really Come?

Authors: Habib Noorbhai

Abstract:

History of Cricket: Cricket has a known history spanning from the 16th century till present, with international matches having been played since 1844. The game of cricket arrived in Australia as soon as colonization began in 1788. Cricketers started playing on turf wickets in the late 1800’s and dimensions for both the boundary and pitch later became assimilated. As the years evolved, cricket bats and balls, protective equipment, playing surfaces and the three formats of the game adapted to the playing conditions and laws of cricket. Business of Cricket: During the late 1900's, the shorter version of the game (T20) was introduced in order to attract the crowds to stadiums and television viewers for broadcasting rights. One could argue if this was merely a business venture or a platform for enhancing the performance of cricketers. Between the 16th and 20th century, cricket was a common sport played for passion and pure enjoyment. Industries saw a potential in diversified business ventures in the game (as well as other sports played globally) and cricket subsequently became a career for players, administrators and coaches, the media, health professionals, managers and the corporate world. Pros and Cons of Cricket Developments: At present, the game has significantly gained from the use of technology, sports sciences and varied mechanisms to optimize the performances and forecast frameworks for injury prevention in cricket players. Unfortunately, these had not been utilized in the earlier times of cricket and it would prove interesting to observe how the greats of the game would have benefited with such developments. Cricketers in the 21st century are faced with many overwhelming commitments. One of these is playing cricket for 11 months in a year, making it more than 250 days away from home and their families. As the demand of player contracts increase, the supply of commitment and performances from players increase. Way Forward and Future Implications: The questions are: Are such disadvantages contributing to the overload and injury risks of players? How far have we really come in the cricketing world or has everything since the game’s inception become institutionalized with a business model? These are the fundamental questions which need to be addressed and legislation, policies and ethical considerations need to be drafted and implemented. These will ensure that there is equilibrium of effective transitions and management of not only the players, but also the credibility of the wonderful game.

Keywords: enterprising business of cricket, technology, legislation, credibility

Procedia PDF Downloads 448
8349 Hybrid Direct Numerical Simulation and Large Eddy Simulating Wall Models Approach for the Analysis of Turbulence Entropy

Authors: Samuel Ahamefula

Abstract:

Turbulent motion is a highly nonlinear and complex phenomenon, and its modelling is still very challenging. In this study, we developed a hybrid computational approach to accurately simulate fluid turbulence phenomenon. The focus is coupling and transitioning between Direct Numerical Simulation (DNS) and Large Eddy Simulating Wall Models (LES-WM) regions. In the framework, high-order fidelity fluid dynamical methods are utilized to simulate the unsteady compressible Navier-Stokes equations in the Eulerian format on the unstructured moving grids. The coupling and transitioning of DNS and LES-WM are conducted through the linearly staggered Dirichlet-Neumann coupling scheme. The high-fidelity framework is verified and validated based on namely, DNS ability for capture full range of turbulent scales, giving accurate results and LES-WM efficiency in simulating near-wall turbulent boundary layer by using wall models.

Keywords: computational methods, turbulence modelling, turbulence entropy, navier-stokes equations

Procedia PDF Downloads 101
8348 The Cost of Solar-Centric Renewable Portfolio

Authors: Timothy J. Considine, Edward J. M. Manderson

Abstract:

This paper develops an econometric forecasting system of energy demand coupled with engineering-economic models of energy supply. The framework is used to quantify the impact of state-level renewable portfolio standards (RPSs) achieved predominately with solar generation on electricity rates, electricity consumption, and environmental quality. We perform the analysis using Arizona’s RPS as a case study. We forecast energy demand in Arizona out to 2035, and find by this time the state will require an additional 35 million MWh of electricity generation. If Arizona implements its RPS when supplying this electricity demand, we find there will be a substantial increase in electricity rates (relative to a business-as-usual scenario of reliance on gas-fired generation). Extending the current regime of tax credits can greatly reduce this increase, at the taxpayers’ expense. We find that by 2025 Arizona’s RPS will implicitly abate carbon dioxide emissions at a cost between $101 and $135 per metric ton, and by 2035 abatement costs are between $64 and $112 per metric ton (depending on the future evolution of nature gas prices).

Keywords: electricity demand, renewable portfolio standard, solar, carbon dioxide

Procedia PDF Downloads 485
8347 Comparison of Spiking Neuron Models in Terms of Biological Neuron Behaviours

Authors: Fikret Yalcinkaya, Hamza Unsal

Abstract:

To understand how neurons work, it is required to combine experimental studies on neural science with numerical simulations of neuron models in a computer environment. In this regard, the simplicity and applicability of spiking neuron modeling functions have been of great interest in computational neuron science and numerical neuroscience in recent years. Spiking neuron models can be classified by exhibiting various neuronal behaviors, such as spiking and bursting. These classifications are important for researchers working on theoretical neuroscience. In this paper, three different spiking neuron models; Izhikevich, Adaptive Exponential Integrate Fire (AEIF) and Hindmarsh Rose (HR), which are based on first order differential equations, are discussed and compared. First, the physical meanings, derivatives, and differential equations of each model are provided and simulated in the Matlab environment. Then, by selecting appropriate parameters, the models were visually examined in the Matlab environment and it was aimed to demonstrate which model can simulate well-known biological neuron behaviours such as Tonic Spiking, Tonic Bursting, Mixed Mode Firing, Spike Frequency Adaptation, Resonator and Integrator. As a result, the Izhikevich model has been shown to perform Regular Spiking, Continuous Explosion, Intrinsically Bursting, Thalmo Cortical, Low-Threshold Spiking and Resonator. The Adaptive Exponential Integrate Fire model has been able to produce firing patterns such as Regular Ignition, Adaptive Ignition, Initially Explosive Ignition, Regular Explosive Ignition, Delayed Ignition, Delayed Regular Explosive Ignition, Temporary Ignition and Irregular Ignition. The Hindmarsh Rose model showed three different dynamic neuron behaviours; Spike, Burst and Chaotic. From these results, the Izhikevich cell model may be preferred due to its ability to reflect the true behavior of the nerve cell, the ability to produce different types of spikes, and the suitability for use in larger scale brain models. The most important reason for choosing the Adaptive Exponential Integrate Fire model is that it can create rich ignition patterns with fewer parameters. The chaotic behaviours of the Hindmarsh Rose neuron model, like some chaotic systems, is thought to be used in many scientific and engineering applications such as physics, secure communication and signal processing.

Keywords: Izhikevich, adaptive exponential integrate fire, Hindmarsh Rose, biological neuron behaviours, spiking neuron models

Procedia PDF Downloads 181
8346 Increased Circularity in Metals Production Using the Ausmelt TSL Process

Authors: Jacob Wood, David Wilson, Stephen Hughes

Abstract:

The Ausmelt Top Submerged Lance (TSL) Process has been widely applied for the processing of both primary and secondary copper, nickel, lead, tin, and zinc-bearing feed materials. Continual development and evolution of the technology over more than 30 years has resulted in a more intense smelting process with higher energy efficiency, improved metal recoveries, lower operating costs, and reduced fossil fuel consumption. This paper covers a number of recent advances to the technology, highlighting their positive impacts on smelter operating costs, environmental performance, and contribution towards increased circularity in metals production.

Keywords: ausmelt TSL, smelting, circular economy, energy efficiency

Procedia PDF Downloads 244
8345 Analytical Solutions for Geodesic Acoustic Eigenmodes in Tokamak Plasmas

Authors: Victor I. Ilgisonis, Ludmila V. Konovaltseva, Vladimir P. Lakhin, Ekaterina A. Sorokina

Abstract:

The analytical solutions for geodesic acoustic eigenmodes in tokamak plasmas with circular concentric magnetic surfaces are found. In the frame of ideal magnetohydrodynamics the dispersion relation taking into account the toroidal coupling between electrostatic perturbations and electromagnetic perturbations with poloidal mode number |m| = 2 is derived. In the absence of such a coupling the dispersion relation gives the standard continuous spectrum of geodesic acoustic modes. The analysis of the existence of global eigenmodes for plasma equilibria with both off-axis and on-axis maximum of the local geodesic acoustic frequency is performed.

Keywords: tokamak, MHD, geodesic acoustic mode, eigenmode

Procedia PDF Downloads 734
8344 Aggregate Production Planning Framework in a Multi-Product Factory: A Case Study

Authors: Ignatio Madanhire, Charles Mbohwa

Abstract:

This study looks at the best model of aggregate planning activity in an industrial entity and uses the trial and error method on spreadsheets to solve aggregate production planning problems. Also linear programming model is introduced to optimize the aggregate production planning problem. Application of the models in a furniture production firm is evaluated to demonstrate that practical and beneficial solutions can be obtained from the models. Finally some benchmarking of other furniture manufacturing industries was undertaken to assess relevance and level of use in other furniture firms

Keywords: aggregate production planning, trial and error, linear programming, furniture industry

Procedia PDF Downloads 556
8343 Influence of CO₂ on the Curing of Permeable Concrete

Authors: A. M. Merino-Lechuga, A. González-Caro, D. Suescum-Morales, E. Fernández-Ledesma, J. R. Jiménez, J. M. Fernández-Rodriguez

Abstract:

Since the mid-19th century, the boom in the economy and industry has grown exponentially. This has led to an increase in pollution due to rising Greenhouse Gas (GHG) emissions and the accumulation of waste, leading to an increasingly imminent future scarcity of raw materials and natural resources. Carbon dioxide (CO₂) is one of the primary greenhouse gases, accounting for up to 55% of Greenhouse Gas (GHG) emissions. The manufacturing of construction materials generates approximately 73% of CO₂ emissions, with Portland cement production contributing to 41% of this figure. Hence, there is scientific and social alarm regarding the carbon footprint of construction materials and their influence on climate change. Carbonation of concrete is a natural process whereby CO₂ from the environment penetrates the material, primarily through pores and microcracks. Once inside, carbon dioxide reacts with calcium hydroxide (Ca(OH)2) and/or CSH, yielding calcium carbonates (CaCO3) and silica gel. Consequently, construction materials act as carbon sinks. This research investigated the effect of accelerated carbonation on the physical, mechanical, and chemical properties of two types of non-structural vibrated concrete pavers (conventional and draining) made from natural aggregates and two types of recycled aggregates from construction and demolition waste (CDW). Natural aggregates were replaced by recycled aggregates using a volumetric substitution method, and the CO₂ capture capacity was calculated. Two curing environments were utilized: a carbonation chamber with 5% CO₂ and a standard climatic chamber with atmospheric CO₂ concentration. Additionally, the effect of curing times of 1, 3, 7, 14, and 28 days on concrete properties was analyzed. Accelerated carbonation in-creased the apparent dry density, reduced water-accessible porosity, improved compressive strength, and decreased setting time to achieve greater mechanical strength. The maximum CO₂ capture ratio was achieved with the use of recycled concrete aggregate (52.52 kg/t) in the draining paver. Accelerated carbonation conditions led to a 525% increase in carbon capture compared to curing under atmospheric conditions. Accelerated carbonation of cement-based products containing recycled aggregates from construction and demolition waste is a promising technology for CO₂ capture and utilization, offering a means to mitigate the effects of climate change and promote the new paradigm of circular economy.

Keywords: accelerated carbonation, CO₂ curing, CO₂ uptake and construction and demolition waste., circular economy

Procedia PDF Downloads 65
8342 Probing Anomalous WW γ and WWZ Couplings with Polarized Electron Beam at the LHeC and FCC-Ep Collider

Authors: I. Turk Cakir, A. Senol, A. T. Tasci, O. Cakir

Abstract:

We study the anomalous WWγ and WWZ couplings by calculating total cross sections of the ep→νqγX and ep→νqZX processes at the LHeC with electron beam energy Ee=140 GeV and the proton beam energy Ep=7 TeV, and at the FCC-ep collider with the polarized electron beam energy Ee=80 GeV and the proton beam energy Ep=50 TeV. At the LHeC with electron beam polarization, we obtain the results for the difference of upper and lower bounds as (0.975, 0.118) and (0.285, 0.009) for the anomalous (Δκγ,λγ) and (Δκz,λz) couplings, respectively. As for FCC-ep collider, these bounds are obtained as (1.101,0.065) and (0.320,0.002) at an integrated luminosity of Lint=100 fb-1.

Keywords: anomalous couplings, future circular collider, large hadron electron collider, W-boson and Z-boson

Procedia PDF Downloads 382
8341 Strategy, Intellectual Capital Disclosure, Competition, and Market Performance

Authors: Agnes Utari Widyaningdyah

Abstract:

This study investigates the relationship between strategy, intellectual capital (IC) disclosure, and the firm’s performance by considering business competition as a moderating variable. The secondary sectors manufacturing firms in the Jakarta Stock Industrial Classification as sample because this group represents a knowledge-intensive firm according to the OECD (Organization for Economic Cooperation and Development) criteria. Using path analysis, this study reveals that there is a significant influence of strategy toward IC disclosure. Firms with differentiation strategy tend to withhold its strategic information included IC because of afraid in losing their competitive advantage. The results also indicate that firms are more likely to withhold information about IC if they perceive that current or potential competition is strong. However, firms should consider that IC disclosure is a positive signal to the investor.

Keywords: strategy, IC disclosure, market performance, business competition

Procedia PDF Downloads 298
8340 Machine Learning Techniques for Estimating Ground Motion Parameters

Authors: Farid Khosravikia, Patricia Clayton

Abstract:

The main objective of this study is to evaluate the advantages and disadvantages of various machine learning techniques in forecasting ground-motion intensity measures given source characteristics, source-to-site distance, and local site condition. Intensity measures such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Estimating these variables for future earthquake events is a key step in seismic hazard assessment and potentially subsequent risk assessment of different types of structures. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as a statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The algorithms are adjusted to quantify event-to-event and site-to-site variability of the ground motions by implementing them as random effects in the proposed models to reduce the aleatory uncertainty. All the algorithms are trained using a selected database of 4,528 ground-motions, including 376 seismic events with magnitude 3 to 5.8, recorded over the hypocentral distance range of 4 to 500 km in Oklahoma, Kansas, and Texas since 2005. The main reason of the considered database stems from the recent increase in the seismicity rate of these states attributed to petroleum production and wastewater disposal activities, which necessities further investigation in the ground motion models developed for these states. Accuracy of the models in predicting intensity measures, generalization capability of the models for future data, as well as usability of the models are discussed in the evaluation process. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available.

Keywords: artificial neural network, ground-motion models, machine learning, random forest, support vector machine

Procedia PDF Downloads 122
8339 Comparison of Methods of Estimation for Use in Goodness of Fit Tests for Binary Multilevel Models

Authors: I. V. Pinto, M. R. Sooriyarachchi

Abstract:

It can be frequently observed that the data arising in our environment have a hierarchical or a nested structure attached with the data. Multilevel modelling is a modern approach to handle this kind of data. When multilevel modelling is combined with a binary response, the estimation methods get complex in nature and the usual techniques are derived from quasi-likelihood method. The estimation methods which are compared in this study are, marginal quasi-likelihood (order 1 & order 2) (MQL1, MQL2) and penalized quasi-likelihood (order 1 & order 2) (PQL1, PQL2). A statistical model is of no use if it does not reflect the given dataset. Therefore, checking the adequacy of the fitted model through a goodness-of-fit (GOF) test is an essential stage in any modelling procedure. However, prior to usage, it is also equally important to confirm that the GOF test performs well and is suitable for the given model. This study assesses the suitability of the GOF test developed for binary response multilevel models with respect to the method used in model estimation. An extensive set of simulations was conducted using MLwiN (v 2.19) with varying number of clusters, cluster sizes and intra cluster correlations. The test maintained the desirable Type-I error for models estimated using PQL2 and it failed for almost all the combinations of MQL. Power of the test was adequate for most of the combinations in all estimation methods except MQL1. Moreover, models were fitted using the four methods to a real-life dataset and performance of the test was compared for each model.

Keywords: goodness-of-fit test, marginal quasi-likelihood, multilevel modelling, penalized quasi-likelihood, power, quasi-likelihood, type-I error

Procedia PDF Downloads 142
8338 Towards a Framework for Embedded Weight Comparison Algorithm with Business Intelligence in the Plantation Domain

Authors: M. Pushparani, A. Sagaya

Abstract:

Embedded systems have emerged as important elements in various domains with extensive applications in automotive, commercial, consumer, healthcare and transportation markets, as there is emphasis on intelligent devices. On the other hand, Business Intelligence (BI) has also been extensively used in a range of applications, especially in the agriculture domain which is the area of this research. The aim of this research is to create a framework for Embedded Weight Comparison Algorithm with Business Intelligence (EWCA-BI). The weight comparison algorithm will be embedded within the plantation management system and the weighbridge system. This algorithm will be used to estimate the weight at the site and will be compared with the actual weight at the plantation. The algorithm will be used to build the necessary alerts when there is a discrepancy in the weight, thus enabling better decision making. In the current practice, data are collected from various locations in various forms. It is a challenge to consolidate data to obtain timely and accurate information for effective decision making. Adding to this, the unstable network connection leads to difficulty in getting timely accurate information. To overcome the challenges embedding is done on a portable device that will have the embedded weight comparison algorithm to also assist in data capture and synchronize data at various locations overcoming the network short comings at collection points. The EWCA-BI will provide real-time information at any given point of time, thus enabling non-latent BI reports that will provide crucial information to enable efficient operational decision making. This research has a high potential in bringing embedded system into the agriculture industry. EWCA-BI will provide BI reports with accurate information with uncompromised data using an embedded system and provide alerts, therefore, enabling effective operation management decision-making at the site.

Keywords: embedded business intelligence, weight comparison algorithm, oil palm plantation, embedded systems

Procedia PDF Downloads 285
8337 Using Machine Learning to Classify Different Body Parts and Determine Healthiness

Authors: Zachary Pan

Abstract:

Our general mission is to solve the problem of classifying images into different body part types and deciding if each of them is healthy or not. However, for now, we will determine healthiness for only one-sixth of the body parts, specifically the chest. We will detect pneumonia in X-ray scans of those chest images. With this type of AI, doctors can use it as a second opinion when they are taking CT or X-ray scans of their patients. Another ad-vantage of using this machine learning classifier is that it has no human weaknesses like fatigue. The overall ap-proach to this problem is to split the problem into two parts: first, classify the image, then determine if it is healthy. In order to classify the image into a specific body part class, the body parts dataset must be split into test and training sets. We can then use many models, like neural networks or logistic regression models, and fit them using the training set. Now, using the test set, we can obtain a realistic accuracy the models will have on images in the real world since these testing images have never been seen by the models before. In order to increase this testing accuracy, we can also apply many complex algorithms to the models, like multiplicative weight update. For the second part of the problem, to determine if the body part is healthy, we can have another dataset consisting of healthy and non-healthy images of the specific body part and once again split that into the test and training sets. We then use another neural network to train on those training set images and use the testing set to figure out its accuracy. We will do this process only for the chest images. A major conclusion reached is that convolutional neural networks are the most reliable and accurate at image classification. In classifying the images, the logistic regression model, the neural network, neural networks with multiplicative weight update, neural networks with the black box algorithm, and the convolutional neural network achieved 96.83 percent accuracy, 97.33 percent accuracy, 97.83 percent accuracy, 96.67 percent accuracy, and 98.83 percent accuracy, respectively. On the other hand, the overall accuracy of the model that de-termines if the images are healthy or not is around 78.37 percent accuracy.

Keywords: body part, healthcare, machine learning, neural networks

Procedia PDF Downloads 104
8336 Review of Hydrologic Applications of Conceptual Models for Precipitation-Runoff Process

Authors: Oluwatosin Olofintoye, Josiah Adeyemo, Gbemileke Shomade

Abstract:

The relationship between rainfall and runoff is an important issue in surface water hydrology therefore the understanding and development of accurate rainfall-runoff models and their applications in water resources planning, management and operation are of paramount importance in hydrological studies. This paper reviews some of the previous works on the rainfall-runoff process modeling. The hydrologic applications of conceptual models and artificial neural networks (ANNs) for the precipitation-runoff process modeling were studied. Gradient training methods such as error back-propagation (BP) and evolutionary algorithms (EAs) are discussed in relation to the training of artificial neural networks and it is shown that application of EAs to artificial neural networks training could be an alternative to other training methods. Therefore, further research interest to exploit the abundant expert knowledge in the area of artificial intelligence for the solution of hydrologic and water resources planning and management problems is needed.

Keywords: artificial intelligence, artificial neural networks, evolutionary algorithms, gradient training method, rainfall-runoff model

Procedia PDF Downloads 454
8335 The Effect of Symmetry on the Perception of Happiness and Boredom in Design Products

Authors: Michele Sinico

Abstract:

The present research investigates the effect of symmetry on the perception of happiness and boredom in design products. Three experiments were carried out in order to verify the degree of the visual expressive value on different models of bookcases, wall clocks, and chairs. 60 participants directly indicated the degree of happiness and boredom using 7-point rating scales. The findings show that the participants acknowledged a different value of expressive quality in the different product models. Results show also that symmetry is not a significant constraint for an emotional design project.

Keywords: product experience, emotional design, symmetry, expressive qualities

Procedia PDF Downloads 147
8334 Airliner-UAV Flight Formation in Climb Regime

Authors: Pavel Zikmund, Robert Popela

Abstract:

Extreme formation is a theoretical concept of self-sustain flight when a big Airliner is followed by a small UAV glider flying in airliner’s wake vortex. The paper presents results of climb analysis with a goal to lift the gliding UAV to airliner’s cruise altitude. Wake vortex models, the UAV drag polar and basic parameters and airliner’s climb profile are introduced at first. Then, flight performance of the UAV in the wake vortex is evaluated by analytical methods. Time history of optimal distance between the airliner and the UAV during the climb is determined. The results are encouraging, therefore available UAV drag margin for electricity generation is figured out for different vortex models.

Keywords: flight in formation, self-sustained flight, UAV, wake vortex

Procedia PDF Downloads 441
8333 Why Trust Matters for Women Entrepreneurs: Insights from Malaysia

Authors: Suraini Mohd Rhouse, Noor Lela Ahmad, Nek Kamal Yeop Yunus, Rosfizah Md Taib

Abstract:

This article aims to explore the importance of trust to women entrepreneurs. In particular, the research uses a social constructionist lens to examine ways in which women entrepreneurs construct trust in relation to their various stakeholders. A semi-structured interview was used to gather the data. The findings suggest women highlight the importance of trust in order to establish customer satisfaction that can further develop customer loyalty. In addition, aspect of trust with the employees is seen as vital for building organizational commitment to the business organization. Women also see the trust dimension in terms of their relationships with financial providers in order to gain approval for financial resources. This article contributes to the literature on the value of trust to women’s business environments.

Keywords: qualitative, social constructionist, trust, women entrepreneurship

Procedia PDF Downloads 560
8332 The Role of Employee Incentives in Financing from Customers

Authors: Mengyu Lu, Yongsheng Guo

Abstract:

This study investigates how employee incentives affect employee performance in financing from customers. This study followed a grounded theory approach where data were collected through 29 interviews. Main themes and categories were identified through the coding processes. This study found that casual conditions, including financial barriers, informal finance, business location, customer base and customer relationship, influenced the adoption of customer finance in the case of SMEs. The SMEs build and maintain long-term relationships with customers through personal communications. The SMEs engage and motivate employees in customer communications and business financing strategy through financial incentives programs, including bonuses, salary rises, rewards and non-financial incentives, including training opportunities, extra holiday leave, and flexible working hours. Employee performance was measured through financing contribution and job contribution. As a consequence, customers will be well served by employees and get a better customer experience. SMEs can get benefits such as employee engagement, employee satisfaction and sustainable financing sources. This study gets in sight of employee incentives in improving employee performance in customer finance and makes implications to human capital theories. Suggestions are provided to the decision-makers in businesses as incentive programs improve employee performance that, eventually contributes to overall business performance.

Keywords: SMEs, financing from customers, employee incentives, performance-based measurement

Procedia PDF Downloads 56
8331 The Role of Businesses in Peacebuilding in Nigeria: A Stakeholder Approach

Authors: Jamila Mohammed Makarfi, Yontem Sonmez

Abstract:

Developing countries like Nigeria have recently been affected by conflicts characterized by violence, high levels of risk and insecurity, resulting in loss of lives, livelihoods, displacement of communities, degradation of health, educational and social infrastructure as well as economic underdevelopment. The Nigerian government’s response to most of these conflicts has mainly been reactionary in the form of military deployments, as against precautionary to prevent or address the root causes of the conflicts. Several studies have shown that at various points of a conflict, conflict regions can benefit from the resources and expertise available outside the government, mainly from the private sector through mechanisms such as corporate social responsibility (CSR) by businesses. The main aim of this study is to examine the role of businesses in peacebuilding in Northern Nigeria through CSR in the last decade. The expected contributions from this will answer research questions, such as the key business motivations to engage in peacebuilding, as well as the degree of influence exerted from various stakeholder groups on the business decision to engage. The methodology of the study adopts a multiple case study of over 120 businesses of various sizes, ranging from small, medium and large-scale. A mixed method enabled the collection of quantitative and qualitative primary data to augment the secondary data. The results indicated that the most important business motivations to engage in peacebuilding were the negative effects of the conflict on economic stability, as well as stakeholder-driven motives. On the other hand, out of the 12 identified stakeholders, micro-, small- and medium-scale enterprises (MSMEs) considered the chief executive officer’s interest to be the most important factor, while large companies rated the government and community pressure as the highest. Overall, the foreign stakeholders scored low on the influence chart for all business types.

Keywords: conflict, corporate social responsibility, peacebuilding, stakeholder

Procedia PDF Downloads 221