Search results for: adaptive and non-adaptive spectral estimation
1857 Analysis of Interpolation Factor in Pulse Shaping Filter on MRC for CDMA 2000 Systems
Authors: Pankaj Verma, Gagandeep Singh Walia, Padma Devi, H. P. Singh
Abstract:
Code Division Multiple Access 2000 operates on various RF channel bandwidths 1.2288 or 3.6864 Mcps. CDMA offers high bandwidth and wireless broadband services but the efficiency gets decreased because of many interfering factors like fading, interference, scattering, diffraction, refraction, reflection etc. To reduce the spectral bandwidth is one of the major concerns in modern day technology and this is achieved by pulse shaping filter. This paper investigates the effect of diversity (MRC), interpolation factor in Root Raised Cosine (RRC) filter for the QPSK and BPSK modulation schemes. It is made possible to send information with minimum inter symbol interference and within limited bandwidth with proper pulse shaping technique. Bit error rate (BER) performance is analyzed by applying diversity technique by varying the interpolation factor for Binary Phase Shift Keying (BPSK) and Quadrature Phase Shift Keying (QPSK). Interpolation factor increases the original sampling rate of a sequence to a higher rate and reduces the interference and diversity reduces the fading.Keywords: CDMA2000, root raised cosine, roll off factor, ISI, diversity, interference, fading
Procedia PDF Downloads 4751856 Predatory Pricing at Services Markets: Incentives, Mechanisms, Standards of Proving, and Remedies
Authors: Mykola G. Boichuk
Abstract:
The paper concerns predatory pricing incentives and mechanisms in the markets of services, as well as its anti-competitive effects. As cost estimation at services markets is more complex in comparison to markets of goods, predatory pricing is more difficult to detect in the provision of services. For instance, this is often the case for professional services, which is analyzed in the paper. The special attention is given to employment markets as de-facto main supply markets for professional services markets. Also, the paper concerns such instances as travel agents' services, where predatory pricing may have implications not only on competition but on a wider range of public interest as well. Thus, the paper develops on effective ways to apply competition law rules on predatory pricing to the provision of services.Keywords: employment markets, predatory pricing, services markets, unfair competition
Procedia PDF Downloads 3261855 Service Life Prediction of Tunnel Structures Subjected to Water Seepage
Authors: Hassan Baji, Chun-Qing Li, Wei Yang
Abstract:
Water seepage is one of the most common causes of damage in tunnel structures, which can cause direct and indirect e.g. reinforcement corrosion and calcium leaching damages. Estimation of water seepage or inflow is one of the main challenges in probabilistic assessment of tunnels. The methodology proposed in this study is an attempt for mathematically modeling the water seepage in tunnel structures and further predicting its service life. Using the time-dependent reliability, water seepage is formulated as a failure mode, which can be used for prediction of service life. Application of the formulated seepage failure mode to a case study tunnel is presented.Keywords: water seepage, tunnels, time-dependent reliability, service life
Procedia PDF Downloads 4831854 An Application-Driven Procedure for Optimal Signal Digitization of Automotive-Grade Ultrasonic Sensors
Authors: Mohamed Shawki Elamir, Heinrich Gotzig, Raoul Zoellner, Patrick Maeder
Abstract:
In this work, a methodology is presented for identifying the optimal digitization parameters for the analog signal of ultrasonic sensors. These digitization parameters are the resolution of the analog to digital conversion and the sampling rate. This is accomplished through the derivation of characteristic curves based on Fano inequality and the calculation of the mutual information content over a given dataset. The mutual information is calculated between the examples in the dataset and the corresponding variation in the feature that needs to be estimated. The optimal parameters are identified in a manner that ensures optimal estimation performance while preventing inefficiency in using unnecessarily powerful analog to digital converters.Keywords: analog to digital conversion, digitization, sampling rate, ultrasonic
Procedia PDF Downloads 2071853 Create a Brand Value Assessment Model to Choosing a Cosmetic Brand in Tehran Combining DEMATEL Techniques and Multi-Stage ANFIS
Authors: Hamed Saremi, Suzan Taghavy, Seyed Mohammad Hanif Sanjari, Mostafa Kahali
Abstract:
One of the challenges in manufacturing and service companies to provide a product or service is recognized Brand to consumers in target markets. They provide most of their processes under the same capacity. But the constant threat of devastating internal and external resources to prevent a rise Brands and more companies are recognizing the stages are bankrupt. This paper has tried to identify and analyze effective indicators of brand equity and focuses on indicators and presents a model of intelligent create a model to prevent possible damage. In this study, the identified indicators of brand equity are based on literature study and according to expert opinions, set of indicators By techniques DEMATEL Then to used Multi-Step Adaptive Neural-Fuzzy Inference system (ANFIS) to design a multi-stage intelligent system for assessment of brand equity.Keywords: brand, cosmetic product, ANFIS, DEMATEL
Procedia PDF Downloads 4171852 Development of a Conceptual Framework for Supply Chain Management Strategies Maximizing Resilience in Volatile Business Environments: A Case of Ventilator Challenge UK
Authors: Elena Selezneva
Abstract:
Over the last two decades, an unprecedented growth in uncertainty and volatility in all aspects of the business environment has caused major global supply chain disruptions and malfunctions. The effects of one failed company in a supply chain can ripple up and down the chain, causing a number of entities or an entire supply chain to collapse. The complicating factor is that an increasingly unstable and unpredictable business environment fuels the growing complexity of global supply chain networks. That makes supply chain operations extremely unpredictable and hard to manage with the established methods and strategies. It has caused the premature demise of many companies around the globe as they could not withstand or adapt to the storm of change. Solutions to this problem are not easy to come by. There is a lack of new empirically tested theories and practically viable supply chain resilience strategies. The mainstream organizational approach to managing supply chain resilience is rooted in well-established theories developed in the 1960-1980s. However, their effectiveness is questionable in currently extremely volatile business environments. The systems thinking approach offers an alternative view of supply chain resilience. Still, it is very much in the development stage. The aim of this explorative research is to investigate supply chain management strategies that are successful in taming complexity in volatile business environments and creating resilience in supply chains. The design of this research methodology was guided by an interpretivist paradigm. A literature review informed the selection of the systems thinking approach to supply chain resilience. Therefore, an explorative single case study of Ventilator Challenge UK was selected as a case study for its extremely resilient performance of its supply chain during a period of national crisis. Ventilator Challenge UK is intensive care ventilators supply project for the NHS. It ran for 3.5 months and finished in 2020. The participants moved on with their lives, and most of them are not employed by the same organizations anymore. Therefore, the study data includes documents, historical interviews, live interviews with participants, and social media postings. The data analysis was accomplished in two stages. First, data were thematically analyzed. In the second stage, pattern matching and pattern identification were used to identify themes that formed the findings of the research. The findings from the Ventilator Challenge UK case study supply management practices demonstrated all the features of an adaptive dynamic system. They cover all the elements of supply chain and employ an entire arsenal of adaptive dynamic system strategies enabling supply chain resilience. Also, it is not a simple sum of parts and strategies. Bonding elements and connections between the components of a supply chain and its environment enabled the amplification of resilience in the form of systemic emergence. Enablers are categorized into three subsystems: supply chain central strategy, supply chain operations, and supply chain communications. Together, these subsystems and their interconnections form the resilient supply chain system framework conceptualized by the author.Keywords: enablers of supply chain resilience, supply chain resilience strategies, systemic approach in supply chain management, resilient supply chain system framework, ventilator challenge UK
Procedia PDF Downloads 811851 A Fuzzy Nonlinear Regression Model for Interval Type-2 Fuzzy Sets
Authors: O. Poleshchuk, E. Komarov
Abstract:
This paper presents a regression model for interval type-2 fuzzy sets based on the least squares estimation technique. Unknown coefficients are assumed to be triangular fuzzy numbers. The basic idea is to determine aggregation intervals for type-1 fuzzy sets, membership functions of whose are low membership function and upper membership function of interval type-2 fuzzy set. These aggregation intervals were called weighted intervals. Low and upper membership functions of input and output interval type-2 fuzzy sets for developed regression models are considered as piecewise linear functions.Keywords: interval type-2 fuzzy sets, fuzzy regression, weighted interval
Procedia PDF Downloads 3731850 Block Matching Based Stereo Correspondence for Depth Calculation
Authors: G. Balakrishnan
Abstract:
Stereo Correspondence plays a major role in estimation of distance of an object from the stereo camera pair for various applications. In this paper, a stereo correspondence algorithm based on block-matching technique is presented. Initially, an energy matrix is calculated for every disparity obtained using modified Sum of Absolute Difference (SAD). Higher energy matrix errors are removed by using threshold value in order to reduce the mismatch errors. A smoothening filter is applied to eliminate unreliable disparity estimate across the object boundaries. The purpose is to improve the reliability of calculation of disparity map. The experimental results obtained shows that the final depth map produce better results and can be used to all the applications using stereo cameras.Keywords: stereo matching, filters, energy matrix, disparity
Procedia PDF Downloads 2151849 Seasonal Variation in Aerosols Characteristics over Ahmedabad
Authors: Devansh Desai, Chamandeep Kaur, Nirmal Kullu, George Christopher
Abstract:
Study of aerosols has become very important tool in assuming the climatic changes over a region.Spectral and temporal variability’s in aerosol optical depth(AOD) and size distribution are investigated using ground base measurements over Ahmedabad during the months of January(2013) to may (2013). Angstrom coefficient (ἁ) was found to be higher in winter season (January to march) indicating the dominance of fine mode aerosol concentration over Ahmedabad, and the Angstrom coefficient (ἁ) was found to be lower indicating the dominance of coarse mode aerosol concentration over Ahmedabad. The different values of alpha are observed when calculated over different wavelength ranges indicating bimodal aerosol size distribution. Discrimination of aerosol size during different seasons is made using the coefficient of polynomial fit (ἁ1 and ἁ2) which shows the presence of changing dominant aerosol types as a function of season over Ahmedabad. The ἁ2- ἁ1 value is used to get the confirmation on the dominant aerosol mode over Ahmedabad in both seasons. During pre-monsoon about 90% of AOD spectra is dominated by coarse mode aerosols and during winter about 60% of AOD spectra is dominated by fine mode aerosols. This characterization of aerosols is important in assessing the response of different aerosols type in radiative forcing and over climate of Ahmedabad.Keywords: radiative forcing, aerosol optical depth, fine mode, coarse mode
Procedia PDF Downloads 5001848 Electro-Mechanical Response and Engineering Properties of Piezocomposite with Imperfect Interface
Authors: Rattanan Tippayaphalapholgul, Yasothorn Sapsathiarn
Abstract:
Composites of piezoelectric materials are widely use in practical applications such as nondestructive testing devices, smart adaptive structures and medical devices. A thorough understanding of coupled electro-elastic response and properties of piezocomposite are crucial for the development and design of piezoelectric composite materials used in advanced applications. The micromechanics analysis is employed in this paper to determine the response and engineering properties of the piezocomposite. A mechanical imperfect interface bonding between piezoelectric inclusion and polymer matrix is taken into consideration in the analysis. The micromechanics analysis is based on the Boundary Element Method (BEM) together with the periodic micro-field micromechanics theory. A selected set of numerical results is presented to investigate the influence of volume ratio and interface bonding condition on effective piezocomposite material coefficients and portray basic features of coupled electroelastic response within the domain of piezocomposite unit cell.Keywords: effective engineering properties, electroelastic response, imperfect interface, piezocomposite
Procedia PDF Downloads 2311847 Overcrowding and Adequate Housing: The Potential of Adaptability
Authors: Inês Ramalhete, Hugo Farias, Rui da Silva Pinto
Abstract:
Adequate housing has been a widely discussed theme in academic circles related to low-cost housing, whereas its physical features are easy to deal with, overcrowding (related to social, cultural and economic aspects) is still ambiguous, particularly regarding the set of indicators that can accurately reflect and measure it. This paper develops research on low-cost housing models for developing countries and what is the best method to embed overcrowding as an important parameter for adaptability. A critical review of international overcrowding indicators and their application in two developing countries, Cape Verde and Angola, is presented. The several rationales and the constraints for an accurate assessment of overcrowding are considered, namely baseline data (statistics), which can induce misjudgments, as well as social and cultural factors (such as personal choices of residents). This paper proposes a way to tackle overcrowding through housing adaptability, considering factors such as physical flexibility, functional ambiguity, and incremental expansion schemes. Moreover, a case-study is presented to establish a framework for the theoretical application of the proposed approach.Keywords: adaptive housing, low cost housing, overcrowding, housing model
Procedia PDF Downloads 1911846 Dynamic Store Procedures in Database
Authors: Muhammet Dursun Kaya, Hasan Asil
Abstract:
In recent years, different methods have been proposed to optimize question processing in database. Although different methods have been proposed to optimize the query, but the problem which exists here is that most of these methods destroy the query execution plan after executing the query. This research attempts to solve the above problem by using a combination of methods of communicating with the database (the present questions in the programming code and using store procedures) and making query processing adaptive in database, and proposing a new approach for optimization of query processing by introducing the idea of dynamic store procedures. This research creates dynamic store procedures in the database according to the proposed algorithm. This method has been tested on applied software and results shows a significant improvement in reducing the query processing time and also reducing the workload of DBMS. Other advantages of this algorithm include: making the programming environment a single environment, eliminating the parametric limitations of the stored procedures in the database, making the stored procedures in the database dynamic, etc.Keywords: relational database, agent, query processing, adaptable, communication with the database
Procedia PDF Downloads 3721845 Heterogeneous Intelligence Traders and Market Efficiency: New Evidence from Computational Approach in Artificial Stock Markets
Authors: Yosra Mefteh Rekik
Abstract:
A computational agent-based model of financial markets stresses interactions and dynamics among a very diverse set of traders. The growing body of research in this area relies heavily on computational tools which by-pass the restrictions of an analytical method. The main goal of this research is to understand how the stock market operates and behaves how to invest in the stock market and to study traders’ behavior within the context of the artificial stock markets populated by heterogeneous agents. All agents are characterized by adaptive learning behavior represented by the Artificial Neuron Networks. By using agent-based simulations on artificial market, we show that the existence of heterogeneous agents can explain the price dynamics in the financial market. We investigate the relation between market diversity and market efficiency. Our empirical findings demonstrate that greater market heterogeneity play key roles in market efficiency.Keywords: agent-based modeling, artificial stock market, heterogeneous expectations, financial stylized facts, computational finance
Procedia PDF Downloads 4381844 Gene Prediction in DNA Sequences Using an Ensemble Algorithm Based on Goertzel Algorithm and Anti-Notch Filter
Authors: Hamidreza Saberkari, Mousa Shamsi, Hossein Ahmadi, Saeed Vaali, , MohammadHossein Sedaaghi
Abstract:
In the recent years, using signal processing tools for accurate identification of the protein coding regions has become a challenge in bioinformatics. Most of the genomic signal processing methods is based on the period-3 characteristics of the nucleoids in DNA strands and consequently, spectral analysis is applied to the numerical sequences of DNA to find the location of periodical components. In this paper, a novel ensemble algorithm for gene selection in DNA sequences has been presented which is based on the combination of Goertzel algorithm and anti-notch filter (ANF). The proposed algorithm has many advantages when compared to other conventional methods. Firstly, it leads to identify the coding protein regions more accurate due to using the Goertzel algorithm which is tuned at the desired frequency. Secondly, faster detection time is achieved. The proposed algorithm is applied on several genes, including genes available in databases BG570 and HMR195 and their results are compared to other methods based on the nucleotide level evaluation criteria. Implementation results show the excellent performance of the proposed algorithm in identifying protein coding regions, specifically in identification of small-scale gene areas.Keywords: protein coding regions, period-3, anti-notch filter, Goertzel algorithm
Procedia PDF Downloads 3871843 Estimation of Sediment Transport into a Reservoir Dam
Authors: Kiyoumars Roushangar, Saeid Sadaghian
Abstract:
Although accurate sediment load prediction is very important in planning, designing, operating and maintenance of water resources structures, the transport mechanism is complex, and the deterministic transport models are based on simplifying assumptions often lead to large prediction errors. In this research, firstly, two intelligent ANN methods, Radial Basis and General Regression Neural Networks, are adopted to model of total sediment load transport into Madani Dam reservoir (north of Iran) using the measured data and then applicability of the sediment transport methods developed by Engelund and Hansen, Ackers and White, Yang, and Toffaleti for predicting of sediment load discharge are evaluated. Based on comparison of the results, it is found that the GRNN model gives better estimates than the sediment rating curve and mentioned classic methods.Keywords: sediment transport, dam reservoir, RBF, GRNN, prediction
Procedia PDF Downloads 4961842 Identifying Protein-Coding and Non-Coding Regions in Transcriptomes
Authors: Angela U. Makolo
Abstract:
Protein-coding and Non-coding regions determine the biology of a sequenced transcriptome. Research advances have shown that Non-coding regions are important in disease progression and clinical diagnosis. Existing bioinformatics tools have been targeted towards Protein-coding regions alone. Therefore, there are challenges associated with gaining biological insights from transcriptome sequence data. These tools are also limited to computationally intensive sequence alignment, which is inadequate and less accurate to identify both Protein-coding and Non-coding regions. Alignment-free techniques can overcome the limitation of identifying both regions. Therefore, this study was designed to develop an efficient sequence alignment-free model for identifying both Protein-coding and Non-coding regions in sequenced transcriptomes. Feature grouping and randomization procedures were applied to the input transcriptomes (37,503 data points). Successive iterations were carried out to compute the gradient vector that converged the developed Protein-coding and Non-coding Region Identifier (PNRI) model to the approximate coefficient vector. The logistic regression algorithm was used with a sigmoid activation function. A parameter vector was estimated for every sample in 37,503 data points in a bid to reduce the generalization error and cost. Maximum Likelihood Estimation (MLE) was used for parameter estimation by taking the log-likelihood of six features and combining them into a summation function. Dynamic thresholding was used to classify the Protein-coding and Non-coding regions, and the Receiver Operating Characteristic (ROC) curve was determined. The generalization performance of PNRI was determined in terms of F1 score, accuracy, sensitivity, and specificity. The average generalization performance of PNRI was determined using a benchmark of multi-species organisms. The generalization error for identifying Protein-coding and Non-coding regions decreased from 0.514 to 0.508 and to 0.378, respectively, after three iterations. The cost (difference between the predicted and the actual outcome) also decreased from 1.446 to 0.842 and to 0.718, respectively, for the first, second and third iterations. The iterations terminated at the 390th epoch, having an error of 0.036 and a cost of 0.316. The computed elements of the parameter vector that maximized the objective function were 0.043, 0.519, 0.715, 0.878, 1.157, and 2.575. The PNRI gave an ROC of 0.97, indicating an improved predictive ability. The PNRI identified both Protein-coding and Non-coding regions with an F1 score of 0.970, accuracy (0.969), sensitivity (0.966), and specificity of 0.973. Using 13 non-human multi-species model organisms, the average generalization performance of the traditional method was 74.4%, while that of the developed model was 85.2%, thereby making the developed model better in the identification of Protein-coding and Non-coding regions in transcriptomes. The developed Protein-coding and Non-coding region identifier model efficiently identified the Protein-coding and Non-coding transcriptomic regions. It could be used in genome annotation and in the analysis of transcriptomes.Keywords: sequence alignment-free model, dynamic thresholding classification, input randomization, genome annotation
Procedia PDF Downloads 681841 Detection and Quantification of Active Pharmaceutical Ingredients as Adulterants in Garcinia cambogia Slimming Preparations Using NIR Spectroscopy Combined with Chemometrics
Authors: Dina Ahmed Selim, Eman Shawky Anwar, Rasha Mohamed Abu El-Khair
Abstract:
A rapid, simple and efficient method with minimal sample treatment was developed for authentication of Garcinia cambogia fruit peel powder, along with determining undeclared active pharmaceutical ingredients (APIs) in its herbal slimming dietary supplements using near infrared spectroscopy combined with chemometrics. Five featured adulterants, including sibutramine, metformin, orlistat, ephedrine, and theophylline are selected as target compounds. The Near infrared spectral data matrix of authentic Garcinia cambogia fruit peel and specimens degraded by intentional contamination with the five selected APIs was subjected to hierarchical clustering analysis to investigate their bundling figure. SIMCA models were established to ensure the genuiness of Garcinia cambogia fruit peel which resulted in perfect classification of all tested specimens. Adulterated samples were utilized for construction of PLSR models based on different APIs contents at minute levels of fraud practices (LOQ < 0.2% w/w).The suggested approach can be applied to enhance and guarantee the safety and quality of Garcinia fruit peel powder as raw material and in dietary supplements.Keywords: Garcinia cambogia, Quality control, NIR spectroscopy, Chemometrics
Procedia PDF Downloads 771840 Differentiation between Different Rangeland Sites Using Principal Component Analysis in Semi-Arid Areas of Sudan
Authors: Nancy Ibrahim Abdalla, Abdelaziz Karamalla Gaiballa
Abstract:
Rangelands in semi-arid areas provide a good source for feeding huge numbers of animals and serving environmental, economic and social importance; therefore, these areas are considered economically very important for the pastoral sector in Sudan. This paper investigates the means of differentiating between different rangelands sites according to soil types using principal component analysis to assist in monitoring and assessment purposes. Three rangeland sites were identified in the study area as flat sandy sites, sand dune site, and hard clay site. Principal component analysis (PCA) was used to reduce the number of factors needed to distinguish between rangeland sites and produce a new set of data including the most useful spectral information to run satellite image processing. It was performed using selected types of data (two vegetation indices, topographic data and vegetation surface reflectance within the three bands of MODIS data). Analysis with PCA indicated that there is a relatively high correspondence between vegetation and soil of the total variance in the data set. The results showed that the use of the principal component analysis (PCA) with the selected variables showed a high difference, reflected in the variance and eigenvalues and it can be used for differentiation between different range sites.Keywords: principal component analysis, PCA, rangeland sites, semi-arid areas, soil types
Procedia PDF Downloads 1861839 Automatic Method for Exudates and Hemorrhages Detection from Fundus Retinal Images
Authors: A. Biran, P. Sobhe Bidari, K. Raahemifar
Abstract:
Diabetic Retinopathy (DR) is an eye disease that leads to blindness. The earliest signs of DR are the appearance of red and yellow lesions on the retina called hemorrhages and exudates. Early diagnosis of DR prevents from blindness; hence, many automated algorithms have been proposed to extract hemorrhages and exudates. In this paper, an automated algorithm is presented to extract hemorrhages and exudates separately from retinal fundus images using different image processing techniques including Circular Hough Transform (CHT), Contrast Limited Adaptive Histogram Equalization (CLAHE), Gabor filter and thresholding. Since Optic Disc is the same color as the exudates, it is first localized and detected. The presented method has been tested on fundus images from Structured Analysis of the Retina (STARE) and Digital Retinal Images for Vessel Extraction (DRIVE) databases by using MATLAB codes. The results show that this method is perfectly capable of detecting hard exudates and the highly probable soft exudates. It is also capable of detecting the hemorrhages and distinguishing them from blood vessels.Keywords: diabetic retinopathy, fundus, CHT, exudates, hemorrhages
Procedia PDF Downloads 2721838 Solar Wind Turbulence and the Role of Circularly Polarized Dispersive Alfvén Wave
Authors: Swati Sharma, R. P. Sharma
Abstract:
We intend to study the nonlinear evolution of the parallel propagating finite frequency Alfvén wave (also called Dispersive Alfvén wave/Hall MHD wave) propagating in the solar wind regime of the solar region when a perpendicularly propagating magnetosonic wave is present in the background. The finite frequency Alfvén wave behaves differently from the usual non-dispersive behavior of the Alfvén wave. To study the nonlinear processes (such as filamentation) taking place in the solar regions such as solar wind, the dynamical equation of both the waves are derived. Numerical simulation involving finite difference method for the time domain and pseudo spectral method for the spatial domain is then performed to analyze the transient evolution of these waves. The power spectra of the Dispersive Alfvén wave is also investigated. The power spectra shows the distribution of the magnetic field intensity of the Dispersive Alfvén wave over different wave numbers. For DAW the spectra shows a steepening for scales larger than the proton inertial length. This means that the wave energy gets transferred to the solar wind particles as the wave reaches higher wave numbers. This steepening of the power spectra can be explained on account of the finite frequency of the Alfvén wave. The obtained results are consistent with the observations made by CLUSTER spacecraft.Keywords: solar wind, turbulence, dispersive alfven wave
Procedia PDF Downloads 6011837 Statistical Estimation of Ionospheric Energy Dissipation Using ØStgaard's Empirical Relation
Authors: M. A. Ahmadu, S. S. Rabia
Abstract:
During the past few decades, energy dissipation in the ionosphere resulting from the geomagnetic activity has caused an increasing number of major disruptions of important power and communication services, malfunctions and loss of expensive facilities. Here, the electron precipitation energy, w(ep) and joule heating energy, w(jh) was used in the computation of this dissipation using Østgaard’s empirical relation from hourly geomagnetic indices of 2012, under the assumption that the magnetosphere does not store any energy, so that at the beginning of the activity t1=0 and end at t2=t, the statistical results obtained show that ionospheric dissipation varies month to month, day to day and hour to hour and estimated with a value ~3.6 w(ep), which is in agreement with experimental result.Keywords: Ostgaard's, ionospheric dissipation, joule heating, electron precipitation, geomagnetic indices, empirical relation
Procedia PDF Downloads 2941836 Comparison of Seismic Response for Two RC Curved Bridges with Different Column Shapes
Authors: Nina N. Serdar, Jelena R. Pejović
Abstract:
This paper presents seismic risk assessment of two bridge structure, based on the probabilistic performance-based seismic assessment methodology. Both investigated bridges are tree span continuous RC curved bridges with the difference in column shapes. First bridge (type A) has a wall-type pier and second (type B) has a two-column bent with circular columns. Bridges are designed according to European standards: EN 1991-2, EN1992-1-1 and EN 1998-2. Aim of the performed analysis is to compare seismic behavior of these two structures and to detect the influence of column shapes on the seismic response. Seismic risk assessment is carried out by obtaining demand fragility curves. Non-linear model was constructed and time-history analysis was performed using thirty five pairs of horizontal ground motions selected to match site specific hazard. In performance based analysis, peak column drift ratio (CDR) was selected as engineering demand parameter (EDP). For seismic intensity measure (IM) spectral displacement was selected. Demand fragility curves that give probability of exceedance of certain value for chosen EDP were constructed and based on them conclusions were made.Keywords: RC curved bridge, demand fragility curve, wall type column, nonlinear time-history analysis, circular column
Procedia PDF Downloads 3411835 Numerical Analysis on Triceratops Restraining System: Failure Conditions of Tethers
Authors: Srinivasan Chandrasekaran, Manda Hari Venkata Ramachandra Rao
Abstract:
Increase in the oil and gas exploration in ultra deep-water demands an adaptive structural form of the platform. Triceratops has superior motion characteristics compared to that of the Tension Leg Platform and Single Point Anchor Reservoir platforms, which is well established in the literature. Buoyant legs that support the deck are position-restrained to the sea bed using tethers with high axial pretension. Environmental forces that act on the platform induce dynamic tension variations in the tethers, causing the failure of tethers. The present study investigates the dynamic response behavior of the restraining system of the platform under the failure of a single tether of each buoyant leg in high sea states. Using the rain-flow counting algorithm and the Goodman diagram, fatigue damage caused to the tethers is estimated, and the fatigue life is predicted. Results shows that under failure conditions, the fatigue life of the remaining tethers is quite alarmingly low.Keywords: fatigue life, pm spectrum, rain flow counting, triceratops, failure analysis
Procedia PDF Downloads 1351834 An Effective Noise Resistant Frequency Modulation Continuous-Wave Radar Vital Sign Signal Detection Method
Authors: Lu Yang, Meiyang Song, Xiang Yu, Wenhao Zhou, Chuntao Feng
Abstract:
To address the problem that the FM continuous-wave radar (FMCW) extracts human vital sign signals which are susceptible to noise interference and low reconstruction accuracy, a new detection scheme for the sign signals is proposed. Firstly, an improved complete ensemble empirical modal decomposition with adaptive noise (ICEEMDAN) algorithm is applied to decompose the radar-extracted thoracic signals to obtain several intrinsic modal functions (IMF) with different spatial scales, and then the IMF components are optimized by a BP neural network improved by immune genetic algorithm (IGA). The simulation results show that this scheme can effectively separate the noise and accurately extract the respiratory and heartbeat signals and improve the reconstruction accuracy and signal-to-noise ratio of the sign signals.Keywords: frequency modulated continuous wave radar, ICEEMDAN, BP neural network, vital signs signal
Procedia PDF Downloads 1651833 Energy Consumption Modeling for Strawberry Greenhouse Crop by Adaptive Nero Fuzzy Inference System Technique: A Case Study in Iran
Authors: Azar Khodabakhshi, Elham Bolandnazar
Abstract:
Agriculture as the most important food manufacturing sector is not only the energy consumer, but also is known as energy supplier. Using energy is considered as a helpful parameter for analyzing and evaluating the agricultural sustainability. In this study, the pattern of energy consumption of strawberry greenhouses of Jiroft in Kerman province of Iran was surveyed. The total input energy required in the strawberries production was calculated as 113314.71 MJ /ha. Electricity with 38.34% contribution of the total energy was considered as the most energy consumer in strawberry production. In this study, Neuro Fuzzy networks was used for function modeling in the production of strawberries. Results showed that the best model for predicting the strawberries function had a correlation coefficient, root mean square error (RMSE) and mean absolute percentage error (MAPE) equal to 0.9849, 0.0154 kg/ha and 0.11% respectively. Regards to these results, it can be said that Neuro Fuzzy method can be well predicted and modeled the strawberry crop function.Keywords: crop yield, energy, neuro-fuzzy method, strawberry
Procedia PDF Downloads 3811832 Experimental Analysis of Structure Borne Noise in an Enclosure
Authors: Waziralilah N. Fathiah, A. Aminudin, U. Alyaa Hashim, T. Vikneshvaran D. Shakirah Shukor
Abstract:
This paper presents the experimental analysis conducted on a structure borne noise in a rectangular enclosure prototype made by joining of sheet aluminum metal and plywood. The study is significant as many did not realized the annoyance caused by structural borne-noise. In this study, modal analysis is carried out to seek the structure’s behaviour in order to identify the characteristics of enclosure in frequency domain ranging from 0 Hz to 200 Hz. Here, numbers of modes are identified and the characteristic of mode shape is categorized. Modal experiment is used to diagnose the structural behaviour while microphone is used to diagnose the sound. Spectral testing is performed on the enclosure. It is acoustically excited using shaker and as it vibrates, the vibrational and noise responses sensed by tri-axis accelerometer and microphone sensors are recorded respectively. Experimental works is performed on each node lies on the gridded surface of the enclosure. Both experimental measurement is carried out simultaneously. The modal experimental results of the modal modes are validated by simulation performed using MSC Nastran software. In pursuance of reducing the structure borne-noise, mitigation method is used whereby the stiffener plates are perpendicularly placed on the sheet aluminum metal. By using this method, reduction in structure borne-noise is successfully made at the end of the study.Keywords: enclosure, modal analysis, sound analysis, structure borne-noise
Procedia PDF Downloads 4371831 Advertising Incentives of National Brands against Private Labels: The Case of OTC Heartburn Drugs
Authors: Lu Liao
Abstract:
The worldwide expansion of private labels over the past two decades not only transformed the choice sets of consumers but also forced manufacturers of national brands to design new marketing strategies to maintain their market positions. This paper empirically analyzes the impact of private labels on advertising incentives of national brands. The paper first develops a consumer demand model that incorporates spillover effects of advertising and finds positive spillovers of national brands’ advertising on demand for private label products. With the demand estimates, the researcher simulates the equilibrium prices and advertising levels for leading national brands in a counterfactual where private labels are eliminated to quantify the changes in national brands’ advertising incentives in response to the rise of private labels.Keywords: advertising, demand estimation, spillover effect, structural model
Procedia PDF Downloads 251830 A Bayesian Model with Improved Prior in Extreme Value Problems
Authors: Eva L. Sanjuán, Jacinto Martín, M. Isabel Parra, Mario M. Pizarro
Abstract:
In Extreme Value Theory, inference estimation for the parameters of the distribution is made employing a small part of the observation values. When block maxima values are taken, many data are discarded. We developed a new Bayesian inference model to seize all the information provided by the data, introducing informative priors and using the relations between baseline and limit parameters. Firstly, we studied the accuracy of the new model for three baseline distributions that lead to a Gumbel extreme distribution: Exponential, Normal and Gumbel. Secondly, we considered mixtures of Normal variables, to simulate practical situations when data do not adjust to pure distributions, because of perturbations (noise).Keywords: bayesian inference, extreme value theory, Gumbel distribution, highly informative prior
Procedia PDF Downloads 1981829 A Transform Domain Function Controlled VSSLMS Algorithm for Sparse System Identification
Authors: Cemil Turan, Mohammad Shukri Salman
Abstract:
The convergence rate of the least-mean-square (LMS) algorithm deteriorates if the input signal to the filter is correlated. In a system identification problem, this convergence rate can be improved if the signal is white and/or if the system is sparse. We recently proposed a sparse transform domain LMS-type algorithm that uses a variable step-size for a sparse system identification. The proposed algorithm provided high performance even if the input signal is highly correlated. In this work, we investigate the performance of the proposed TD-LMS algorithm for a large number of filter tap which is also a critical issue for standard LMS algorithm. Additionally, the optimum value of the most important parameter is calculated for all experiments. Moreover, the convergence analysis of the proposed algorithm is provided. The performance of the proposed algorithm has been compared to different algorithms in a sparse system identification setting of different sparsity levels and different number of filter taps. Simulations have shown that the proposed algorithm has prominent performance compared to the other algorithms.Keywords: adaptive filtering, sparse system identification, TD-LMS algorithm, VSSLMS algorithm
Procedia PDF Downloads 3601828 Spare Part Carbon Footprint Reduction with Reman Applications
Authors: Enes Huylu, Sude Erkin, Nur A. Özdemir, Hatice K. Güney, Cemre S. Atılgan, Hüseyin Y. Altıntaş, Aysemin Top, Muammer Yılman, Özak Durmuş
Abstract:
Remanufacturing (reman) applications allow manufacturers to contribute to the circular economy and help to introduce products with almost the same quality, environment-friendly, and lower cost. The objective of this study is to present that the carbon footprint of automotive spare parts used in vehicles could be reduced by reman applications based on Life Cycle Analysis which was framed with ISO 14040 principles. In that case, it was aimed to investigate reman applications for 21 parts in total. So far, research and calculations have been completed for the alternator, turbocharger, starter motor, compressor, manual transmission, auto transmission, and DPF (diesel particulate filter) parts, respectively. Since the aim of Ford Motor Company and Ford OTOSAN is to achieve net zero based on Science-Based Targets (SBT) and the Green Deal that the European Union sets out to make it climate neutral by 2050, the effects of reman applications are researched. In this case, firstly, remanufacturing articles available in the literature were searched based on the yearly high volume of spare parts sold. Paper review results related to their material composition and emissions released during incoming production and remanufacturing phases, the base part has been selected to take it as a reference. Then, the data of the selected base part from the research are used to make an approximate estimation of the carbon footprint reduction of the relevant part used in Ford OTOSAN. The estimation model is based on the weight, and material composition of the referenced paper reman activity. As a result of this study, it was seen that remanufacturing applications are feasible to apply technically and environmentally since it has significant effects on reducing the emissions released during the production phase of the vehicle components. For this reason, the research and calculations of the total number of targeted products in yearly volume have been completed to a large extent. Thus, based on the targeted parts whose research has been completed, in line with the net zero targets of Ford Motor Company and Ford OTOSAN by 2050, if remanufacturing applications are preferred instead of recent production methods, it is possible to reduce a significant amount of the associated greenhouse gas (GHG) emissions of spare parts used in vehicles. Besides, it is observed that remanufacturing helps to reduce the waste stream and causes less pollution than making products from raw materials by reusing the automotive components.Keywords: greenhouse gas emissions, net zero targets, remanufacturing, spare parts, sustainability
Procedia PDF Downloads 82