Search results for: feature noise
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2638

Search results for: feature noise

958 Speech Enhancement Using Wavelet Coefficients Masking with Local Binary Patterns

Authors: Christian Arcos, Marley Vellasco, Abraham Alcaim

Abstract:

In this paper, we present a wavelet coefficients masking based on Local Binary Patterns (WLBP) approach to enhance the temporal spectra of the wavelet coefficients for speech enhancement. This technique exploits the wavelet denoising scheme, which splits the degraded speech into pyramidal subband components and extracts frequency information without losing temporal information. Speech enhancement in each high-frequency subband is performed by binary labels through the local binary pattern masking that encodes the ratio between the original value of each coefficient and the values of the neighbour coefficients. This approach enhances the high-frequency spectra of the wavelet transform instead of eliminating them through a threshold. A comparative analysis is carried out with conventional speech enhancement algorithms, demonstrating that the proposed technique achieves significant improvements in terms of PESQ, an international recommendation of objective measure for estimating subjective speech quality. Informal listening tests also show that the proposed method in an acoustic context improves the quality of speech, avoiding the annoying musical noise present in other speech enhancement techniques. Experimental results obtained with a DNN based speech recognizer in noisy environments corroborate the superiority of the proposed scheme in the robust speech recognition scenario.

Keywords: binary labels, local binary patterns, mask, wavelet coefficients, speech enhancement, speech recognition

Procedia PDF Downloads 229
957 Federalism, a System of Government: Comparative Study of Australia and Canada

Authors: Rana Tajammal Rashid

Abstract:

Federalism is a political system in which government power and responsibility are divided between a federal legislature and units of the state or provincial legislatures. This system provides the structure for the states having large territory and through that can manage the state affairs and administration easily. Many of the largest countries in the world are federations, like; The United States, Canada, India, Pakistan South Africa, Argentina, and Australia. Every large democratic nation has a federal system of government. This study will explore the feature and good governance of two developed countries Canada and Australia. This study will be helpful to the developing countries like Pakistan, India which have a federal form of structure to run the affairs of the state. In the federal system of Pakistan there are lot of issues and conflicts with the provinces with a comparative study of these two developed countries, i.e., Australia and Canada, our policy and decision maker political actors will understand in which way a state will successfully manage the issues related to federalism. This study will also provide the help to the students of comparative politics that how to analysis the different political system of the developed countries of the world.

Keywords: federalism, features of federalism, types of federalism, history of federalism, Australian federalism, Canadian federalism, federalism developments, executives, federal and provincial autonomy legislative, judicial

Procedia PDF Downloads 287
956 Deep Supervision Based-Unet to Detect Buildings Changes from VHR Aerial Imagery

Authors: Shimaa Holail, Tamer Saleh, Xiongwu Xiao

Abstract:

Building change detection (BCD) from satellite imagery is an essential topic in urbanization monitoring, agricultural land management, and updating geospatial databases. Recently, methods for detecting changes based on deep learning have made significant progress and impressive results. However, it has the problem of being insensitive to changes in buildings with complex spectral differences, and the features being extracted are not discriminatory enough, resulting in incomplete buildings and irregular boundaries. To overcome these problems, we propose a dual Siamese network based on the Unet model with the addition of a deep supervision strategy (DS) in this paper. This network consists of a backbone (encoder) based on ImageNet pre-training, a fusion block, and feature pyramid networks (FPN) to enhance the step-by-step information of the changing regions and obtain a more accurate BCD map. To train the proposed method, we created a new dataset (EGY-BCD) of high-resolution and multi-temporal aerial images captured over New Cairo in Egypt to detect building changes for this purpose. The experimental results showed that the proposed method is effective and performs well with the EGY-BCD dataset regarding the overall accuracy, F1-score, and mIoU, which were 91.6 %, 80.1 %, and 73.5 %, respectively.

Keywords: building change detection, deep supervision, semantic segmentation, EGY-BCD dataset

Procedia PDF Downloads 120
955 Baseline Study on Human Trafficking Crimes: A Case Study of Mapping Human Trafficking Crimes in East Java Province, Indonesia

Authors: Ni Komang Desy Arya Pinatih

Abstract:

Transnational crime is a crime with 'unique' feature because the activities benefit the lack of state monitoring on the borders so dealing with it cannot be based on conventional engagement but also need joint operation with other countries. On the other hand with the flow of globalization and the growth of information technology and transportation, states become more vulnerable to transnational crime threats especially human trafficking. This paper would examine transnational crime activities, especially human trafficking in Indonesia. With the case study on the mapping of human trafficking crime in East Java province, Indonesia, this paper would try to analyze how the difference in human trafficking crime trends at the national and sub-national levels. The findings of this research were first, there is difference in human trafficking crime trends whereas at the national level the trend is rising, while at sub-national (province) level the trend is declining. Second, regarding the decline of human trafficking number, it’s interesting to see how the method to decrease human trafficking crime in East Jawa Province in order to reduce transnational crime accounts in the region. These things are hopefully becoming a model for transnational crimes engagement in other regions to reduce human trafficking numbers as much as possible.

Keywords: transnational crime, human trafficking, southeast Asia, anticipation model on transnational crimes

Procedia PDF Downloads 304
954 An Integrative Computational Pipeline for Detection of Tumor Epitopes in Cancer Patients

Authors: Tanushree Jaitly, Shailendra Gupta, Leila Taher, Gerold Schuler, Julio Vera

Abstract:

Genomics-based personalized medicine is a promising approach to fight aggressive tumors based on patient's specific tumor mutation and expression profiles. A remarkable case is, dendritic cell-based immunotherapy, in which tumor epitopes targeting patient's specific mutations are used to design a vaccine that helps in stimulating cytotoxic T cell mediated anticancer immunity. Here we present a computational pipeline for epitope-based personalized cancer vaccines using patient-specific haplotype and cancer mutation profiles. In the workflow proposed, we analyze Whole Exome Sequencing and RNA Sequencing patient data to detect patient-specific mutations and their expression level. Epitopes including the tumor mutations are computationally predicted using patient's haplotype and filtered based on their expression level, binding affinity, and immunogenicity. We calculate binding energy for each filtered major histocompatibility complex (MHC)-peptide complex using docking studies, and use this feature to select good epitope candidates further.

Keywords: cancer immunotherapy, epitope prediction, NGS data, personalized medicine

Procedia PDF Downloads 254
953 Analysis Of Fine Motor Skills in Chronic Neurodegenerative Models of Huntington’s Disease and Amyotrophic Lateral Sclerosis

Authors: T. Heikkinen, J. Oksman, T. Bragge, A. Nurmi, O. Kontkanen, T. Ahtoniemi

Abstract:

Motor impairment is an inherent phenotypic feature of several chronic neurodegenerative diseases, and pharmacological therapies aimed to counterbalance the motor disability have a great market potential. Animal models of chronic neurodegenerative diseases display a number deteriorating motor phenotype during the disease progression. There is a wide array of behavioral tools to evaluate motor functions in rodents. However, currently existing methods to study motor functions in rodents are often limited to evaluate gross motor functions only at advanced stages of the disease phenotype. The most commonly applied traditional motor assays used in CNS rodent models, lack the sensitivity to capture fine motor impairments or improvements. Fine motor skill characterization in rodents provides a more sensitive tool to capture more subtle motor dysfunctions and therapeutic effects. Importantly, similar approach, kinematic movement analysis, is also used in clinic, and applied both in diagnosis and determination of therapeutic response to pharmacological interventions. The aim of this study was to apply kinematic gait analysis, a novel and automated high precision movement analysis system, to characterize phenotypic deficits in three different chronic neurodegenerative animal models, a transgenic mouse model (SOD1 G93A) for amyotrophic lateral sclerosis (ALS), and R6/2 and Q175KI mouse models for Huntington’s disease (HD). The readouts from walking behavior included gait properties with kinematic data, and body movement trajectories including analysis of various points of interest such as movement and position of landmarks in the torso, tail and joints. Mice (transgenic and wild-type) from each model were analyzed for the fine motor kinematic properties at young ages, prior to the age when gross motor deficits are clearly pronounced. Fine motor kinematic Evaluation was continued in the same animals until clear motor dysfunction with conventional motor assays was evident. Time course analysis revealed clear fine motor skill impairments in each transgenic model earlier than what is seen with conventional gross motor tests. Motor changes were quantitatively analyzed for up to ~80 parameters, and the largest data sets of HD models were further processed with principal component analysis (PCA) to transform the pool of individual parameters into a smaller and focused set of mutually uncorrelated gait parameters showing strong genotype difference. Kinematic fine motor analysis of transgenic animal models described in this presentation show that this method isa sensitive, objective and fully automated tool that allows earlier and more sensitive detection of progressive neuromuscular and CNS disease phenotypes. As a result of the analysis a comprehensive set of fine motor parameters for each model is created, and these parameters provide better understanding of the disease progression and enhanced sensitivity of this assay for therapeutic testing compared to classical motor behavior tests. In SOD1 G93A, R6/2, and Q175KI mice, the alterations in gait were evident already several weeks earlier than with traditional gross motor assays. Kinematic testing can be applied to a wider set of motor readouts beyond gait in order to study whole body movement patterns such as with relation to joints and various body parts longitudinally, providing a sophisticated and translatable method for disseminating motor components in rodent disease models and evaluating therapeutic interventions.

Keywords: Gait analysis, kinematic, motor impairment, inherent feature

Procedia PDF Downloads 355
952 Violence Detection and Tracking on Moving Surveillance Video Using Machine Learning Approach

Authors: Abe Degale D., Cheng Jian

Abstract:

When creating automated video surveillance systems, violent action recognition is crucial. In recent years, hand-crafted feature detectors have been the primary method for achieving violence detection, such as the recognition of fighting activity. Researchers have also looked into learning-based representational models. On benchmark datasets created especially for the detection of violent sequences in sports and movies, these methods produced good accuracy results. The Hockey dataset's videos with surveillance camera motion present challenges for these algorithms for learning discriminating features. Image recognition and human activity detection challenges have shown success with deep representation-based methods. For the purpose of detecting violent images and identifying aggressive human behaviours, this research suggested a deep representation-based model using the transfer learning idea. The results show that the suggested approach outperforms state-of-the-art accuracy levels by learning the most discriminating features, attaining 99.34% and 99.98% accuracy levels on the Hockey and Movies datasets, respectively.

Keywords: violence detection, faster RCNN, transfer learning and, surveillance video

Procedia PDF Downloads 108
951 Radon and Thoron Determination in Natural Ancient Mine Using Nuclear Track Detectors: Radiation Dose Assessment

Authors: L. Oufni, M. Amrane, R. Rabi

Abstract:

Radon (and thoron) is a naturally occurring radioactive noble gas, having variable distribution in the geological environment. The exposure of human beings to ionizing radiation from natural sources is a continuing and inescapable feature of life on earth. Radon, thoron and their short-lived decay products in the atmosphere are the most important contributors to human exposure from natural sources. The aim of this study is to determine alpha-and beta-activities per unit volume of air due to radon (222Rn), thoron (220Rn) and their progenies in the air of ancient mine of Aouli in which there is no working activity is situated at approximately 25 km north of the city of Midelt (Morocco), by using LR-115 type II and CR-39 solid state nuclear track detectors (SSNTDs). Equilibrium factors between radon and its daughters and between thoron and its progeny were evaluated in the studied atmospheres. The committed equivalent doses due to the 218Po and 214Po radon short-lived progeny were evaluated in different tissues of the respiratory tract of the visitors of the considered ancient mine. The visitors in these mines spent a good amount of time. It was essential to let the staff know about these values and take the needed steps to prevent any health complications.

Keywords: radon, thoron, concentration, exposure dose, SSNTD, mine

Procedia PDF Downloads 537
950 Data Science-Based Key Factor Analysis and Risk Prediction of Diabetic

Authors: Fei Gao, Rodolfo C. Raga Jr.

Abstract:

This research proposal will ascertain the major risk factors for diabetes and to design a predictive model for risk assessment. The project aims to improve diabetes early detection and management by utilizing data science techniques, which may improve patient outcomes and healthcare efficiency. The phase relation values of each attribute were used to analyze and choose the attributes that might influence the examiner's survival probability using Diabetes Health Indicators Dataset from Kaggle’s data as the research data. We compare and evaluate eight machine learning algorithms. Our investigation begins with comprehensive data preprocessing, including feature engineering and dimensionality reduction, aimed at enhancing data quality. The dataset, comprising health indicators and medical data, serves as a foundation for training and testing these algorithms. A rigorous cross-validation process is applied, and we assess their performance using five key metrics like accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC-ROC). After analyzing the data characteristics, investigate their impact on the likelihood of diabetes and develop corresponding risk indicators.

Keywords: diabetes, risk factors, predictive model, risk assessment, data science techniques, early detection, data analysis, Kaggle

Procedia PDF Downloads 75
949 Pharmacophore-Based Modeling of a Series of Human Glutaminyl Cyclase Inhibitors to Identify Lead Molecules by Virtual Screening, Molecular Docking and Molecular Dynamics Simulation Study

Authors: Ankur Chaudhuri, Sibani Sen Chakraborty

Abstract:

In human, glutaminyl cyclase activity is highly abundant in neuronal and secretory tissues and is preferentially restricted to hypothalamus and pituitary. The N-terminal modification of β-amyloids (Aβs) peptides by the generation of a pyro-glutamyl (pGlu) modified Aβs (pE-Aβs) is an important process in the initiation of the formation of neurotoxic plaques in Alzheimer’s disease (AD). This process is catalyzed by glutaminyl cyclase (QC). The expression of QC is characteristically up-regulated in the early stage of AD, and the hallmark of the inhibition of QC is the prevention of the formation of pE-Aβs and plaques. A computer-aided drug design (CADD) process was employed to give an idea for the designing of potentially active compounds to understand the inhibitory potency against human glutaminyl cyclase (QC). This work elaborates the ligand-based and structure-based pharmacophore exploration of glutaminyl cyclase (QC) by using the known inhibitors. Three dimensional (3D) quantitative structure-activity relationship (QSAR) methods were applied to 154 compounds with known IC50 values. All the inhibitors were divided into two sets, training-set, and test-sets. Generally, training-set was used to build the quantitative pharmacophore model based on the principle of structural diversity, whereas the test-set was employed to evaluate the predictive ability of the pharmacophore hypotheses. A chemical feature-based pharmacophore model was generated from the known 92 training-set compounds by HypoGen module implemented in Discovery Studio 2017 R2 software package. The best hypothesis was selected (Hypo1) based upon the highest correlation coefficient (0.8906), lowest total cost (463.72), and the lowest root mean square deviation (2.24Å) values. The highest correlation coefficient value indicates greater predictive activity of the hypothesis, whereas the lower root mean square deviation signifies a small deviation of experimental activity from the predicted one. The best pharmacophore model (Hypo1) of the candidate inhibitors predicted comprised four features: two hydrogen bond acceptor, one hydrogen bond donor, and one hydrophobic feature. The Hypo1 was validated by several parameters such as test set activity prediction, cost analysis, Fischer's randomization test, leave-one-out method, and heat map of ligand profiler. The predicted features were then used for virtual screening of potential compounds from NCI, ASINEX, Maybridge and Chembridge databases. More than seven million compounds were used for this purpose. The hit compounds were filtered by drug-likeness and pharmacokinetics properties. The selective hits were docked to the high-resolution three-dimensional structure of the target protein glutaminyl cyclase (PDB ID: 2AFU/2AFW) to filter these hits further. To validate the molecular docking results, the most active compound from the dataset was selected as a reference molecule. From the density functional theory (DFT) study, ten molecules were selected based on their highest HOMO (highest occupied molecular orbitals) energy and the lowest bandgap values. Molecular dynamics simulations with explicit solvation systems of the final ten hit compounds revealed that a large number of non-covalent interactions were formed with the binding site of the human glutaminyl cyclase. It was suggested that the hit compounds reported in this study could help in future designing of potent inhibitors as leads against human glutaminyl cyclase.

Keywords: glutaminyl cyclase, hit lead, pharmacophore model, simulation

Procedia PDF Downloads 131
948 Effect of Large English Studies Classes on Linguistic Achievement and Classroom Discourse at Junior Secondary Level in Yobe State

Authors: Clifford Irikefe Gbeyonron

Abstract:

Applied linguists concur that there is low-level achievement in English language use among Nigerian secondary school students. One of the factors that exacerbate this is classroom feature of which large class size is obvious. This study investigated the impact of large classes on learning English as a second language (ESL) at junior secondary school (JSS) in Yobe State. To achieve this, Solomon four-group experimental design was used. 382 subjects were divided into four groups and taught ESL for thirteen weeks. 356 subjects wrote the post-test. Data from the systematic observation and post-test were analyzed via chi square and ANOVA. Results indicated that learners in large classes (LLC) attain lower linguistic progress than learners in small classes (LSC). Furthermore, LSC have more chances to access teacher evaluation and participate actively in classroom discourse than LLC. In consequence, large classes have adverse effects on learning ESL in Yobe State. This is inimical to English language education given that each learner of ESL has their individual peculiarity within each class. It is recommended that strategies that prioritize individualization, grouping, use of language teaching aides, and theorization of innovative models in respect of large classes be considered.

Keywords: large classes, achievement, classroom discourse

Procedia PDF Downloads 409
947 Extraction of Road Edge Lines from High-Resolution Remote Sensing Images Based on Energy Function and Snake Model

Authors: Zuoji Huang, Haiming Qian, Chunlin Wang, Jinyan Sun, Nan Xu

Abstract:

In this paper, the strategy to extract double road edge lines from acquired road stripe image was explored. The workflow is as follows: the road stripes are acquired by probabilistic boosting tree algorithm and morphological algorithm immediately, and road centerlines are detected by thinning algorithm, so the initial road edge lines can be acquired along the road centerlines. Then we refine the results with big variation of local curvature of centerlines. Specifically, the energy function of edge line is constructed by gradient feature and spectral information, and Dijkstra algorithm is used to optimize the initial road edge lines. The Snake model is constructed to solve the fracture problem of intersection, and the discrete dynamic programming algorithm is used to solve the model. After that, we could get the final road network. Experiment results show that the strategy proposed in this paper can be used to extract the continuous and smooth road edge lines from high-resolution remote sensing images with an accuracy of 88% in our study area.

Keywords: road edge lines extraction, energy function, intersection fracture, Snake model

Procedia PDF Downloads 338
946 Sea-Land Segmentation Method Based on the Transformer with Enhanced Edge Supervision

Authors: Lianzhong Zhang, Chao Huang

Abstract:

Sea-land segmentation is a basic step in many tasks such as sea surface monitoring and ship detection. The existing sea-land segmentation algorithms have poor segmentation accuracy, and the parameter adjustments are cumbersome and difficult to meet actual needs. Also, the current sea-land segmentation adopts traditional deep learning models that use Convolutional Neural Networks (CNN). At present, the transformer architecture has achieved great success in the field of natural images, but its application in the field of radar images is less studied. Therefore, this paper proposes a sea-land segmentation method based on the transformer architecture to strengthen edge supervision. It uses a self-attention mechanism with a gating strategy to better learn relative position bias. Meanwhile, an additional edge supervision branch is introduced. The decoder stage allows the feature information of the two branches to interact, thereby improving the edge precision of the sea-land segmentation. Based on the Gaofen-3 satellite image dataset, the experimental results show that the method proposed in this paper can effectively improve the accuracy of sea-land segmentation, especially the accuracy of sea-land edges. The mean IoU (Intersection over Union), edge precision, overall precision, and F1 scores respectively reach 96.36%, 84.54%, 99.74%, and 98.05%, which are superior to those of the mainstream segmentation models and have high practical application values.

Keywords: SAR, sea-land segmentation, deep learning, transformer

Procedia PDF Downloads 181
945 Human Action Recognition Using Variational Bayesian HMM with Dirichlet Process Mixture of Gaussian Wishart Emission Model

Authors: Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park

Abstract:

In this paper, we present the human action recognition method using the variational Bayesian HMM with the Dirichlet process mixture (DPM) of the Gaussian-Wishart emission model (GWEM). First, we define the Bayesian HMM based on the Dirichlet process, which allows an infinite number of Gaussian-Wishart components to support continuous emission observations. Second, we have considered an efficient variational Bayesian inference method that can be applied to drive the posterior distribution of hidden variables and model parameters for the proposed model based on training data. And then we have derived the predictive distribution that may be used to classify new action. Third, the paper proposes a process of extracting appropriate spatial-temporal feature vectors that can be used to recognize a wide range of human behaviors from input video image. Finally, we have conducted experiments that can evaluate the performance of the proposed method. The experimental results show that the method presented is more efficient with human action recognition than existing methods.

Keywords: human action recognition, Bayesian HMM, Dirichlet process mixture model, Gaussian-Wishart emission model, Variational Bayesian inference, prior distribution and approximate posterior distribution, KTH dataset

Procedia PDF Downloads 353
944 Using Satellite Images Datasets for Road Intersection Detection in Route Planning

Authors: Fatma El-Zahraa El-Taher, Ayman Taha, Jane Courtney, Susan Mckeever

Abstract:

Understanding road networks plays an important role in navigation applications such as self-driving vehicles and route planning for individual journeys. Intersections of roads are essential components of road networks. Understanding the features of an intersection, from a simple T-junction to larger multi-road junctions, is critical to decisions such as crossing roads or selecting the safest routes. The identification and profiling of intersections from satellite images is a challenging task. While deep learning approaches offer the state-of-the-art in image classification and detection, the availability of training datasets is a bottleneck in this approach. In this paper, a labelled satellite image dataset for the intersection recognition problem is presented. It consists of 14,692 satellite images of Washington DC, USA. To support other users of the dataset, an automated download and labelling script is provided for dataset replication. The challenges of construction and fine-grained feature labelling of a satellite image dataset is examined, including the issue of how to address features that are spread across multiple images. Finally, the accuracy of the detection of intersections in satellite images is evaluated.

Keywords: satellite images, remote sensing images, data acquisition, autonomous vehicles

Procedia PDF Downloads 145
943 Electroencephalogram Based Approach for Mental Stress Detection during Gameplay with Level Prediction

Authors: Priyadarsini Samal, Rajesh Singla

Abstract:

Many mobile games come with the benefits of entertainment by introducing stress to the human brain. In recognizing this mental stress, the brain-computer interface (BCI) plays an important role. It has various neuroimaging approaches which help in analyzing the brain signals. Electroencephalogram (EEG) is the most commonly used method among them as it is non-invasive, portable, and economical. Here, this paper investigates the pattern in brain signals when introduced with mental stress. Two healthy volunteers played a game whose aim was to search hidden words from the grid, and the levels were chosen randomly. The EEG signals during gameplay were recorded to investigate the impacts of stress with the changing levels from easy to medium to hard. A total of 16 features of EEG were analyzed for this experiment which includes power band features with relative powers, event-related desynchronization, along statistical features. Support vector machine was used as the classifier, which resulted in an accuracy of 93.9% for three-level stress analysis; for two levels, the accuracy of 92% and 98% are achieved. In addition to that, another game that was similar in nature was played by the volunteers. A suitable regression model was designed for prediction where the feature sets of the first and second game were used for testing and training purposes, respectively, and an accuracy of 73% was found.

Keywords: brain computer interface, electroencephalogram, regression model, stress, word search

Procedia PDF Downloads 187
942 Assisted Prediction of Hypertension Based on Heart Rate Variability and Improved Residual Networks

Authors: Yong Zhao, Jian He, Cheng Zhang

Abstract:

Cardiovascular diseases caused by hypertension are extremely threatening to human health, and early diagnosis of hypertension can save a large number of lives. Traditional hypertension detection methods require special equipment and are difficult to detect continuous blood pressure changes. In this regard, this paper first analyzes the principle of heart rate variability (HRV) and introduces sliding window and power spectral density (PSD) to analyze the time domain features and frequency domain features of HRV, and secondly, designs an HRV-based hypertension prediction network by combining Resnet, attention mechanism, and multilayer perceptron, which extracts the frequency domain through the improved ResNet18 features through a modified ResNet18, its fusion with time-domain features through an attention mechanism, and the auxiliary prediction of hypertension through a multilayer perceptron. Finally, the network was trained and tested using the publicly available SHAREE dataset on PhysioNet, and the test results showed that this network achieved 92.06% prediction accuracy for hypertension and outperformed K Near Neighbor(KNN), Bayes, Logistic, and traditional Convolutional Neural Network(CNN) models in prediction performance.

Keywords: feature extraction, heart rate variability, hypertension, residual networks

Procedia PDF Downloads 106
941 A Hybrid Data Mining Algorithm Based System for Intelligent Defence Mission Readiness and Maintenance Scheduling

Authors: Shivam Dwivedi, Sumit Prakash Gupta, Durga Toshniwal

Abstract:

It is a challenging task in today’s date to keep defence forces in the highest state of combat readiness with budgetary constraints. A huge amount of time and money is squandered in the unnecessary and expensive traditional maintenance activities. To overcome this limitation Defence Intelligent Mission Readiness and Maintenance Scheduling System has been proposed, which ameliorates the maintenance system by diagnosing the condition and predicting the maintenance requirements. Based on new data mining algorithms, this system intelligently optimises mission readiness for imminent operations and maintenance scheduling in repair echelons. With modified data mining algorithms such as Weighted Feature Ranking Genetic Algorithm and SVM-Random Forest Linear ensemble, it improves the reliability, availability and safety, alongside reducing maintenance cost and Equipment Out of Action (EOA) time. The results clearly conclude that the introduced algorithms have an edge over the conventional data mining algorithms. The system utilizing the intelligent condition-based maintenance approach improves the operational and maintenance decision strategy of the defence force.

Keywords: condition based maintenance, data mining, defence maintenance, ensemble, genetic algorithms, maintenance scheduling, mission capability

Procedia PDF Downloads 297
940 Statistical Time-Series and Neural Architecture of Malaria Patients Records in Lagos, Nigeria

Authors: Akinbo Razak Yinka, Adesanya Kehinde Kazeem, Oladokun Oluwagbenga Peter

Abstract:

Time series data are sequences of observations collected over a period of time. Such data can be used to predict health outcomes, such as disease progression, mortality, hospitalization, etc. The Statistical approach is based on mathematical models that capture the patterns and trends of the data, such as autocorrelation, seasonality, and noise, while Neural methods are based on artificial neural networks, which are computational models that mimic the structure and function of biological neurons. This paper compared both parametric and non-parametric time series models of patients treated for malaria in Maternal and Child Health Centres in Lagos State, Nigeria. The forecast methods considered linear regression, Integrated Moving Average, ARIMA and SARIMA Modeling for the parametric approach, while Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM) Network were used for the non-parametric model. The performance of each method is evaluated using the Mean Absolute Error (MAE), R-squared (R2) and Root Mean Square Error (RMSE) as criteria to determine the accuracy of each model. The study revealed that the best performance in terms of error was found in MLP, followed by the LSTM and ARIMA models. In addition, the Bootstrap Aggregating technique was used to make robust forecasts when there are uncertainties in the data.

Keywords: ARIMA, bootstrap aggregation, MLP, LSTM, SARIMA, time-series analysis

Procedia PDF Downloads 75
939 Bhumastra “Unmanned Ground Vehicle”

Authors: Vivek Krishna, Nikhil Jain, A. Mary Posonia A., Albert Mayan J

Abstract:

Terrorism and insurgency are significant global issues that require constant attention and effort from governments and scientists worldwide. To combat these threats, nations invest billions of dollars in developing new defensive technologies to protect civilians. Breakthroughs in vehicle automation have led to the use of sophisticated machines for many dangerous and critical anti-terrorist activities. Our concept of an "Unmanned Ground Vehicle" can carry out tasks such as border security, surveillance, mine detection, and active combat independently or in tandem with human control. The robot's movement can be wirelessly controlled by a person in a distant location or can travel to a pre-programmed destination autonomously in situations where personal control is not feasible. Our defence system comprises two units: the control unit that regulates mobility and the motion tracking unit. The remote operator robot uses the camera's live visual feed to manually operate both units, and the rover can automatically detect movement. The rover is operated by manpower who controls it using a joystick or mouse, and a wireless modem enables a soldier in a combat zone to control the rover via an additional controller feature.

Keywords: robotics, computer vision, Machine learning, Artificial intelligence, future of AI

Procedia PDF Downloads 125
938 Design and Construction of Models of Sun Tracker or Sun Tracking System for Light Transmission

Authors: Mohsen Azarmjoo, Yasaman Azarmjoo, Zahra Alikhani Koopaei

Abstract:

This article introduces devices that can transfer sunlight to buildings that do not have access to direct sunlight during the day. The transmission and reflection of sunlight are done through the movement of movable mirrors. The focus of this article is on two models of sun tracker systems designed and built by the Macad team. In fact, this article will reveal the distinction between the two Macad devices and the previously built competitor device. What distinguishes the devices built by the Macad team from the competitor's device is the different mode of operation and the difference in the location of the sensors. Given that the devices have the same results, the Macad team has tried to reduce the defects of the competitor's device as much as possible. The special feature of the second type of device built by the Macad team has enabled buildings with different construction positions to use sun tracking systems. This article will also discuss diagrams of the path of sunlight transmission and more details of the device. It is worth mentioning that fixed mirrors are also placed next to the main devices. So that the light shining on the first device is reflected to these mirrors, this light is guided within the light receiver space and is transferred to the different parts around by steel sheets built in the light receiver space, and finally, these spaces benefit from sunlight.

Keywords: design, construction, mechatronic device, sun tracker system, sun tracker, sunlight

Procedia PDF Downloads 84
937 Sustainable Development: Evaluation of an Urban Neighborhood

Authors: Harith Mohammed Benbouali

Abstract:

The concept of sustainable development is becoming increasingly important in our society. The efforts of specialized agencies, cleverly portrayed in the media, allow a widespread environmental awareness. Far from the old environmental movement in the backward-looking nostalgia, the environment is combined with today's progress. Many areas now include these concerns in their efforts, this in order to try to reduce the negative impact of human activities on the environment. The quantitative dimension of development has given way to the quality aspect. However, this feature is not common, and the initial target was abandoned in favor of economic considerations. Specialists in the field of building and construction have constantly sought to further integrate the environmental dimension, creating a seal of high environmental quality buildings. The pursuit of well-being of neighborhood residents and the quality of buildings are also a hot topic in planning. Quality of life is considered so on, since financial concerns dominate to the detriment of the environment and the welfare of the occupants. This work concerns the development of an analytical method based on multiple indicators of objectives across the district. The quantification of indicators related to objectives allows the construction professional, the developer or the community, to quantify and compare different alternatives for development of a neighborhood. This quantification is based on the use of simulation tools and a multi-criteria aggregation.

Keywords: sustainable development, environment, district, indicators, multi-criteria analysis, evaluation

Procedia PDF Downloads 312
936 A Vertical-Axis Unidirectional Rotor with Nested Blades for Wave Energy Conversion

Authors: Yingchen Yang

Abstract:

In the present work, development of a new vertical-axis unidirectional wave rotor is reported. The wave rotor is a key component of a wave energy converter (WEC), which harvests energy from ocean waves. Differing from the huge majority of WEC designs that perform reciprocating motions (heaving up and down, swaying back and forth, etc.), our wave rotor performs unidirectional rotation about a vertical axis when directly exposed in waves. The unidirectional feature of the rotor makes the rotor respond well in a wide range of the wave frequency. The vertical axis arrangement of the rotor makes the rotor insensitive to the wave propagation direction. The rotor employs blades with a cross-section in an airfoil shape and a span curled into a semi-oval shape. Two sets of blades, with one nested inside the other, constitute the rotor. In waves, water particles perform an omnidirectional motion that constantly changes in both spatial and temporal domains. The blade nesting permits a compact rotor configuration that ‘sees’ a relatively uniform local flow in the spatial domain. The rotor was experimentally tested in simulated waves in a wave flume under various conditions. The testing results show a promising unidirectional rotor that is capable of extracting energy from waves at a capture width ratio of 0.08 to 0.15, depending on detailed wave conditions.

Keywords: unidirectional, vertical axis, wave energy converter, wave rotor

Procedia PDF Downloads 237
935 Offline Signature Verification Using Minutiae and Curvature Orientation

Authors: Khaled Nagaty, Heba Nagaty, Gerard McKee

Abstract:

A signature is a behavioral biometric that is used for authenticating users in most financial and legal transactions. Signatures can be easily forged by skilled forgers. Therefore, it is essential to verify whether a signature is genuine or forged. The aim of any signature verification algorithm is to accommodate the differences between signatures of the same person and increase the ability to discriminate between signatures of different persons. This work presented in this paper proposes an automatic signature verification system to indicate whether a signature is genuine or not. The system comprises four phases: (1) The pre-processing phase in which image scaling, binarization, image rotation, dilation, thinning, and connecting ridge breaks are applied. (2) The feature extraction phase in which global and local features are extracted. The local features are minutiae points, curvature orientation, and curve plateau. The global features are signature area, signature aspect ratio, and Hu moments. (3) The post-processing phase, in which false minutiae are removed. (4) The classification phase in which features are enhanced before feeding it into the classifier. k-nearest neighbors and support vector machines are used. The classifier was trained on a benchmark dataset to compare the performance of the proposed offline signature verification system against the state-of-the-art. The accuracy of the proposed system is 92.3%.

Keywords: signature, ridge breaks, minutiae, orientation

Procedia PDF Downloads 146
934 EEG-Based Classification of Psychiatric Disorders: Bipolar Mood Disorder vs. Schizophrenia

Authors: Han-Jeong Hwang, Jae-Hyun Jo, Fatemeh Alimardani

Abstract:

An accurate diagnosis of psychiatric diseases is a challenging issue, in particular when distinct symptoms for different diseases are overlapped, such as delusions appeared in bipolar mood disorder (BMD) and schizophrenia (SCH). In the present study, we propose a useful way to discriminate BMD and SCH using electroencephalography (EEG). A total of thirty BMD and SCH patients (15 vs. 15) took part in our experiment. EEG signals were measured with nineteen electrodes attached on the scalp using the international 10-20 system, while they were exposed to a visual stimulus flickering at 16 Hz for 95 s. The flickering visual stimulus induces a certain brain signal, known as steady-state visual evoked potential (SSVEP), which is differently observed in patients with BMD and SCH, respectively, in terms of SSVEP amplitude because they process the same visual information in own unique way. For classifying BDM and SCH patients, machine learning technique was employed in which leave-one-out-cross validation was performed. The SSVEPs induced at the fundamental (16 Hz) and second harmonic (32 Hz) stimulation frequencies were extracted using fast Fourier transformation (FFT), and they were used as features. The most discriminative feature was selected using the Fisher score, and support vector machine (SVM) was used as a classifier. From the analysis, we could obtain a classification accuracy of 83.33 %, showing the feasibility of discriminating patients with BMD and SCH using EEG. We expect that our approach can be utilized for psychiatrists to more accurately diagnose the psychiatric disorders, BMD and SCH.

Keywords: bipolar mood disorder, electroencephalography, schizophrenia, machine learning

Procedia PDF Downloads 422
933 Case Report: Clinical Improvement of Forbrain Neurologic Signs in 3- Month- Old Persian Mastiff Dog with Calvarial Hyperostosis Syndrome after Corticosteroid, Antiepileptic and Antibiotic Therapy

Authors: Hamidreza Jahani, Zahra Salehzadeh, Ehsan Amini, Mohsen Tohidifar

Abstract:

Calvarial Hyperostosis Syndrome (CHS) is a benign bone disease of the skull. It is a non-neoplastic and proliferative bone disease, and the main feature of the disease is progressive and asymmetrical bone involvement. CHS is mostly reported in young male and female bullmastiff dogs and less frequently in other breeds. The etiology of CHS is unknown. This is the first case report of CHS in Iran. A 3-month-old male Persian Mastiff was presented with chief complaints of multiple episodes of seizure, pacing, bizarre behavior, delayed growth, head pressing, and difficulty in opening the mouth. Central blindness and open fontanelles were observed in clinical examination. No abnormality was found in the complete blood count and routine blood biochemical tests. CT scan findings include cortical thickening of frontal and parietal bones and enlargement of the left retropharyngeal lymph node. For treatment, oral clindamycin for two weeks, prednisolone and phenobarbital for one month, respectively, were administrated, and the case showed improvement after a week and recovered after one month.

Keywords: calvarial hyperostosis, Persian Mastiff, frontal bone, seizure

Procedia PDF Downloads 139
932 Thermal Vacuum Chamber Test Result for CubeSat Transmitter

Authors: Fitri D. Jaswar, Tharek A. Rahman, Yasser A. Ahmad

Abstract:

CubeSat in low earth orbit (LEO) mainly uses ultra high frequency (UHF) transmitter with fixed radio frequency (RF) output power to download the telemetry and the payload data. The transmitter consumes large amount of electrical energy during the transmission considering the limited satellite size of a CubeSat. A transmitter with power control ability is designed to achieve optimize the signal to noise ratio (SNR) and efficient power consumption. In this paper, the thermal vacuum chamber (TVAC) test is performed to validate the performance of the UHF band transmitter with power control capability. The TVAC is used to simulate the satellite condition in the outer space environment. The TVAC test was conducted at the Laboratory of Spacecraft Environment Interaction Engineering, Kyushu Institute of Technology, Japan. The TVAC test used 4 thermal cycles starting from +60°C to -20°C for the temperature setting. The pressure condition inside chamber was less than 10-5Pa. During the test, the UHF transmitter is integrated in a CubeSat configuration with other CubeSat subsystem such as on board computer (OBC), power module, and satellite structure. The system is validated and verified through its performance in terms of its frequency stability and the RF output power. The UHF band transmitter output power is tested from 0.5W to 2W according the satellite mode of operations and the satellite power limitations. The frequency stability is measured and the performance obtained is less than 2 ppm in the tested operating temperature range. The test demonstrates the RF output power is adjustable in a thermal vacuum condition.

Keywords: communication system, CubeSat, SNR, UHF transmitter

Procedia PDF Downloads 264
931 An Investigation of Challenges in Implementing Sustainable Supply Chain Management for Construction Industry in Thailand by Interpretive Structural Model Approach

Authors: Shaolan Zou, Kullapa Soratana

Abstract:

Construction industry faces tremendous challenges in sustainability issue in recent years. Building materials, generally, are non-recyclable with short service life time, leading to economic loss. Building sites also cause social issues, e.g. noise, hazardous substances, and particulate matters. Sustainable supply chain management (SSCM) has been recognized as an appropriate method to balance three pillars of sustainability: environment, economy, and society. However, most of construction companies cannot successfully adopt SSCM due to numerous challenges. In this study, a list of challenges in implementing SSCM was collected from peer-reviewed literature on sustainable implementation. A building materials company in Thailand, which has successfully adopted SSCM for almost two decades and established the sustainable development committee since 1995, was used as a case study. Management-level representatives in sustainability department of the company were interviewed, mainly, to examine which challenges on the list complies with the company’s condition when adopting SSCM. The interview result was analyzed by interpretive structural model (ISM) with sustainability experts’ opinions to identify top 5 influential challenges. The results could assist a building construction company in assigning appropriate strategies to overcome most influential barriers, as well as in using as a reference or guidance for other construction companies adopting SSCM.

Keywords: sustainable supply chain management, challenges, construction industry, interpretive structural model

Procedia PDF Downloads 181
930 The Use of Boosted Multivariate Trees in Medical Decision-Making for Repeated Measurements

Authors: Ebru Turgal, Beyza Doganay Erdogan

Abstract:

Machine learning aims to model the relationship between the response and features. Medical decision-making researchers would like to make decisions about patients’ course and treatment, by examining the repeated measurements over time. Boosting approach is now being used in machine learning area for these aims as an influential tool. The aim of this study is to show the usage of multivariate tree boosting in this field. The main reason for utilizing this approach in the field of decision-making is the ease solutions of complex relationships. To show how multivariate tree boosting method can be used to identify important features and feature-time interaction, we used the data, which was collected retrospectively from Ankara University Chest Diseases Department records. Dataset includes repeated PF ratio measurements. The follow-up time is planned for 120 hours. A set of different models is tested. In conclusion, main idea of classification with weighed combination of classifiers is a reliable method which was shown with simulations several times. Furthermore, time varying variables will be taken into consideration within this concept and it could be possible to make accurate decisions about regression and survival problems.

Keywords: boosted multivariate trees, longitudinal data, multivariate regression tree, panel data

Procedia PDF Downloads 203
929 Machine Learning Predictive Models for Hydroponic Systems: A Case Study Nutrient Film Technique and Deep Flow Technique

Authors: Kritiyaporn Kunsook

Abstract:

Machine learning algorithms (MLAs) such us artificial neural networks (ANNs), decision tree, support vector machines (SVMs), Naïve Bayes, and ensemble classifier by voting are powerful data driven methods that are relatively less widely used in the mapping of technique of system, and thus have not been comparatively evaluated together thoroughly in this field. The performances of a series of MLAs, ANNs, decision tree, SVMs, Naïve Bayes, and ensemble classifier by voting in technique of hydroponic systems prospectively modeling are compared based on the accuracy of each model. Classification of hydroponic systems only covers the test samples from vegetables grown with Nutrient film technique (NFT) and Deep flow technique (DFT). The feature, which are the characteristics of vegetables compose harvesting height width, temperature, require light and color. The results indicate that the classification performance of the ANNs is 98%, decision tree is 98%, SVMs is 97.33%, Naïve Bayes is 96.67%, and ensemble classifier by voting is 98.96% algorithm respectively.

Keywords: artificial neural networks, decision tree, support vector machines, naïve Bayes, ensemble classifier by voting

Procedia PDF Downloads 372