Search results for: adaptive robust rbf neural network approximation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7836

Search results for: adaptive robust rbf neural network approximation

6126 A Novel Hybrid Deep Learning Architecture for Predicting Acute Kidney Injury Using Patient Record Data and Ultrasound Kidney Images

Authors: Sophia Shi

Abstract:

Acute kidney injury (AKI) is the sudden onset of kidney damage in which the kidneys cannot filter waste from the blood, requiring emergency hospitalization. AKI patient mortality rate is high in the ICU and is virtually impossible for doctors to predict because it is so unexpected. Currently, there is no hybrid model predicting AKI that takes advantage of two types of data. De-identified patient data from the MIMIC-III database and de-identified kidney images and corresponding patient records from the Beijing Hospital of the Ministry of Health were collected. Using data features including serum creatinine among others, two numeric models using MIMIC and Beijing Hospital data were built, and with the hospital ultrasounds, an image-only model was built. Convolutional neural networks (CNN) were used, VGG and Resnet for numeric data and Resnet for image data, and they were combined into a hybrid model by concatenating feature maps of both types of models to create a new input. This input enters another CNN block and then two fully connected layers, ending in a binary output after running through Softmax and additional code. The hybrid model successfully predicted AKI and the highest AUROC of the model was 0.953, achieving an accuracy of 90% and F1-score of 0.91. This model can be implemented into urgent clinical settings such as the ICU and aid doctors by assessing the risk of AKI shortly after the patient’s admission to the ICU, so that doctors can take preventative measures and diminish mortality risks and severe kidney damage.

Keywords: Acute kidney injury, Convolutional neural network, Hybrid deep learning, Patient record data, ResNet, Ultrasound kidney images, VGG

Procedia PDF Downloads 132
6125 Adaptive Online Object Tracking via Positive and Negative Models Matching

Authors: Shaomei Li, Yawen Wang, Chao Gao

Abstract:

To improve tracking drift which often occurs in adaptive tracking, an algorithm based on the fusion of tracking and detection is proposed in this paper. Firstly, object tracking is posed as a binary classification problem and is modeled by partial least squares (PLS) analysis. Secondly, tracking object frame by frame via particle filtering. Thirdly, validating the tracking reliability based on both positive and negative models matching. Finally, relocating the object based on SIFT features matching and voting when drift occurs. Object appearance model is updated at the same time. The algorithm cannot only sense tracking drift but also relocate the object whenever needed. Experimental results demonstrate that this algorithm outperforms state-of-the-art algorithms on many challenging sequences.

Keywords: object tracking, tracking drift, partial least squares analysis, positive and negative models matching

Procedia PDF Downloads 530
6124 FPGA Implementation of Adaptive Clock Recovery for TDMoIP Systems

Authors: Semih Demir, Anil Celebi

Abstract:

Circuit switched networks widely used until the end of the 20th century have been transformed into packages switched networks. Time Division Multiplexing over Internet Protocol (TDMoIP) is a system that enables Time Division Multiplexing (TDM) traffic to be carried over packet switched networks (PSN). In TDMoIP systems, devices that send TDM data to the PSN and receive it from the network must operate with the same clock frequency. In this study, it was aimed to implement clock synchronization process in Field Programmable Gate Array (FPGA) chips using time information attached to the packages received from PSN. The designed hardware is verified using the datasets obtained for the different carrier types and comparing the results with the software model. Field tests are also performed by using the real time TDMoIP system.

Keywords: clock recovery on TDMoIP, FPGA, MATLAB reference model, clock synchronization

Procedia PDF Downloads 278
6123 Modeling of Age Hardening Process Using Adaptive Neuro-Fuzzy Inference System: Results from Aluminum Alloy A356/Cow Horn Particulate Composite

Authors: Chidozie C. Nwobi-Okoye, Basil Q. Ochieze, Stanley Okiy

Abstract:

This research reports on the modeling of age hardening process using adaptive neuro-fuzzy inference system (ANFIS). The age hardening output (Hardness) was predicted using ANFIS. The input parameters were ageing time, temperature and percentage composition of cow horn particles (CHp%). The results show the correlation coefficient (R) of the predicted hardness values versus the measured values was of 0.9985. Subsequently, values outside the experimental data points were predicted. When the temperature was kept constant, and other input parameters were varied, the average relative error of the predicted values was 0.0931%. When the temperature was varied, and other input parameters kept constant, the average relative error of the hardness values predictions was 80%. The results show that ANFIS with coarse experimental data points for learning is not very effective in predicting process outputs in the age hardening operation of A356 alloy/CHp particulate composite. The fine experimental data requirements by ANFIS make it more expensive in modeling and optimization of age hardening operations of A356 alloy/CHp particulate composite.

Keywords: adaptive neuro-fuzzy inference system (ANFIS), age hardening, aluminum alloy, metal matrix composite

Procedia PDF Downloads 154
6122 Reducing Power Consumption in Network on Chip Using Scramble Techniques

Authors: Vinayaga Jagadessh Raja, R. Ganesan, S. Ramesh Kumar

Abstract:

An ever more significant fraction of the overall power dissipation of a network-on-chip (NoC) based system on- chip (SoC) is due to the interconnection scheme. In information, as equipment shrinks, the power contributes of NoC links starts to compete with that of NoC routers. In this paper, we propose the use of clock gating in the data encoding techniques as a viable way to reduce both power dissipation and time consumption of NoC links. The projected scramble scheme exploits the wormhole switching techniques. That is, flits are scramble by the network interface (NI) before they are injected in the network and are decoded by the target NI. This makes the scheme transparent to the underlying network since the encoder and decoder logic is integrated in the NI and no modification of the routers structural design is required. We review the projected scramble scheme on a set of representative data streams (both synthetic and extracted from real applications) showing that it is possible to reduce the power contribution of both the self-switching activity and the coupling switching activity in inter-routers links.

Keywords: Xilinx 12.1, power consumption, Encoder, NOC

Procedia PDF Downloads 400
6121 Transformable Lightweight Structures for Short-term Stay

Authors: Anna Daskalaki, Andreas Ashikalis

Abstract:

This is a conceptual project that suggests an alternative type of summer camp in the forest of Rouvas in the island of Crete. Taking into account some feasts that are organised by the locals or mountaineering clubs near the church of St. John, we created a network of lightweight timber structures that serve the needs of the visitor. These structures are transformable and satisfy the need for rest, food, and sleep – this means a seat, a table and a tent are embodied in each structure. These structures blend in with the environment as they are being installed according to the following parameters: (a) the local relief, (b) the clusters of trees, and (c) the existing paths. Each timber structure could be considered as a module that could be totally independent or part of a bigger construction. The design showcases the advantages of a timber structure as it can be quite adaptive to the needs of the project, but also it is a sustainable and environmentally friendly material that can be recycled. Finally, it is important to note that the basic goal of this project is the minimum alteration of the natural environment.

Keywords: lightweight structures, timber, transformable, tent

Procedia PDF Downloads 170
6120 An AK-Chart for the Non-Normal Data

Authors: Chia-Hau Liu, Tai-Yue Wang

Abstract:

Traditional multivariate control charts assume that measurement from manufacturing processes follows a multivariate normal distribution. However, this assumption may not hold or may be difficult to verify because not all the measurement from manufacturing processes are normal distributed in practice. This study develops a new multivariate control chart for monitoring the processes with non-normal data. We propose a mechanism based on integrating the one-class classification method and the adaptive technique. The adaptive technique is used to improve the sensitivity to small shift on one-class classification in statistical process control. In addition, this design provides an easy way to allocate the value of type I error so it is easier to be implemented. Finally, the simulation study and the real data from industry are used to demonstrate the effectiveness of the propose control charts.

Keywords: multivariate control chart, statistical process control, one-class classification method, non-normal data

Procedia PDF Downloads 423
6119 Metric Dimension on Line Graph of Honeycomb Networks

Authors: M. Hussain, Aqsa Farooq

Abstract:

Let G = (V,E) be a connected graph and distance between any two vertices a and b in G is a−b geodesic and is denoted by d(a, b). A set of vertices W resolves a graph G if each vertex is uniquely determined by its vector of distances to the vertices in W. A metric dimension of G is the minimum cardinality of a resolving set of G. In this paper line graph of honeycomb network has been derived and then we calculated the metric dimension on line graph of honeycomb network.

Keywords: Resolving set, Metric dimension, Honeycomb network, Line graph

Procedia PDF Downloads 202
6118 Performance Comparison of Different Regression Methods for a Polymerization Process with Adaptive Sampling

Authors: Florin Leon, Silvia Curteanu

Abstract:

Developing complete mechanistic models for polymerization reactors is not easy, because complex reactions occur simultaneously; there is a large number of kinetic parameters involved and sometimes the chemical and physical phenomena for mixtures involving polymers are poorly understood. To overcome these difficulties, empirical models based on sampled data can be used instead, namely regression methods typical of machine learning field. They have the ability to learn the trends of a process without any knowledge about its particular physical and chemical laws. Therefore, they are useful for modeling complex processes, such as the free radical polymerization of methyl methacrylate achieved in a batch bulk process. The goal is to generate accurate predictions of monomer conversion, numerical average molecular weight and gravimetrical average molecular weight. This process is associated with non-linear gel and glass effects. For this purpose, an adaptive sampling technique is presented, which can select more samples around the regions where the values have a higher variation. Several machine learning methods are used for the modeling and their performance is compared: support vector machines, k-nearest neighbor, k-nearest neighbor and random forest, as well as an original algorithm, large margin nearest neighbor regression. The suggested method provides very good results compared to the other well-known regression algorithms.

Keywords: batch bulk methyl methacrylate polymerization, adaptive sampling, machine learning, large margin nearest neighbor regression

Procedia PDF Downloads 305
6117 Value Chain Network: A Social Network Analysis of the Value Chain Actors of Recycled Polymer Products in Lagos Metropolis, Nigeria

Authors: Olamide Shittu, Olayinka Akanle

Abstract:

Value Chain Analysis is a common method of examining the stages involved in the production of a product, mostly agricultural produce, from the input to the consumption stage including the actors involved in each stage. However, the Functional Institutional Analysis is the most common method in literature employed to analyze the value chain of products. Apart from studying the relatively neglected phenomenon of recycled polymer products in Lagos Metropolis, this paper adopted the use of social network analysis to attempt a grounded theory of the nature of social network that exists among the value chain actors of the subject matter. The study adopted a grounded theory approach by conducting in-depth interviews, administering questionnaires and conducting observations among the identified value chain actors of recycled polymer products in Lagos Metropolis, Nigeria. The thematic analysis of the collected data gave the researchers the needed background to formulate a truly representative network of the social relationships among the value chain actors of recycled polymer products in Lagos Metropolis. The paper introduced concepts such as Transient and Perennial Social Ties to explain the observed social relations among the actors. Some actors have more social capital than others as a result of the structural holes that exist in their triad network. Households and resource recoverers are at disadvantaged position in the network as they have high constraints in their relationships with other actors. The study attempted to provide a new perspective in the study of the environmental value chain by analyzing the network of actors to bring about policy action points and improve recycling in Nigeria. Government and social entrepreneurs can exploit the structural holes that exist in the network for the socio-economic and sustainable development of the state.

Keywords: recycled polymer products, social network analysis, social ties, value chain analysis

Procedia PDF Downloads 410
6116 3D Human Reconstruction over Cloud Based Image Data via AI and Machine Learning

Authors: Kaushik Sathupadi, Sandesh Achar

Abstract:

Human action recognition modeling is a critical task in machine learning. These systems require better techniques for recognizing body parts and selecting optimal features based on vision sensors to identify complex action patterns efficiently. Still, there is a considerable gap and challenges between images and videos, such as brightness, motion variation, and random clutters. This paper proposes a robust approach for classifying human actions over cloud-based image data. First, we apply pre-processing and detection, human and outer shape detection techniques. Next, we extract valuable information in terms of cues. We extract two distinct features: fuzzy local binary patterns and sequence representation. Then, we applied a greedy, randomized adaptive search procedure for data optimization and dimension reduction, and for classification, we used a random forest. We tested our model on two benchmark datasets, AAMAZ and the KTH Multi-view football datasets. Our HMR framework significantly outperforms the other state-of-the-art approaches and achieves a better recognition rate of 91% and 89.6% over the AAMAZ and KTH multi-view football datasets, respectively.

Keywords: computer vision, human motion analysis, random forest, machine learning

Procedia PDF Downloads 39
6115 Periodic Change in the Earth’s Rotation Velocity

Authors: Sung Duk Kim, Kwan U. Kim, Jin Sim, Ryong Jin Jang

Abstract:

The phenomenon of seasonal variations in the Earth’s rotation velocity was discovered in the 1930s when a crystal clock was developed and analyzed in a quantitative way for the first time between 1955 and 1968 when observation data of the seasonal variations was analyzed by an atomic clock. According to the previous investigation, atmospheric circulation is supposed to be a factor affecting the seasonal variations in the Earth’s rotation velocity in many cases, but the problem has not been solved yet. In order to solve the problem, it is necessary to apply dynamics to consider the Earth’s spatial motion, rotation, and change of shape of the Earth (movement of materials in and out of the Earth and change of the Earth’s figure) at the same time and in interrelation to the accuracy of post-Newtonian approximation regarding the Earth body as a system of mass points because the stability of the Earth’s rotation angular velocity is in the range of 10⁻⁸~10⁻⁹. For it, the equation was derived, which can consider the 3 kinds of motion above mentioned at the same time by taking the effect of the resultant external force on the Earth’s rotation into account in a relativistic way to the accuracy of post-Newtonian approximation. Therefore, the equation has been solved to obtain the theoretical values of periodic change in the Earth’s rotation velocity, and they have been compared with the astronomical observation data so to reveal the cause for the periodic change in the Earth’s rotation velocity.

Keywords: Earth rotation, moment function, periodic change, seasonal variation, relativistic change

Procedia PDF Downloads 73
6114 Forecasting Thermal Energy Demand in District Heating and Cooling Systems Using Long Short-Term Memory Neural Networks

Authors: Kostas Kouvaris, Anastasia Eleftheriou, Georgios A. Sarantitis, Apostolos Chondronasios

Abstract:

To achieve the objective of almost zero carbon energy solutions by 2050, the EU needs to accelerate the development of integrated, highly efficient and environmentally friendly solutions. In this direction, district heating and cooling (DHC) emerges as a viable and more efficient alternative to conventional, decentralized heating and cooling systems, enabling a combination of more efficient renewable and competitive energy supplies. In this paper, we develop a forecasting tool for near real-time local weather and thermal energy demand predictions for an entire DHC network. In this fashion, we are able to extend the functionality and to improve the energy efficiency of the DHC network by predicting and adjusting the heat load that is distributed from the heat generation plant to the connected buildings by the heat pipe network. Two case-studies are considered; one for Vransko, Slovenia and one for Montpellier, France. The data consists of i) local weather data, such as humidity, temperature, and precipitation, ii) weather forecast data, such as the outdoor temperature and iii) DHC operational parameters, such as the mass flow rate, supply and return temperature. The external temperature is found to be the most important energy-related variable for space conditioning, and thus it is used as an external parameter for the energy demand models. For the development of the forecasting tool, we use state-of-the-art deep neural networks and more specifically, recurrent networks with long-short-term memory cells, which are able to capture complex non-linear relations among temporal variables. Firstly, we develop models to forecast outdoor temperatures for the next 24 hours using local weather data for each case-study. Subsequently, we develop models to forecast thermal demand for the same period, taking under consideration past energy demand values as well as the predicted temperature values from the weather forecasting models. The contributions to the scientific and industrial community are three-fold, and the empirical results are highly encouraging. First, we are able to predict future thermal demand levels for the two locations under consideration with minimal errors. Second, we examine the impact of the outdoor temperature on the predictive ability of the models and how the accuracy of the energy demand forecasts decreases with the forecast horizon. Third, we extend the relevant literature with a new dataset of thermal demand and examine the performance and applicability of machine learning techniques to solve real-world problems. Overall, the solution proposed in this paper is in accordance with EU targets, providing an automated smart energy management system, decreasing human errors and reducing excessive energy production.

Keywords: machine learning, LSTMs, district heating and cooling system, thermal demand

Procedia PDF Downloads 142
6113 Stimulus-Dependent Polyrhythms of Central Pattern Generator Hardware

Authors: Le Zhao, Alain Nogaret

Abstract:

We have built universal Central Pattern Generator (CPG) hardware by interconnecting Hodgkin-Huxley neurons with reciprocally inhibitory synapses. We investigate the dynamics of neuron oscillations as a function of the time delay between current steps applied to individual neurons. We demonstrate stimulus dependent switching between spiking polyrhythms and map the phase portraits of the neuron oscillations to reveal the basins of attraction of the system. We experimentally study the dependence of the attraction basins on the network parameters: the neuron response time and the strength of inhibitory connections.

Keywords: central pattern generator, winnerless competition principle, artificial neural networks, synapses

Procedia PDF Downloads 475
6112 Statistical Models and Time Series Forecasting on Crime Data in Nepal

Authors: Dila Ram Bhandari

Abstract:

Throughout the 20th century, new governments were created where identities such as ethnic, religious, linguistic, caste, communal, tribal, and others played a part in the development of constitutions and the legal system of victim and criminal justice. Acute issues with extremism, poverty, environmental degradation, cybercrimes, human rights violations, crime against, and victimization of both individuals and groups have recently plagued South Asian nations. Everyday massive number of crimes are steadfast, these frequent crimes have made the lives of common citizens restless. Crimes are one of the major threats to society and also for civilization. Crime is a bone of contention that can create a societal disturbance. The old-style crime solving practices are unable to live up to the requirement of existing crime situations. Crime analysis is one of the most important activities of the majority of intelligent and law enforcement organizations all over the world. The South Asia region lacks such a regional coordination mechanism, unlike central Asia of Asia Pacific regions, to facilitate criminal intelligence sharing and operational coordination related to organized crime, including illicit drug trafficking and money laundering. There have been numerous conversations in recent years about using data mining technology to combat crime and terrorism. The Data Detective program from Sentient as a software company, uses data mining techniques to support the police (Sentient, 2017). The goals of this internship are to test out several predictive model solutions and choose the most effective and promising one. First, extensive literature reviews on data mining, crime analysis, and crime data mining were conducted. Sentient offered a 7-year archive of crime statistics that were daily aggregated to produce a univariate dataset. Moreover, a daily incidence type aggregation was performed to produce a multivariate dataset. Each solution's forecast period lasted seven days. Statistical models and neural network models were the two main groups into which the experiments were split. For the crime data, neural networks fared better than statistical models. This study gives a general review of the applied statistics and neural network models. A detailed image of each model's performance on the available data and generalizability is provided by a comparative analysis of all the models on a comparable dataset. Obviously, the studies demonstrated that, in comparison to other models, Gated Recurrent Units (GRU) produced greater prediction. The crime records of 2005-2019 which was collected from Nepal Police headquarter and analysed by R programming. In conclusion, gated recurrent unit implementation could give benefit to police in predicting crime. Hence, time series analysis using GRU could be a prospective additional feature in Data Detective.

Keywords: time series analysis, forecasting, ARIMA, machine learning

Procedia PDF Downloads 164
6111 Space Time Adaptive Algorithm in Bi-Static Passive Radar Systems for Clutter Mitigation

Authors: D. Venu, N. V. Koteswara Rao

Abstract:

Space – time adaptive processing (STAP) is an effective tool for detecting a moving target in spaceborne or airborne radar systems. Since airborne passive radar systems utilize broadcast, navigation and excellent communication signals to perform various surveillance tasks and also has attracted significant interest from the distinct past, therefore the need of the hour is to have cost effective systems as compared to conventional active radar systems. Moreover, requirements of small number of secondary samples for effective clutter suppression in bi-static passive radar offer abundant illuminator resources for passive surveillance radar systems. This paper presents a framework for incorporating knowledge sources directly in the space-time beam former of airborne adaptive radars. STAP algorithm for clutter mitigation for passive bi-static radar has better quantitation of the reduction in sample size thereby amalgamating the earlier data bank with existing radar data sets. Also, we proposed a novel method to estimate the clutter matrix and perform STAP for efficient clutter suppression based on small sample size. Furthermore, the effectiveness of the proposed algorithm is verified using MATLAB simulations in order to validate STAP algorithm for passive bi-static radar. In conclusion, this study highlights the importance for various applications which augments traditional active radars using cost-effective measures.

Keywords: bistatic radar, clutter, covariance matrix passive radar, STAP

Procedia PDF Downloads 296
6110 A Study of Recent Contribution on Simulation Tools for Network-on-Chip

Authors: Muthana Saleh Alalaki, Michael Opoku Agyeman

Abstract:

The growth in the number of Intellectual Properties (IPs) or the number of cores on the same chip becomes a critical issue in System-on-Chip (SoC) due to the intra-communication problem between the chip elements. As a result, Network-on-Chip (NoC) has emerged as a system architecture to overcome intra-communication issues. This paper presents a study of recent contributions on simulation tools for NoC. Furthermore, an overview of NoC is covered as well as a comparison between some NoC simulators to help facilitate research in on-chip communication.

Keywords: WiNoC, simulation tool, network-on-chip, SoC

Procedia PDF Downloads 498
6109 The Road Ahead: Merging Human Cyber Security Expertise with Generative AI

Authors: Brennan Lodge

Abstract:

Amidst a complex regulatory landscape, Retrieval Augmented Generation (RAG) emerges as a transformative tool for Governance Risk and Compliance (GRC) officers. This paper details the application of RAG in synthesizing Large Language Models (LLMs) with external knowledge bases, offering GRC professionals an advanced means to adapt to rapid changes in compliance requirements. While the development for standalone LLM’s (Large Language Models) is exciting, such models do have their downsides. LLM’s cannot easily expand or revise their memory, and they can’t straightforwardly provide insight into their predictions, and may produce “hallucinations.” Leveraging a pre-trained seq2seq transformer and a dense vector index of domain-specific data, this approach integrates real-time data retrieval into the generative process, enabling gap analysis and the dynamic generation of compliance and risk management content. We delve into the mechanics of RAG, focusing on its dual structure that pairs parametric knowledge contained within the transformer model with non-parametric data extracted from an updatable corpus. This hybrid model enhances decision-making through context-rich insights, drawing from the most current and relevant information, thereby enabling GRC officers to maintain a proactive compliance stance. Our methodology aligns with the latest advances in neural network fine-tuning, providing a granular, token-level application of retrieved information to inform and generate compliance narratives. By employing RAG, we exhibit a scalable solution that can adapt to novel regulatory challenges and cybersecurity threats, offering GRC officers a robust, predictive tool that augments their expertise. The granular application of RAG’s dual structure not only improves compliance and risk management protocols but also informs the development of compliance narratives with pinpoint accuracy. It underscores AI’s emerging role in strategic risk mitigation and proactive policy formation, positioning GRC officers to anticipate and navigate the complexities of regulatory evolution confidently.

Keywords: cybersecurity, gen AI, retrieval augmented generation, cybersecurity defense strategies

Procedia PDF Downloads 95
6108 Naturalistic Neuroimaging: From Film to Learning Disorders

Authors: Asha Dukkipati

Abstract:

Cognitive neuroscience explores neural functioning and aberrant brain activity during cognitive and perceptual tasks. Neurocinematics is a subfield of cognitive neuroscience that observes neural responses of individuals watching a film to see similarities and differences between individuals. This method is typically used for commercial use, allowing directors and filmmakers to produce better visuals and increasing their results in the box office. However, neurocinematics is increasingly becoming a common tool for neuroscientists interested in studying similar patterns of brain activity across viewers outside of the film industry. In this review, it argue that neurocinematics provides an easy, naturalistic approach for studying and diagnosing learning disorders. While the neural underpinnings of developmental learning disorders are traditionally assessed with well-established methods like EEG and fMRI that target particular cognitive domains, such as simple visual and attention tasks, there is initial evidence and theoretical background in support of neurocinematics as a biomarker for learning differences. By using ADHD, dyslexia, and autism as case studies, this literature review discusses the potential advantages of neurocinematics as a new tool for learning disorders research.

Keywords: behavioral and social sciences, neuroscience, neurocinematics, biomarkers, neurobehavioral disorders

Procedia PDF Downloads 96
6107 The Use of Network Theory in Heritage Cities

Authors: J. L. Oliver, T. Agryzkov, L. Tortosa, J. Vicent, J. Santacruz

Abstract:

This paper aims to demonstrate how the use of Network Theory can be applied to a very interesting and complex urban situation: The parts of a city which may have some patrimonial value, but because of their lack of relevant architectural elements, they are not considered to be historic in a conventional sense. In this paper, we use the suburb of La Villaflora in the city of Quito, Ecuador as our case study. We first propose a system of indicators as a tool to characterize and quantify the historic value of a geographic area. Then, we apply these indicators to the suburb of La Villaflora and use Network Theory to understand and propose actions.

Keywords: graphs, mathematics, networks, urban studies

Procedia PDF Downloads 369
6106 Coverage Probability Analysis of WiMAX Network under Additive White Gaussian Noise and Predicted Empirical Path Loss Model

Authors: Chaudhuri Manoj Kumar Swain, Susmita Das

Abstract:

This paper explores a detailed procedure of predicting a path loss (PL) model and its application in estimating the coverage probability in a WiMAX network. For this a hybrid approach is followed in predicting an empirical PL model of a 2.65 GHz WiMAX network deployed in a suburban environment. Data collection, statistical analysis, and regression analysis are the phases of operations incorporated in this approach and the importance of each of these phases has been discussed properly. The procedure of collecting data such as received signal strength indicator (RSSI) through experimental set up is demonstrated. From the collected data set, empirical PL and RSSI models are predicted with regression technique. Furthermore, with the aid of the predicted PL model, essential parameters such as PL exponent as well as the coverage probability of the network are evaluated. This research work may assist in the process of deployment and optimisation of any cellular network significantly.

Keywords: WiMAX, RSSI, path loss, coverage probability, regression analysis

Procedia PDF Downloads 177
6105 Aerodynamic Modeling Using Flight Data at High Angle of Attack

Authors: Rakesh Kumar, A. K. Ghosh

Abstract:

The paper presents the modeling of linear and nonlinear longitudinal aerodynamics using real flight data of Hansa-3 aircraft gathered at low and high angles of attack. The Neural-Gauss-Newton (NGN) method has been applied to model the linear and nonlinear longitudinal dynamics and estimate parameters from flight data. Unsteady aerodynamics due to flow separation at high angles of attack near stall has been included in the aerodynamic model using Kirchhoff’s quasi-steady stall model. NGN method is an algorithm that utilizes Feed Forward Neural Network (FFNN) and Gauss-Newton optimization to estimate the parameters and it does not require any a priori postulation of mathematical model or solving of equations of motion. NGN method was validated on real flight data generated at moderate angles of attack before application to the data at high angles of attack. The estimates obtained from compatible flight data using NGN method were validated by comparing with wind tunnel values and the maximum likelihood estimates. Validation was also carried out by comparing the response of measured motion variables with the response generated by using estimates a different control input. Next, NGN method was applied to real flight data generated by executing a well-designed quasi-steady stall maneuver. The results obtained in terms of stall characteristics and aerodynamic parameters were encouraging and reasonably accurate to establish NGN as a method for modeling nonlinear aerodynamics from real flight data at high angles of attack.

Keywords: parameter estimation, NGN method, linear and nonlinear, aerodynamic modeling

Procedia PDF Downloads 446
6104 The Need for a More Robust Legal Framework to Curb the Rise in Violence against Game Officials

Authors: A. Roomy

Abstract:

The dramatic rise in violence against game officials has affected all levels of sports including recreational, amateur, and professional sports. One way to combat this rise in violence is through the creation of laws specifically aimed at preventing and punishing this kind of violence. This paper will use related legal cases as a starting point to explore possible ways of better protecting the safety of game officials. It will do this by looking at relevant cases, related legal issues, and two specific ways of reducing violence against game officials. In closing, it will be argued that there needs to be a more robust legal approach with emphasis on criminal and civil penalties for assault and battery, and a more comprehensive social approach with emphasis on raising social awareness on the need to protect game officials from violence.

Keywords: game officials, legal issues, safety, violence

Procedia PDF Downloads 374
6103 Secure Network Coding-Based Named Data Network Mutual Anonymity Transfer Protocol

Authors: Tao Feng, Fei Xing, Ye Lu, Jun Li Fang

Abstract:

NDN is a kind of future Internet architecture. Due to the NDN design introduces four privacy challenges,Many research institutions began to care about the privacy issues of naming data network(NDN).In this paper, we are in view of the major NDN’s privacy issues to investigate privacy protection,then put forwards more effectively anonymous transfer policy for NDN.Firstly,based on mutual anonymity communication for MP2P networks,we propose NDN mutual anonymity protocol.Secondly,we add interest package authentication mechanism in the protocol and encrypt the coding coefficient, security of this protocol is improved by this way.Finally, we proof the proposed anonymous transfer protocol security and anonymity.

Keywords: NDN, mutual anonymity, anonymous routing, network coding, authentication mechanism

Procedia PDF Downloads 451
6102 Optimization of Thermopile Sensor Performance of Polycrystalline Silicon Film

Authors: Li Long, Thomas Ortlepp

Abstract:

A theoretical model for the optimization of thermopile sensor performance is developed for thermoelectric-based infrared radiation detection. It is shown that the performance of polycrystalline silicon film thermopile sensor can be optimized according to the thermoelectric quality factor, sensor layer structure factor, and sensor layout geometrical form factor. Based on the properties of electrons, phonons, grain boundaries, and their interactions, the thermoelectric quality factor of polycrystalline silicon is analyzed with the relaxation time approximation of the Boltzmann transport equation. The model includes the effect of grain structure, grain boundary trap properties, and doping concentration. The layer structure factor is analyzed with respect to the infrared absorption coefficient. The optimization of layout design is characterized by the form factor, which is calculated for different sensor designs. A double-layer polycrystalline silicon thermopile infrared sensor on a suspended membrane has been designed and fabricated with a CMOS-compatible process. The theoretical approach is confirmed by measurement results.

Keywords: polycrystalline silicon, relaxation time approximation, specific detectivity, thermal conductivity, thermopile infrared sensor

Procedia PDF Downloads 140
6101 Real-Time Network Anomaly Detection Systems Based on Machine-Learning Algorithms

Authors: Zahra Ramezanpanah, Joachim Carvallo, Aurelien Rodriguez

Abstract:

This paper aims to detect anomalies in streaming data using machine learning algorithms. In this regard, we designed two separate pipelines and evaluated the effectiveness of each separately. The first pipeline, based on supervised machine learning methods, consists of two phases. In the first phase, we trained several supervised models using the UNSW-NB15 data-set. We measured the efficiency of each using different performance metrics and selected the best model for the second phase. At the beginning of the second phase, we first, using Argus Server, sniffed a local area network. Several types of attacks were simulated and then sent the sniffed data to a running algorithm at short intervals. This algorithm can display the results of each packet of received data in real-time using the trained model. The second pipeline presented in this paper is based on unsupervised algorithms, in which a Temporal Graph Network (TGN) is used to monitor a local network. The TGN is trained to predict the probability of future states of the network based on its past behavior. Our contribution in this section is introducing an indicator to identify anomalies from these predicted probabilities.

Keywords: temporal graph network, anomaly detection, cyber security, IDS

Procedia PDF Downloads 103
6100 Comparison of Crossover Types to Obtain Optimal Queries Using Adaptive Genetic Algorithm

Authors: Wafa’ Alma'Aitah, Khaled Almakadmeh

Abstract:

this study presents an information retrieval system of using genetic algorithm to increase information retrieval efficiency. Using vector space model, information retrieval is based on the similarity measurement between query and documents. Documents with high similarity to query are judge more relevant to the query and should be retrieved first. Using genetic algorithms, each query is represented by a chromosome; these chromosomes are fed into genetic operator process: selection, crossover, and mutation until an optimized query chromosome is obtained for document retrieval. Results show that information retrieval with adaptive crossover probability and single point type crossover and roulette wheel as selection type give the highest recall. The proposed approach is verified using (242) proceedings abstracts collected from the Saudi Arabian national conference.

Keywords: genetic algorithm, information retrieval, optimal queries, crossover

Procedia PDF Downloads 293
6099 A Secure Survey against Black Hole Attack in MANET

Authors: G. Usha, S. Kannimuthu, K. Mahalakshmi

Abstract:

Mobile Adhoc Network (MANET) is one of the most promising technologies that have applications ranging from various portable devices to military networks. MANET has no fixed infrastructure and the security of such network is a big concern. Therefore, in order to operate MANET’s securely, the misbehavior and intrusions should be detected before the attackers affect the network communication. In this article, we make a comprehensive survey against black hole attack that is a serious threat against MANET that exploits the routing behavior of the MANET. We have given broad survey solutions that detect black hole attacks in MANET. This is achieved by analyzing the techniques involved in detecting the attacks in each scheme. Furthermore, we examine about the challenges to the researchers for constructing an in-depth solution against black hole attack.

Keywords: AODV, cross layer security, mobile Adhoc network (MANET), packet delivery ratio, single layer security

Procedia PDF Downloads 406
6098 Simplified 3R2C Building Thermal Network Model: A Case Study

Authors: S. M. Mahbobur Rahman

Abstract:

Whole building energy simulation models are widely used for predicting future energy consumption, performance diagnosis and optimum control.  Black box building energy modeling approach has been heavily studied in the past decade. The thermal response of a building can also be modeled using a network of interconnected resistors (R) and capacitors (C) at each node called R-C network. In this study, a model building, Case 600, as described in the “Standard Method of Test for the Evaluation of Building Energy Analysis Computer Program”, ASHRAE standard 140, is studied along with a 3R2C thermal network model and the ASHRAE clear sky solar radiation model. Although building an energy model involves two important parts of building component i.e., the envelope and internal mass, the effect of building internal mass is not considered in this study. All the characteristic parameters of the building envelope are evaluated as on Case 600. Finally, monthly building energy consumption from the thermal network model is compared with a simple-box energy model within reasonable accuracy. From the results, 0.6-9.4% variation of monthly energy consumption is observed because of the south-facing windows.

Keywords: ASHRAE case study, clear sky solar radiation model, energy modeling, thermal network model

Procedia PDF Downloads 146
6097 Grid Based Traffic Vulnerability Model Using Betweenness Centrality for Urban Disaster Management Information

Authors: Okyu Kwon, Dongho Kang, Byungsik Kim, Seungkwon Jung

Abstract:

We propose a technique to measure the impact of loss of traffic function in a particular area to surrounding areas. The proposed method is applied to the city of Seoul, which is the capital of South Korea, with a population of about ten million. Based on the actual road network in Seoul, we construct an abstract road network between 1kmx1km grid cells. The link weight of the abstract road network is re-adjusted considering traffic volume measured at several survey points. On the modified abstract road network, we evaluate the traffic vulnerability by calculating a network measure of betweenness centrality (BC) for every single grid cells. This study analyzes traffic impacts caused by road dysfunction due to heavy rainfall in urban areas. We could see the change of the BC value in all other grid cells by calculating the BC value once again when the specific grid cell lost its traffic function, that is, when the node disappeared on the grid-based road network. The results show that it is appropriate to use the sum of the BC variation of other cells as the influence index of each lattice cell on traffic. This research was supported by a grant (2017-MOIS31-004) from Fundamental Technology Development Program for Extreme Disaster Response funded by Korean Ministry of Interior and Safety (MOIS).

Keywords: vulnerability, road network, beweenness centrality, heavy rainfall, road impact

Procedia PDF Downloads 95