Search results for: machine translation
1675 Using Optical Character Recognition to Manage the Unstructured Disaster Data into Smart Disaster Management System
Authors: Dong Seop Lee, Byung Sik Kim
Abstract:
In the 4th Industrial Revolution, various intelligent technologies have been developed in many fields. These artificial intelligence technologies are applied in various services, including disaster management. Disaster information management does not just support disaster work, but it is also the foundation of smart disaster management. Furthermore, it gets historical disaster information using artificial intelligence technology. Disaster information is one of important elements of entire disaster cycle. Disaster information management refers to the act of managing and processing electronic data about disaster cycle from its’ occurrence to progress, response, and plan. However, information about status control, response, recovery from natural and social disaster events, etc. is mainly managed in the structured and unstructured form of reports. Those exist as handouts or hard-copies of reports. Such unstructured form of data is often lost or destroyed due to inefficient management. It is necessary to manage unstructured data for disaster information. In this paper, the Optical Character Recognition approach is used to convert handout, hard-copies, images or reports, which is printed or generated by scanners, etc. into electronic documents. Following that, the converted disaster data is organized into the disaster code system as disaster information. Those data are stored in the disaster database system. Gathering and creating disaster information based on Optical Character Recognition for unstructured data is important element as realm of the smart disaster management. In this paper, Korean characters were improved to over 90% character recognition rate by using upgraded OCR. In the case of character recognition, the recognition rate depends on the fonts, size, and special symbols of character. We improved it through the machine learning algorithm. These converted structured data is managed in a standardized disaster information form connected with the disaster code system. The disaster code system is covered that the structured information is stored and retrieve on entire disaster cycle such as historical disaster progress, damages, response, and recovery. The expected effect of this research will be able to apply it to smart disaster management and decision making by combining artificial intelligence technologies and historical big data.Keywords: disaster information management, unstructured data, optical character recognition, machine learning
Procedia PDF Downloads 1291674 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach
Authors: Mpho Mokoatle, Darlington Mapiye, James Mashiyane, Stephanie Muller, Gciniwe Dlamini
Abstract:
Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on $k$-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0%, 80.5%, 80.5%, 63.6%, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanisms.Keywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing
Procedia PDF Downloads 1671673 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach
Authors: Darlington Mapiye, Mpho Mokoatle, James Mashiyane, Stephanie Muller, Gciniwe Dlamini
Abstract:
Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on k-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0 %, 80.5 %, 80.5 %, 63.6 %, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanismsKeywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing
Procedia PDF Downloads 1591672 Recent Developments in Artificial Intelligence and Information Communications Technology
Authors: Dolapo Adeyemo
Abstract:
Technology can be designed specifically for geriatrics and persons with disabilities or ICT accessibility solutions. Both solutions stand to benefit from advances in Artificial intelligence, which are computer systems that perform tasks that require human intelligence. Tasks such as decision making, visual perception, speech recognition, and even language translation are useful in both situation and will provide significant benefits to people with temporarily or permanent disabilities. This research’s goal is to review innovations focused on the use of artificial intelligence that bridges the accessibility gap in technology from a user-centered perspective. A mixed method approach that utilized a comprehensive review of academic literature on the subject combined with semi structure interviews of users, developers, and technology product owners. The internet of things and artificial intelligence technology is creating new opportunities in the assistive technology space and proving accessibility to existing technology. Device now more adaptable to the needs of the user by learning the behavior of users as they interact with the internet. Accessibility to devices have witnessed significant enhancements that continue to benefit people with disabilities. Examples of other advances identified are prosthetic limbs like robotic arms supported by artificial intelligence, route planning software for the visually impaired, and decision support tools for people with disabilities and even clinicians that provide care.Keywords: ICT, IOT, accessibility solutions, universal design
Procedia PDF Downloads 871671 Matrix-Based Linear Analysis of Switched Reluctance Generator with Optimum Pole Angles Determination
Authors: Walid A. M. Ghoneim, Hamdy A. Ashour, Asmaa E. Abdo
Abstract:
In this paper, linear analysis of a Switched Reluctance Generator (SRG) model is applied on the most common configurations (4/2, 6/4 and 8/6) for both conventional short-pitched and fully-pitched designs, in order to determine the optimum stator/rotor pole angles at which the maximum output voltage is generated per unit excitation current. This study is focused on SRG analysis and design as a proposed solution for renewable energy applications, such as wind energy conversion systems. The world’s potential to develop the renewable energy technologies through dedicated scientific researches was the motive behind this study due to its positive impact on economy and environment. In addition, the problem of rare earth metals (Permanent magnet) caused by mining limitations, banned export by top producers and environment restrictions leads to the unavailability of materials used for rotating machines manufacturing. This challenge gave authors the opportunity to study, analyze and determine the optimum design of the SRG that has the benefit to be free from permanent magnets, rotor windings, with flexible control system and compatible with any application that requires variable-speed operation. In addition, SRG has been proved to be very efficient and reliable in both low-speed or high-speed applications. Linear analysis was performed using MATLAB simulations based on the (Modified generalized matrix approach) of Switched Reluctance Machine (SRM). About 90 different pole angles combinations and excitation patterns were simulated through this study, and the optimum output results for each case were recorded and presented in detail. This procedure has been proved to be applicable for any SRG configuration, dimension and excitation pattern. The delivered results of this study provide evidence for using the 4-phase 8/6 fully pitched SRG as the main optimum configuration for the same machine dimensions at the same angular speed.Keywords: generalized matrix approach, linear analysis, renewable applications, switched reluctance generator
Procedia PDF Downloads 1981670 Automatic Furrow Detection for Precision Agriculture
Authors: Manpreet Kaur, Cheol-Hong Min
Abstract:
The increasing advancement in the robotics equipped with machine vision sensors applied to precision agriculture is a demanding solution for various problems in the agricultural farms. An important issue related with the machine vision system concerns crop row and weed detection. This paper proposes an automatic furrow detection system based on real-time processing for identifying crop rows in maize fields in the presence of weed. This vision system is designed to be installed on the farming vehicles, that is, submitted to gyros, vibration and other undesired movements. The images are captured under image perspective, being affected by above undesired effects. The goal is to identify crop rows for vehicle navigation which includes weed removal, where weeds are identified as plants outside the crop rows. The images quality is affected by different lighting conditions and gaps along the crop rows due to lack of germination and wrong plantation. The proposed image processing method consists of four different processes. First, image segmentation based on HSV (Hue, Saturation, Value) decision tree. The proposed algorithm used HSV color space to discriminate crops, weeds and soil. The region of interest is defined by filtering each of the HSV channels between maximum and minimum threshold values. Then the noises in the images were eliminated by the means of hybrid median filter. Further, mathematical morphological processes, i.e., erosion to remove smaller objects followed by dilation to gradually enlarge the boundaries of regions of foreground pixels was applied. It enhances the image contrast. To accurately detect the position of crop rows, the region of interest is defined by creating a binary mask. The edge detection and Hough transform were applied to detect lines represented in polar coordinates and furrow directions as accumulations on the angle axis in the Hough space. The experimental results show that the method is effective.Keywords: furrow detection, morphological, HSV, Hough transform
Procedia PDF Downloads 2311669 Prediction of Formation Pressure Using Artificial Intelligence Techniques
Authors: Abdulmalek Ahmed
Abstract:
Formation pressure is the main function that affects drilling operation economically and efficiently. Knowing the pore pressure and the parameters that affect it will help to reduce the cost of drilling process. Many empirical models reported in the literature were used to calculate the formation pressure based on different parameters. Some of these models used only drilling parameters to estimate pore pressure. Other models predicted the formation pressure based on log data. All of these models required different trends such as normal or abnormal to predict the pore pressure. Few researchers applied artificial intelligence (AI) techniques to predict the formation pressure by only one method or a maximum of two methods of AI. The objective of this research is to predict the pore pressure based on both drilling parameters and log data namely; weight on bit, rotary speed, rate of penetration, mud weight, bulk density, porosity and delta sonic time. A real field data is used to predict the formation pressure using five different artificial intelligence (AI) methods such as; artificial neural networks (ANN), radial basis function (RBF), fuzzy logic (FL), support vector machine (SVM) and functional networks (FN). All AI tools were compared with different empirical models. AI methods estimated the formation pressure by a high accuracy (high correlation coefficient and low average absolute percentage error) and outperformed all previous. The advantage of the new technique is its simplicity, which represented from its estimation of pore pressure without the need of different trends as compared to other models which require a two different trend (normal or abnormal pressure). Moreover, by comparing the AI tools with each other, the results indicate that SVM has the advantage of pore pressure prediction by its fast processing speed and high performance (a high correlation coefficient of 0.997 and a low average absolute percentage error of 0.14%). In the end, a new empirical correlation for formation pressure was developed using ANN method that can estimate pore pressure with a high precision (correlation coefficient of 0.998 and average absolute percentage error of 0.17%).Keywords: Artificial Intelligence (AI), Formation pressure, Artificial Neural Networks (ANN), Fuzzy Logic (FL), Support Vector Machine (SVM), Functional Networks (FN), Radial Basis Function (RBF)
Procedia PDF Downloads 1491668 SOCS1 Inhibits MDR1 in Mammary Cell Carcinoma Reverses Multidrug Resistance
Authors: Debasish Pradhan, Shaktiprasad Pradhan, Rakesh Kumar Pradhan, Gitanjali Tripathy
Abstract:
Suppressors of cytokine signalling (SOCS1), a newly indentified antiapoptotic molecule is a downstream effector of the receptor tyrosine kinase-Ras signalling pathway. The current study has uncovered that SOCS1 may have wide and imperative capacities, particularly because of its close correlation with malignant tumors. To investigate the impact of SOCS1 on MDR, we analyzed the expression of P-gp and SOCS1 by immunohistochemistry and found there was a positive correlation between them. At that point, we effectively interfered with RNA translation by the contamination of siRNA of SOCS1 into MCF7/ADM breast cancer cell lines through a lentivirus, and the expression of the target gene was significantly inhibited. After RNAi, the drug resistance was reduced altogether and the expression of MDR1 mRNA and P-gp in MCF7/ADM cell lines demonstrated a significant decrease. Likewise, the expression of P53 protein increased in a statistically significant manner (p ≤ 0.01) after RNAi exposure. Moreover, flow cytometry analysis uncovers that cell cycle and anti-apoptotic enhancing capacity of cells changed after RNAi treatment. These outcomes proposed SOCS1 may take part in breast cancer MDR by managing MDR1 and P53 expression, changing cell cycle and enhancing the anti-apoptotic ability.Keywords: breast cancer, multidrug resistance, SOCS1 gene, MDR1 gene, RNA interference
Procedia PDF Downloads 3561667 A Three-modal Authentication Method for Industrial Robots
Authors: Luo Jiaoyang, Yu Hongyang
Abstract:
In this paper, we explore a method that can be used in the working scene of intelligent industrial robots to confirm the identity information of operators to ensure that the robot executes instructions in a sufficiently safe environment. This approach uses three information modalities, namely visible light, depth, and sound. We explored a variety of fusion modes for the three modalities and finally used the joint feature learning method to improve the performance of the model in the case of noise compared with the single-modal case, making the maximum noise in the experiment. It can also maintain an accuracy rate of more than 90%.Keywords: multimodal, kinect, machine learning, distance image
Procedia PDF Downloads 791666 Comparing SVM and Naïve Bayes Classifier for Automatic Microaneurysm Detections
Authors: A. Sopharak, B. Uyyanonvara, S. Barman
Abstract:
Diabetic retinopathy is characterized by the development of retinal microaneurysms. The damage can be prevented if disease is treated in its early stages. In this paper, we are comparing Support Vector Machine (SVM) and Naïve Bayes (NB) classifiers for automatic microaneurysm detection in images acquired through non-dilated pupils. The Nearest Neighbor classifier is used as a baseline for comparison. Detected microaneurysms are validated with expert ophthalmologists’ hand-drawn ground-truths. The sensitivity, specificity, precision and accuracy of each method are also compared.Keywords: diabetic retinopathy, microaneurysm, naive Bayes classifier, SVM classifier
Procedia PDF Downloads 3291665 The Use of Neuter in Oedipus Lines to Refer to Antigone in Phoenissae of Seneca
Authors: Cíntia Martins Sanches
Abstract:
In the first part of Phoenissae of Seneca, Antigone is a guide to Oedipus, and they leave Thebes: he is blind searching for death (inflicting the punishment himself wished on the killer of Laius, ie exile and death); she is trying to convince him to give up such punishment and bring him back to Thebes. Concerning Oedipus lines, we observed a high frequency of Latin neuter in the treatment the protagonist gave to his daughter Antigone. We considered in this study that such frequency may be related to the sanctification of the daughter, who is seen by him as an enlightened being and without defects, free of the human condition (which takes on the existence of failures by essence). This study, thus, puts forward an analysis of the passages the said feature is present, relating them to the effect of meaning found in each occurrence. As part of a doctorate, this study investigates the stylistic idiom of Seneca in the Oedipus and Phoenissae tragedies, aiming at translating both tragedies expressively. The concept of stylistic idiom concerns the stylistic affinity required for a translation to be equivalent to the source text. In this wise, this study inquires into how the Latin text is organized poetically, pointing out the expressive features frequently appearing in both dramas. The method we used is based on the Semiotics theory — observing how connotation, ie a language use in which prevails the poetic function, naturally polysemous, acts to achieve each expressive effect.Keywords: antigone, neuter, Oedipus, Phoenissae, Seneca
Procedia PDF Downloads 2881664 Router 1X3 - RTL Design and Verification
Authors: Nidhi Gopal
Abstract:
Routing is the process of moving a packet of data from source to destination and enables messages to pass from one computer to another and eventually reach the target machine. A router is a networking device that forwards data packets between computer networks. It is connected to two or more data lines from different networks (as opposed to a network switch, which connects data lines from one single network). This paper mainly emphasizes upon the study of router device, its top level architecture, and how various sub-modules of router i.e. Register, FIFO, FSM and Synchronizer are synthesized, and simulated and finally connected to its top module.Keywords: data packets, networking, router, routing
Procedia PDF Downloads 8141663 Algorithm for Predicting Cognitive Exertion and Cognitive Fatigue Using a Portable EEG Headset for Concussion Rehabilitation
Authors: Lou J. Pino, Mark Campbell, Matthew J. Kennedy, Ashleigh C. Kennedy
Abstract:
A concussion is complex and nuanced, with cognitive rest being a key component of recovery. Cognitive overexertion during rehabilitation from a concussion is associated with delayed recovery. However, daily living imposes cognitive demands that may be unavoidable and difficult to quantify. Therefore, a portable tool capable of alerting patients before cognitive overexertion occurs could allow patients to maintain their quality of life while preventing symptoms and recovery setbacks. EEG allows for a sensitive measure of cognitive exertion. Clinical 32-lead EEG headsets are not practical for day-to-day concussion rehabilitation management. However, there are now commercially available and affordable portable EEG headsets. Thus, these headsets can potentially be used to continuously monitor cognitive exertion during mental tasks to alert the wearer of overexertion, with the aim of preventing the occurrence of symptoms to speed recovery times. The objective of this study was to test an algorithm for predicting cognitive exertion from EEG data collected from a portable headset. EEG data were acquired from 10 participants (5 males, 5 females). Each participant wore a portable 4 channel EEG headband while completing 10 tasks: rest (eyes closed), rest (eyes open), three levels of the increasing difficulty of logic puzzles, three levels of increasing difficulty in multiplication questions, rest (eyes open), and rest (eyes closed). After each task, the participant was asked to report their perceived level of cognitive exertion using the NASA Task Load Index (TLX). Each participant then completed a second session on a different day. A customized machine learning model was created using data from the first session. The performance of each model was then tested using data from the second session. The mean correlation coefficient between TLX scores and predicted cognitive exertion was 0.75 ± 0.16. The results support the efficacy of the algorithm for predicting cognitive exertion. This demonstrates that the algorithms developed in this study used with portable EEG devices have the potential to aid in the concussion recovery process by monitoring and warning patients of cognitive overexertion. Preventing cognitive overexertion during recovery may reduce the number of symptoms a patient experiences and may help speed the recovery process.Keywords: cognitive activity, EEG, machine learning, personalized recovery
Procedia PDF Downloads 2201662 High Resolution Image Generation Algorithm for Archaeology Drawings
Authors: Xiaolin Zeng, Lei Cheng, Zhirong Li, Xueping Liu
Abstract:
Aiming at the problem of low accuracy and susceptibility to cultural relic diseases in the generation of high-resolution archaeology drawings by current image generation algorithms, an archaeology drawings generation algorithm based on a conditional generative adversarial network is proposed. An attention mechanism is added into the high-resolution image generation network as the backbone network, which enhances the line feature extraction capability and improves the accuracy of line drawing generation. A dual-branch parallel architecture consisting of two backbone networks is implemented, where the semantic translation branch extracts semantic features from orthophotographs of cultural relics, and the gradient screening branch extracts effective gradient features. Finally, the fusion fine-tuning module combines these two types of features to achieve the generation of high-quality and high-resolution archaeology drawings. Experimental results on the self-constructed archaeology drawings dataset of grotto temple statues show that the proposed algorithm outperforms current mainstream image generation algorithms in terms of pixel accuracy (PA), structural similarity (SSIM), and peak signal-to-noise ratio (PSNR) and can be used to assist in drawing archaeology drawings.Keywords: archaeology drawings, digital heritage, image generation, deep learning
Procedia PDF Downloads 591661 Locket Application
Authors: Farah Al-Fityani, Aljohara Alsowail, Shatha Bindawood, Heba Balrbeah
Abstract:
Locket is a popular app that lets users share spontaneous photos with a close circle of friends. The app offers a unique way to stay connected with loved ones by allowing users to see glimpses of their day through photos displayed on a widget on their home screen. This summary outlines the process of developing an app like Locket, highlighting the importance of user privacy and security. It also details the findings of a study on user engagement with the Locket app, revealing positive sentiment towards its features and concept but also identifying areas for improvement. Overall, the summary portrays Locket as a successful app that is changing the way people connect on social media.Keywords: locket, app, machine learning, connect
Procedia PDF Downloads 461660 3D Receiver Operator Characteristic Histogram
Authors: Xiaoli Zhang, Xiongfei Li, Yuncong Feng
Abstract:
ROC curves, as a widely used evaluating tool in machine learning field, are the tradeoff of true positive rate and negative rate. However, they are blamed for ignoring some vital information in the evaluation process, such as the amount of information about the target that each instance carries, predicted score given by each classification model to each instance. Hence, in this paper, a new classification performance method is proposed by extending the Receiver Operator Characteristic (ROC) curves to 3D space, which is denoted as 3D ROC Histogram. In the histogram, theKeywords: classification, performance evaluation, receiver operating characteristic histogram, hardness prediction
Procedia PDF Downloads 3141659 Experimental Investigation on Strengthening of Timber Beam Using Glass Fibers and Steel Plates
Authors: Sisaynew Tesfaw Admassu
Abstract:
The strengthening of timber beams can be necessary for several reasons including the increase of live loads (possible in a historical building for a change of destination of use or upgrading to meet new requirements), the reduction of the resistant cross-sections following deterioration (attacks of biological agents such as fungi, and insects) or traumatic events (fires) and the excess of deflection in the members. The main purpose of strengthening an element is not merely to repair it, but also to prevent and minimize the appearance of future problems. This study did an experimental investigation on the behavior of reference and strengthened solid timber beams. The strengthening materials used in this study were CSM-450 glass fiber and steel materials for both flexural and shear strengthening techniques. Twenty-two solid timber beams of Juniperus procera (TID) species with the dimensions of 60 x 90 x 780 mm were used in the present study. The binding material to bond the strengthening materials with timber was general-purpose resin with Luperox® K10 MEKP catalyst. Three beams were used as control beams (unstrengthen beams) while the remaining nineteen beams were strengthened using the strengthening materials for flexure and shear. All the beams were tested for three points loading to failure by using a Universal Testing Machine, UTM-600kN machine. The experimental results showed that the strengthened beams performed better than the unstrengthen beams. The experimental result of flexural strengthened beams showed that the load-bearing capacity of strengthened beams increased between 16.34 – 42.55%. Four layers of Glass Fiber Reinforced polymer on the tension side of the beams was shown to be the most effective way to enhance load-bearing capacity. The strengthened beams also have an enhancement in their flexural stiffness. The stiffness of flexural strengthened beams was increased between 1.18 – 65.53% as compared to the control beams. The highest increment in stiffness has occurred on beams strengthened using 2x60 mm steel plates. The shear-strengthened beams showed a relatively small amount of performance as compared to flexural-strengthened beams; the reason is that the beams are sufficient for shear. The polyester resin used in the experimental work showed good performance in bonding agents between materials. The resin showed more effectiveness in GFRP materials than steel materials.Keywords: heritage structures, strengthening, stiffness, adhesive, polyester resin, steel plates
Procedia PDF Downloads 741658 Deep Q-Network for Navigation in Gazebo Simulator
Authors: Xabier Olaz Moratinos
Abstract:
Drone navigation is critical, particularly during the initial phases, such as the initial ascension, where pilots may fail due to strong external interferences that could potentially lead to a crash. In this ongoing work, a drone has been successfully trained to perform an ascent of up to 6 meters at speeds with external disturbances pushing it up to 24 mph, with the DQN algorithm managing external forces affecting the system. It has been demonstrated that the system can control its height, position, and stability in all three axes (roll, pitch, and yaw) throughout the process. The learning process is carried out in the Gazebo simulator, which emulates interferences, while ROS is used to communicate with the agent.Keywords: machine learning, DQN, Gazebo, navigation
Procedia PDF Downloads 771657 Content-Aware Image Augmentation for Medical Imaging Applications
Authors: Filip Rusak, Yulia Arzhaeva, Dadong Wang
Abstract:
Machine learning based Computer-Aided Diagnosis (CAD) is gaining much popularity in medical imaging and diagnostic radiology. However, it requires a large amount of high quality and labeled training image datasets. The training images may come from different sources and be acquired from different radiography machines produced by different manufacturers, digital or digitized copies of film radiographs, with various sizes as well as different pixel intensity distributions. In this paper, a content-aware image augmentation method is presented to deal with these variations. The results of the proposed method have been validated graphically by plotting the removed and added seams of pixels on original images. Two different chest X-ray (CXR) datasets are used in the experiments. The CXRs in the datasets defer in size, some are digital CXRs while the others are digitized from analog CXR films. With the proposed content-aware augmentation method, the Seam Carving algorithm is employed to resize CXRs and the corresponding labels in the form of image masks, followed by histogram matching used to normalize the pixel intensities of digital radiography, based on the pixel intensity values of digitized radiographs. We implemented the algorithms, resized the well-known Montgomery dataset, to the size of the most frequently used Japanese Society of Radiological Technology (JSRT) dataset and normalized our digital CXRs for testing. This work resulted in the unified off-the-shelf CXR dataset composed of radiographs included in both, Montgomery and JSRT datasets. The experimental results show that even though the amount of augmentation is large, our algorithm can preserve the important information in lung fields, local structures, and global visual effect adequately. The proposed method can be used to augment training and testing image data sets so that the trained machine learning model can be used to process CXRs from various sources, and it can be potentially used broadly in any medical imaging applications.Keywords: computer-aided diagnosis, image augmentation, lung segmentation, medical imaging, seam carving
Procedia PDF Downloads 2221656 Evolution of Design through Documentation of Architecture Design Processes
Authors: Maniyarasan Rajendran
Abstract:
Every design has a process, and every architect deals in the ways best known to them. The design translation from the concept to completion change in accordance with their design philosophies, their tools, availability of resources, and at times the clients and the context of the design as well. The approach to understanding the design process requires formalisation of the design intents. The design process is characterised by change, with the time and the technology. The design flow is just indicative and never exhaustive. The knowledge and experience of stakeholders remain limited to the part they played in the project, and their ability to remember, and is through the Photographs. These artefacts, when circulated can hardly tell what the project is. They can never tell the narrative behind. In due course, the design processes are lost. The Design junctions are lost in the journey. Photographs acted as major source materials, along with its importance in architectural revivalism in the 19th century. From the history, we understand that it has been photographs, that act as the dominant source of evidence. The idea of recording is also followed with the idea of getting inspired from the records and documents. The design concept, the architectural firms’ philosophies, the materials used, the special needs, the numerous ‘Trial-and-error’ methods, design methodology, experience of failures and success levels, and the knowledge acquired, etc., and the various other aspects and methods go through in every project, and they deserve/ought to be recorded. The knowledge can be preserved and passed through generations, by documenting the design processes involved. This paper explores the idea of a process documentation as a tool of self-reflection, creation of architectural firm’ repository, and these implications proceed with the design evolution of the team.Keywords: architecture, design, documentation, records
Procedia PDF Downloads 3691655 Psychometric Properties of the Sensory Processing Measure Preschool-Home among Children with Autism in Saudi Arabia
Authors: Shahad Alkhalifah, Jonh Wright
Abstract:
Autism spectrum disorder (ASD) is a pervasive developmental disorder associated, for 42% to 88% of people with ASD, with sensory processing disorders. Sensory processing disorders (SPD) impact daily functioning, and it is, therefore, essential to be able to diagnose them accurately. Currently, however, there is no assessment tool available for the Saudi Arabia (SA) population that would cover a wider enough age range. Therefore, this study aimed to assess the psychometric properties of the Sensory Processing Measure Preschool-Home Form (SPM-P) when used in English, with a population of English-speaking Saudi participants. This was chosen due to time limitations and the urgency in providing practitioners with appropriate tools. Using a convenience sampling approach group of caregivers of typically developing (TD) children and a group of caregivers for children with ASD were recruited (N = 40 and N = 16, respectively), and completed the SPM-P Home Form. Participants were also invited to complete it again after two weeks for test-retest reliability, and respectively, nine and five agreed. Reliability analyses suggested some issues with a few items when used in the Saudi culture, and, along with interscale correlations, it highlighted concerns with the factor structure. However, it was also found that the SPM-P Home has good criterion-based validity, and it is, therefore, suggested that it can be used until a tool is developed through translation and cultural adaptation. It is also suggested that the current factor structure of SPM-P Home is reassessed using a large sample.Keywords: autism, sensory, assessment, reliability, sensory processing dysfunction, preschool, validity
Procedia PDF Downloads 2301654 Maori Loanwords in New Zealand English Denoting the Culture and Way of Life of Maori
Authors: Marina Galakhova
Abstract:
Nowadays, language variants, as well as minority languages and cultures, are of increased interest, and the desire to protect them is rising. The Maori language is defined as a vulnerable language by UNESCO. Its usage is confined to intra-family communication. It is not being utilized by the younger generation or being taught at an early age; therefore, it is being replaced by more frequently used languages. Maori loanwords are a unique part of New Zealand English. That is why it is worth our attention. The aim of this study is to investigate Maori cultural loanwords in the New Zealand media. Methods of analysis of lexical units, etymological interpretation, and linguocultural commenting were used. The results of the research show that Maori borrowings are used in the media, not only with regard to Maori people but also to the whole nation. The Maori language is often used in media texts, most often without a translation in English. Not only are words borrowed, but also cultural concepts. The language usage is limited to the following spheres: everyday life, education, religion, and media. The conclusion can also be drawn that Maori words are used to emphasize a new bicultural national identity; the revival of the Maori language and culture contributed to a large number of borrowings into New Zealand English. It has been established that the Maori language is substratum because Maori provides an intrusive language, which is English with language material. It is stated that the number of borrowings denoting Maori culture is very significant. This group is even greater than the group relating to flora and fauna. Language policy in New Zealand is designed to protect and promote the Maori language and culture. Tables of Maori loanwords are also presented.Keywords: loanwords, Maori, minority languages, New Zealand
Procedia PDF Downloads 1441653 Using the Smith-Waterman Algorithm to Extract Features in the Classification of Obesity Status
Authors: Rosa Figueroa, Christopher Flores
Abstract:
Text categorization is the problem of assigning a new document to a set of predetermined categories, on the basis of a training set of free-text data that contains documents whose category membership is known. To train a classification model, it is necessary to extract characteristics in the form of tokens that facilitate the learning and classification process. In text categorization, the feature extraction process involves the use of word sequences also known as N-grams. In general, it is expected that documents belonging to the same category share similar features. The Smith-Waterman (SW) algorithm is a dynamic programming algorithm that performs a local sequence alignment in order to determine similar regions between two strings or protein sequences. This work explores the use of SW algorithm as an alternative to feature extraction in text categorization. The dataset used for this purpose, contains 2,610 annotated documents with the classes Obese/Non-Obese. This dataset was represented in a matrix form using the Bag of Word approach. The score selected to represent the occurrence of the tokens in each document was the term frequency-inverse document frequency (TF-IDF). In order to extract features for classification, four experiments were conducted: the first experiment used SW to extract features, the second one used unigrams (single word), the third one used bigrams (two word sequence) and the last experiment used a combination of unigrams and bigrams to extract features for classification. To test the effectiveness of the extracted feature set for the four experiments, a Support Vector Machine (SVM) classifier was tuned using 20% of the dataset. The remaining 80% of the dataset together with 5-Fold Cross Validation were used to evaluate and compare the performance of the four experiments of feature extraction. Results from the tuning process suggest that SW performs better than the N-gram based feature extraction. These results were confirmed by using the remaining 80% of the dataset, where SW performed the best (accuracy = 97.10%, weighted average F-measure = 97.07%). The second best was obtained by the combination of unigrams-bigrams (accuracy = 96.04, weighted average F-measure = 95.97) closely followed by the bigrams (accuracy = 94.56%, weighted average F-measure = 94.46%) and finally unigrams (accuracy = 92.96%, weighted average F-measure = 92.90%).Keywords: comorbidities, machine learning, obesity, Smith-Waterman algorithm
Procedia PDF Downloads 2971652 Crack Growth Life Prediction of a Fighter Aircraft Wing Splice Joint Under Spectrum Loading Using Random Forest Regression and Artificial Neural Networks with Hyperparameter Optimization
Authors: Zafer Yüce, Paşa Yayla, Alev Taşkın
Abstract:
There are heaps of analytical methods to estimate the crack growth life of a component. Soft computing methods have an increasing trend in predicting fatigue life. Their ability to build complex relationships and capability to handle huge amounts of data are motivating researchers and industry professionals to employ them for challenging problems. This study focuses on soft computing methods, especially random forest regressors and artificial neural networks with hyperparameter optimization algorithms such as grid search and random grid search, to estimate the crack growth life of an aircraft wing splice joint under variable amplitude loading. TensorFlow and Scikit-learn libraries of Python are used to build the machine learning models for this study. The material considered in this work is 7050-T7451 aluminum, which is commonly preferred as a structural element in the aerospace industry, and regarding the crack type; corner crack is used. A finite element model is built for the joint to calculate fastener loads and stresses on the structure. Since finite element model results are validated with analytical calculations, findings of the finite element model are fed to AFGROW software to calculate analytical crack growth lives. Based on Fighter Aircraft Loading Standard for Fatigue (FALSTAFF), 90 unique fatigue loading spectra are developed for various load levels, and then, these spectrums are utilized as inputs to the artificial neural network and random forest regression models for predicting crack growth life. Finally, the crack growth life predictions of the machine learning models are compared with analytical calculations. According to the findings, a good correlation is observed between analytical and predicted crack growth lives.Keywords: aircraft, fatigue, joint, life, optimization, prediction.
Procedia PDF Downloads 1751651 Use of Short Piles for Stabilizing the Side Slope of the Road Embankment along the Canal
Authors: Monapat Sasingha, Suttisak Soralump
Abstract:
This research presents the behavior of slope of the road along the canal stabilized by short piles. In this investigation, the centrifuge machine was used, modelling the condition of the water levels in the canal. The centrifuge tests were performed at 35 g. To observe the movement of the soil, visual analysis was performed to evaluate the failure behavior. Conclusively, the use of short piles to stabilize the canal slope proved to be an effective solution. However, the certain amount of settlement was found behind the short pile rows.Keywords: centrifuge test, slope failure, embankment, stability of slope
Procedia PDF Downloads 2681650 Interfacing and Replication of Electronic Machinery Using MATLAB/SIMULINK
Authors: Abdulatif Abdulsalam, Mohamed Shaban
Abstract:
This paper introduces interfacing and replication of electronic tools based on the MATLAB/ SIMULINK mock-up package. Mock-up components contain dc-dc converters, power issue rectifiers, motivation machines, dc gear, synchronous gear, and more entire systems. Power issue rectifier model includes solid state device models. The tools are the clear-cut structure and mock-up of complex energetic systems connecting with power electronic machines.Keywords: power electronics, machine, MATLAB, simulink
Procedia PDF Downloads 3581649 Design Data Sorter Circuit Using Insertion Sorting Algorithm
Authors: Hoda Abugharsa
Abstract:
In this paper we propose to design a sorter circuit using insertion sorting algorithm. The circuit will be designed using Algorithmic State Machines (ASM) method. That means converting the insertion sorting flowchart into an ASM chart. Then the ASM chart will be used to design the sorter circuit and the control unit.Keywords: insert sorting algorithm, ASM chart, sorter circuit, state machine, control unit
Procedia PDF Downloads 4451648 Comparison between XGBoost, LightGBM and CatBoost Using a Home Credit Dataset
Authors: Essam Al Daoud
Abstract:
Gradient boosting methods have been proven to be a very important strategy. Many successful machine learning solutions were developed using the XGBoost and its derivatives. The aim of this study is to investigate and compare the efficiency of three gradient methods. Home credit dataset is used in this work which contains 219 features and 356251 records. However, new features are generated and several techniques are used to rank and select the best features. The implementation indicates that the LightGBM is faster and more accurate than CatBoost and XGBoost using variant number of features and records.Keywords: gradient boosting, XGBoost, LightGBM, CatBoost, home credit
Procedia PDF Downloads 1711647 An Unusual Cause of Electrocardiographic Artefact: Patient's Warming Blanket
Authors: Sanjay Dhiraaj, Puneet Goyal, Aditya Kapoor, Gaurav Misra
Abstract:
In electrocardiography, an ECG artefact is used to indicate something that is not heart-made. Although technological advancements have produced monitors with the potential of providing accurate information and reliable heart rate alarms, despite this, interference of the displayed electrocardiogram still occurs. These interferences can be from the various electrical gadgets present in the operating room or electrical signals from other parts of the body. Artefacts may also occur due to poor electrode contact with the body or due to machine malfunction. Knowing these artefacts is of utmost importance so as to avoid unnecessary and unwarranted diagnostic as well as interventional procedures. We report a case of ECG artefacts occurring due to patient warming blanket and its consequences. A 20-year-old male with a preoperative diagnosis of exstrophy epispadias complex was posted for surgery under epidural and general anaesthesia. Just after endotracheal intubation, we observed nonspecific ECG changes on the monitor. At a first glance, the monitor strip revealed broad QRs complexes suggesting a ventricular bigeminal rhythm. Closer analysis revealed these to be artefacts because although the complexes were looking broad on the first glance there was clear presence of normal sinus complexes which were immediately followed by 'broad complexes' or artefacts produced by some device or connection. These broad complexes were labeled as artefacts as they were originating in the absolute refractory period of the previous normal sinus beat. It would be physiologically impossible for the myocardium to depolarize so rapidly as to produce a second QRS complex. A search for the possible reason for the artefacts was made and after deepening the plane of anaesthesia, ruling out any possible electrolyte abnormalities, checking of ECG leads and its connections, changing monitors, checking all other monitoring connections, checking for proper grounding of anaesthesia machine and OT table, we found that after switching off the patient’s warming apparatus the rhythm returned to a normal sinus one and the 'broad complexes' or artefacts disappeared. As misdiagnosis of ECG artefacts may subject patients to unnecessary diagnostic and therapeutic interventions so a thorough knowledge of the patient and monitors allow for a quick interpretation and resolution of the problem.Keywords: ECG artefacts, patient warming blanket, peri-operative arrhythmias, mobile messaging services
Procedia PDF Downloads 2721646 Non-Linear Control in Positioning of PMLSM by Estimates of the Load Force by MRAS Method
Authors: Maamar Yahiaoui, Abdelrrahmene Kechich, Ismail Elkhallile Bousserhene
Abstract:
This article presents a study in simulation by means of MATLAB/Simulink software of the nonlinear control in positioning of a linear synchronous machine with the esteemed force of load, to have effective control in the estimator in all tests the wished trajectory follows and the disturbance of load start. The results of simulation prove clearly that the control proposed can detect the reference of positioning the value estimates of load force equal to the actual value.Keywords: mathematical model, Matlab, PMLSM, control, linearization, estimator, force, load, current
Procedia PDF Downloads 608