Search results for: clustering images
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2956

Search results for: clustering images

1276 Cinema Reception in a Digital World: A Study of Cinema Audiences in India

Authors: Sanjay Ranade

Abstract:

Traditional film theory assumes the cinema audience in a darkened room where cinema is projected on to a white screen, and the audience suspends their sense of reality. Shifts in audiences due to changes in cultural tastes or trends have been studied for decades. In the past two decades, however, the audience, especially the youth, has shifted to digital media for the consumption of cinema. As a result, not only are audiences watching cinema on different devices, they are also consuming cinema in places and ways never imagined before. Public transport often crowded to the brim with a lot of ambient content, and a variety of workplaces have become sites for cinema viewing. Cinema is watched piecemeal and at different times of the day. Audiences use devices such as mobile phones and tablets to watch cinema. The cinema viewing experience is getting redesigned by the user. The emerging design allows the spectator to not only consume images and narratives but also produce, reproduce, and manipulate existing images and narratives, thereby participating in the process and influencing it. Spectatorship studies stress on the importance of subjectivity when dealing with the structure of the film text and the cultural and psychological implications in the engagement between the spectator and the film text. Indian cinema has been booming and contributing to global movie production significantly. In 2005 film production was 1000 films a year and doubled to 2000 by 2016. Digital technology helped push this growth in 2012. Film studies in India have had a decided Euro-American bias. The studies have chiefly analysed the content for ideological leanings or myth or as reflections of society, societal changes, or articulation of identity or presented retrospectives of directors, actors, music directors, etc. The one factor relegated to the background has been the spectator. If they have been addressed, they are treated as a collective of class or gender. India has a performative tradition going back several centuries. How Indians receive cinema is an important aspect to study with respect to film studies. This exploratory and descriptive study looked at 162 young media students studying cinema at the undergraduate and postgraduate levels. The students, speaking as many as 20 languages amongst them, were drawn from across the country’s media schools. The study looked at nine film societies registered with the Federation of Film Societies of India. A structured questionnaire was made and distributed online through media teachers for the students. The film societies were approached through the regional office of the FFSI in Mumbai. Lastly, group discussions were held in Mumbai with students and teachers of media. A group consisted of between five and twelve student participants, along with one or two teachers. All the respondents looked at themselves as spectators and shared their experiences of spectators of cinema, providing a very rich insight into Indian conditions of viewing cinema and challenges for cinema ahead.

Keywords: audience, digital, film studies, reception, reception spectatorship

Procedia PDF Downloads 130
1275 Gauging Floral Resources for Pollinators Using High Resolution Drone Imagery

Authors: Nicholas Anderson, Steven Petersen, Tom Bates, Val Anderson

Abstract:

Under the multiple-use management regime established in the United States for federally owned lands, government agencies have come under pressure from commercial apiaries to grant permits for the summer pasturing of honeybees on government lands. Federal agencies have struggled to integrate honeybees into their management plans and have little information to make regulations that resolve how many colonies should be allowed in a single location and at what distance sets of hives should be placed. Many conservation groups have voiced their concerns regarding the introduction of honeybees to these natural lands, as they may outcompete and displace native pollinating species. Assessing the quality of an area in regard to its floral resources, pollen, and nectar can be important when attempting to create regulations for the integration of commercial honeybee operations into a native ecosystem. Areas with greater floral resources may be able to support larger numbers of honeybee colonies, while poorer resource areas may be less resilient to introduced disturbances. Attempts are made in this study to determine flower cover using high resolution drone imagery to help assess the floral resource availability to pollinators in high elevation, tall forb communities. This knowledge will help in determining the potential that different areas may have for honeybee pasturing and honey production. Roughly 700 images were captured at 23m above ground level using a drone equipped with a Sony QX1 RGB 20-megapixel camera. These images were stitched together using Pix4D, resulting in a 60m diameter high-resolution mosaic of a tall forb meadow. Using the program ENVI, a supervised maximum likelihood classification was conducted to calculate the percentage of total flower cover and flower cover by color (blue, white, and yellow). A complete vegetation inventory was taken on site, and the major flowers contributing to each color class were noted. An accuracy assessment was performed on the classification yielding an 89% overall accuracy and a Kappa Statistic of 0.855. With this level of accuracy, drones provide an affordable and time efficient method for the assessment of floral cover in large areas. The proximal step of this project will now be to determine the average pollen and nectar loads carried by each flower species. The addition of this knowledge will result in a quantifiable method of measuring pollen and nectar resources of entire landscapes. This information will not only help land managers determine stocking rates for honeybees on public lands but also has applications in the agricultural setting, aiding producers in the determination of the number of honeybee colonies necessary for proper pollination of fruit and nut crops.

Keywords: honeybee, flower, pollinator, remote sensing

Procedia PDF Downloads 141
1274 Non-Destructive Testing of Metal Pipes with Ultrasonic Sensors Based on Determination of Maximum Ultrasonic Frequency

Authors: Herlina Abdul Rahim, Javad Abbaszadeh, Ruzairi Abdul Rahim

Abstract:

In this research, the non-invasive ultrasonic transmission tomography is investigated. In order to model the ultrasonic wave scattering for different thickness of metal pipes, two-dimensional (2D) finite element modeling (FEM) has been utilized. The wall thickness variation of the metal pipe and its influence on propagation of the ultrasonic pressure wave are explored in this paper, includes frequency analysing in order to find the maximum applicable frequency. The simulation results have been compared to experimental data and are shown to provide key insight for this well-defined experimental case by explaining the achieved reconstructed images from experimental setup. Finally, the experimental results which are useful for further investigation for the application of ultrasonic transmission tomography in industry are illustrated.

Keywords: ultrasonic transmission tomography, ultrasonic sensors, ultrasonic wave, non-invasive tomography, metal pipe

Procedia PDF Downloads 359
1273 Deep Neural Network Approach for Navigation of Autonomous Vehicles

Authors: Mayank Raj, V. G. Narendra

Abstract:

Ever since the DARPA challenge on autonomous vehicles in 2005, there has been a lot of buzz about ‘Autonomous Vehicles’ amongst the major tech giants such as Google, Uber, and Tesla. Numerous approaches have been adopted to solve this problem, which can have a long-lasting impact on mankind. In this paper, we have used Deep Learning techniques and TensorFlow framework with the goal of building a neural network model to predict (speed, acceleration, steering angle, and brake) features needed for navigation of autonomous vehicles. The Deep Neural Network has been trained on images and sensor data obtained from the comma.ai dataset. A heatmap was used to check for correlation among the features, and finally, four important features were selected. This was a multivariate regression problem. The final model had five convolutional layers, followed by five dense layers. Finally, the calculated values were tested against the labeled data, where the mean squared error was used as a performance metric.

Keywords: autonomous vehicles, deep learning, computer vision, artificial intelligence

Procedia PDF Downloads 158
1272 Digital Subsistence of Cultural Heritage: Digital Media as a New Dimension of Cultural Ecology

Authors: Dan Luo

Abstract:

With the climate change can exacerbate exposure of cultural heritage to climatic stressors, scholars pin their hope on digital technology can help the site avoid surprises. Virtual museum has been regarded as a highly effective technology that enables people to gain enjoyable visiting experience and immersive information about cultural heritage. The technology clearly reproduces the images of the tangible cultural heritage, and the aesthetic experience created by new media helps consumers escape from the realistic environment full of uncertainty. The new cultural anchor has appeared outside the cultural sites. This article synthesizes the international literature on the virtual museum by developing diagrams of Citespace focusing on the tangible cultural heritage and the alarmingly situation has emerged in the process of resolving climate change: (1) Digital collections are the different cultural assets for public. (2) The media ecology change people ways of thinking and meeting style of cultural heritage. (3) Cultural heritage may live forever in the digital world. This article provides a typical practice information to manage cultural heritage in a changing climate—the Dunhuang Mogao Grottoes in the far northwest of China, which is a worldwide cultural heritage site famous for its remarkable and sumptuous murals. This monument is a typical synthesis of art containing 735 Buddhist temples, which was listed by UNESCO as one of the World Cultural Heritage sites. The caves contain some extraordinary examples of Buddhist art spanning a period of 1,000 years - the architectural form, the sculptures in the caves, and the murals on the walls, all together constitute a wonderful aesthetic experience. Unfortunately, this magnificent treasure cave has been threatened by increasingly frequent dust storms and precipitation. The Dunhuang Academy has been using digital technology since the last century to preserve these immovable cultural heritages, especially the murals in the caves. And then, Dunhuang culture has become a new media culture after introduce the art to the world audience through exhibitions, VR, video, etc. The paper chooses qualitative research method that used Nvivo software to encode the collected material to answer this question. The author paid close attention to the survey in Dunhuang City, including participated in 10 exhibition and 20 salons that are Dunhuang-themed on network. What’s more, 308 visitors were interviewed who are fans of the art and have experienced Dunhuang culture online(6-75 years).These interviewees have been exposed to Dunhuang culture through different media, and they are acutely aware of the threat to this cultural heritage. The conclusion is that the unique halo of the cultural heritage was always emphasized, and digital media breeds twin brothers of cultural heritage. In addition, the digital media make it possible for cultural heritage to reintegrate into the daily life of the masses. Visitors gain the opportunity to imitate the mural figures through enlarged or emphasized images but also lose the perspective of understanding the whole cultural life. New media construct a new life aesthetics apart from the Authorized heritage discourse.

Keywords: cultural ecology, digital twins, life aesthetics, media

Procedia PDF Downloads 81
1271 Utilizing Federated Learning for Accurate Prediction of COVID-19 from CT Scan Images

Authors: Jinil Patel, Sarthak Patel, Sarthak Thakkar, Deepti Saraswat

Abstract:

Recently, the COVID-19 outbreak has spread across the world, leading the World Health Organization to classify it as a global pandemic. To save the patient’s life, the COVID-19 symptoms have to be identified. But using an AI (Artificial Intelligence) model to identify COVID-19 symptoms within the allotted time was challenging. The RT-PCR test was found to be inadequate in determining the COVID status of a patient. To determine if the patient has COVID-19 or not, a Computed Tomography Scan (CT scan) of patient is a better alternative. It will be challenging to compile and store all the data from various hospitals on the server, though. Federated learning, therefore, aids in resolving this problem. Certain deep learning models help to classify Covid-19. This paper will have detailed work of certain deep learning models like VGG19, ResNet50, MobileNEtv2, and Deep Learning Aggregation (DLA) along with maintaining privacy with encryption.

Keywords: federated learning, COVID-19, CT-scan, homomorphic encryption, ResNet50, VGG-19, MobileNetv2, DLA

Procedia PDF Downloads 73
1270 Novel Algorithm for Restoration of Retina Images

Authors: P. Subbuthai, S. Muruganand

Abstract:

Diabetic Retinopathy is one of the complicated diseases and it is caused by the changes in the blood vessels of the retina. Extraction of retina image through Fundus camera sometimes produced poor contrast and noises. Because of this noise, detection of blood vessels in the retina is very complicated. So preprocessing is needed, in this paper, a novel algorithm is implemented to remove the noisy pixel in the retina image. The proposed algorithm is Extended Median Filter and it is applied to the green channel of the retina because green channel vessels are brighter than the background. Proposed extended median filter is compared with the existing standard median filter by performance metrics such as PSNR, MSE and RMSE. Experimental results show that the proposed Extended Median Filter algorithm gives a better result than the existing standard median filter in terms of noise suppression and detail preservation.

Keywords: fundus retina image, diabetic retinopathy, median filter, microaneurysms, exudates

Procedia PDF Downloads 342
1269 Non-Destructing Testing of Sandstones from Unconventional Reservoir in Poland with Use of Ultrasonic Pulse Velocity Technique and X-Ray Computed Microtomography

Authors: Michał Maksimczuk, Łukasz Kaczmarek, Tomasz Wejrzanowski

Abstract:

This study concerns high-resolution X-ray computed microtomography (µCT) and ultrasonic pulse analysis of Cambrian sandstones from a borehole located in the Baltic Sea Coast of northern Poland. µCT and ultrasonic technique are non-destructive methods commonly used to determine the internal structure of reservoir rock sample. The spatial resolution of the µCT images obtained was 27 µm, which enabled the author to create accurate 3-D visualizations of structure geometry and to calculate the ratio of pores volume to the total sample volume. A copper X-ray source filter was used to reduce image artifacts. Furthermore, samples Young’s modulus and Poisson ratio were obtained with use of ultrasonic pulse technique. µCT and ultrasonic pulse technique provide complex information which can be used for explorations and characterization of reservoir rocks.

Keywords: elastic parameters, linear absorption coefficient, northern Poland, tight gas

Procedia PDF Downloads 251
1268 A Review of Blog Assisted Language Learning Research: Based on Bibliometric Analysis

Authors: Bo Ning Lyu

Abstract:

Blog assisted language learning (BALL) has been trialed by educators in language teaching with the development of Web 2.0 technology. Understanding the development trend of related research helps grasp the whole picture of the use of blog in language education. This paper reviews current research related to blogs enhanced language learning based on bibliometric analysis, aiming at (1) identifying the most frequently used keywords and their co-occurrence, (2) clustering research topics based on co-citation analysis, (3) finding the most frequently cited studies and authors and (4) constructing the co-authorship network. 330 articles were searched out in Web of Science, 225 peer-viewed journal papers were finally collected according to selection criteria. Bibexcel and VOSviewer were used to visualize the results. Studies reviewed were published between 2005 to 2016, most in the year of 2014 and 2015 (35 papers respectively). The top 10 most frequently appeared keywords are learning, language, blog, teaching, writing, social, web 2.0, technology, English, communication. 8 research themes could be clustered by co-citation analysis: blogging for collaborative learning, blogging for writing skills, blogging in higher education, feedback via blogs, blogging for self-regulated learning, implementation of using blogs in classroom, comparative studies and audio/video blogs. Early studies focused on the introduction of the classroom implementation while recent studies moved to the audio/video blogs from their traditional usage. By reviewing the research related to BALL quantitatively and objectively, this paper reveals the evolution and development trends as well as identifies influential research, helping researchers and educators quickly grasp this field overall and conducting further studies.

Keywords: blog, bibliometric analysis, language learning, literature review

Procedia PDF Downloads 210
1267 Principles of Music Composition in Impressionism by Focusing on Claude Debussy and Maurice Ravel’s Piano Works

Authors: Parham Bakhtiari

Abstract:

The essence of Musical Impressionism is best captured in the compositions of Claude Debussy and Maurice Ravel. These two important individuals represent the core of this art form, with their piano compositions remaining significant, impactful, and commonly performed in contemporary times. Their piano works reflected a revolutionary compositional style that strayed from classical romanticism and drew heavy inspiration from Symbolist poets and Asian arts. Additionally, numerous technical applications are commonly utilized to exemplify the principles of impressionism style by composers who did not frequently use them in prior eras, resulting in effectively evoking impressionistic images through diverse sonorities. The goal of this study is to showcase the range of impressionistic elements and compositional techniques, such as dissonances, pentatonic and whole-tone scales, parallel movements, and polytonality, through an examination of their piano compositions.

Keywords: music, impressionism, Debussy, ravel, piano, composition

Procedia PDF Downloads 38
1266 Preserved Relative Differences between Regions of Different Thermal Scans

Authors: Tahir Majeed, Michael Handschuh, René Meier

Abstract:

Rheumatoid arthritis patients have swelling and pain at the joints of the hand. The regions where the patient feels pain also show increased body temperature. Thermal cameras can be used to detect the rise in temperature of the affected regions. To monitor the disease progression of rheumatoid arthritis patients, they must visit the clinic regularly for scanning and examination. After scanning and evaluation, the dosage of the medicine is regulated accordingly. To monitor the disease progression over time, the correlation between the images between different visits must be established. It has been observed that by using low-cost thermal cameras, the thermal measurements do not remain the same over time, even within a single scanning. In some situations, temperatures can vary as much as 2°C within the same scanning sequence. In this paper, it has been shown that although the absolute temperature varies over time, the relative difference between the different regions remains similar. Results have been computed over four scanning sequences and are presented.

Keywords: relative thermal difference, rheumatoid arthritis, thermal imaging, thermal sensors

Procedia PDF Downloads 196
1265 Low Overhead Dynamic Channel Selection with Cluster-Based Spatial-Temporal Station Reporting in Wireless Networks

Authors: Zeyad Abdelmageid, Xianbin Wang

Abstract:

Choosing the operational channel for a WLAN access point (AP) in WLAN networks has been a static channel assignment process initiated by the user during the deployment process of the AP, which fails to cope with the dynamic conditions of the assigned channel at the station side afterward. However, the dramatically growing number of Wi-Fi APs and stations operating in the unlicensed band has led to dynamic, distributed, and often severe interference. This highlights the urgent need for the AP to dynamically select the best overall channel of operation for the basic service set (BSS) by considering the distributed and changing channel conditions at all stations. Consequently, dynamic channel selection algorithms which consider feedback from the station side have been developed. Despite the significant performance improvement, existing channel selection algorithms suffer from very high feedback overhead. Feedback latency from the STAs, due to the high overhead, can cause the eventually selected channel to no longer be optimal for operation due to the dynamic sharing nature of the unlicensed band. This has inspired us to develop our own dynamic channel selection algorithm with reduced overhead through the proposed low-overhead, cluster-based station reporting mechanism. The main idea behind the cluster-based station reporting is the observation that STAs which are very close to each other tend to have very similar channel conditions. Instead of requesting each STA to report on every candidate channel while causing high overhead, the AP divides STAs into clusters then assigns each STA in each cluster one channel to report feedback on. With the proper design of the cluster based reporting, the AP does not lose any information about the channel conditions at the station side while reducing feedback overhead. The simulation results show equal performance and, at times, better performance with a fraction of the overhead. We believe that this algorithm has great potential in designing future dynamic channel selection algorithms with low overhead.

Keywords: channel assignment, Wi-Fi networks, clustering, DBSCAN, overhead

Procedia PDF Downloads 118
1264 Analysis of Travel Behavior Patterns of Frequent Passengers after the Section Shutdown of Urban Rail Transit - Taking the Huaqiao Section of Shanghai Metro Line 11 Shutdown During the COVID-19 Epidemic as an Example

Authors: Hongyun Li, Zhibin Jiang

Abstract:

The travel of passengers in the urban rail transit network is influenced by changes in network structure and operational status, and the response of individual travel preferences to these changes also varies. Firstly, the influence of the suspension of urban rail transit line sections on passenger travel along the line is analyzed. Secondly, passenger travel trajectories containing multi-dimensional semantics are described based on network UD data. Next, passenger panel data based on spatio-temporal sequences is constructed to achieve frequent passenger clustering. Then, the Graph Convolutional Network (GCN) is used to model and identify the changes in travel modes of different types of frequent passengers. Finally, taking Shanghai Metro Line 11 as an example, the travel behavior patterns of frequent passengers after the Huaqiao section shutdown during the COVID-19 epidemic are analyzed. The results showed that after the section shutdown, most passengers would transfer to the nearest Anting station for boarding, while some passengers would transfer to other stations for boarding or cancel their travels directly. Among the passengers who transferred to Anting station for boarding, most of passengers maintained the original normalized travel mode, a small number of passengers waited for a few days before transferring to Anting station for boarding, and only a few number of passengers stopped traveling at Anting station or transferred to other stations after a few days of boarding on Anting station. The results can provide a basis for understanding urban rail transit passenger travel patterns and improving the accuracy of passenger flow prediction in abnormal operation scenarios.

Keywords: urban rail transit, section shutdown, frequent passenger, travel behavior pattern

Procedia PDF Downloads 84
1263 Morphological Features Fusion for Identifying INBREAST-Database Masses Using Neural Networks and Support Vector Machines

Authors: Nadia el Atlas, Mohammed el Aroussi, Mohammed Wahbi

Abstract:

In this paper a novel technique of mass characterization based on robust features-fusion is presented. The proposed method consists of mainly four stages: (a) the first phase involves segmenting the masses using edge information’s. (b) The second phase is to calculate and fuse the most relevant morphological features. (c) The last phase is the classification step which allows us to classify the images into benign and malignant masses. In this step we have implemented Support Vectors Machines (SVM) and Artificial Neural Networks (ANN), which were evaluated with the following performance criteria: confusion matrix, accuracy, sensitivity, specificity, receiver operating characteristic ROC, and error histogram. The effectiveness of this new approach was evaluated by a recently developed database: INBREAST database. The fusion of the most appropriate morphological features provided very good results. The SVM gives accuracy to within 64.3%. Whereas the ANN classifier gives better results with an accuracy of 97.5%.

Keywords: breast cancer, mammography, CAD system, features, fusion

Procedia PDF Downloads 599
1262 A Hybrid Multi-Criteria Hotel Recommender System Using Explicit and Implicit Feedbacks

Authors: Ashkan Ebadi, Adam Krzyzak

Abstract:

Recommender systems, also known as recommender engines, have become an important research area and are now being applied in various fields. In addition, the techniques behind the recommender systems have been improved over the time. In general, such systems help users to find their required products or services (e.g. books, music) through analyzing and aggregating other users’ activities and behavior, mainly in form of reviews, and making the best recommendations. The recommendations can facilitate user’s decision making process. Despite the wide literature on the topic, using multiple data sources of different types as the input has not been widely studied. Recommender systems can benefit from the high availability of digital data to collect the input data of different types which implicitly or explicitly help the system to improve its accuracy. Moreover, most of the existing research in this area is based on single rating measures in which a single rating is used to link users to items. This paper proposes a highly accurate hotel recommender system, implemented in various layers. Using multi-aspect rating system and benefitting from large-scale data of different types, the recommender system suggests hotels that are personalized and tailored for the given user. The system employs natural language processing and topic modelling techniques to assess the sentiment of the users’ reviews and extract implicit features. The entire recommender engine contains multiple sub-systems, namely users clustering, matrix factorization module, and hybrid recommender system. Each sub-system contributes to the final composite set of recommendations through covering a specific aspect of the problem. The accuracy of the proposed recommender system has been tested intensively where the results confirm the high performance of the system.

Keywords: tourism, hotel recommender system, hybrid, implicit features

Procedia PDF Downloads 272
1261 Smoker Recognition from Lung X-Ray Images Using Convolutional Neural Network

Authors: Moumita Chanda, Md. Fazlul Karim Patwary

Abstract:

Smoking is one of the most popular recreational drug use behaviors, and it contributes to birth defects, COPD, heart attacks, and erectile dysfunction. To completely eradicate this disease, it is imperative that it be identified and treated. Numerous smoking cessation programs have been created, and they demonstrate how beneficial it may be to help someone stop smoking at the ideal time. A tomography meter is an effective smoking detector. Other wearables, such as RF-based proximity sensors worn on the collar and wrist to detect when the hand is close to the mouth, have been proposed in the past, but they are not impervious to deceptive variables. In this study, we create a machine that can discriminate between smokers and non-smokers in real-time with high sensitivity and specificity by watching and collecting the human lung and analyzing the X-ray data using machine learning. If it has the highest accuracy, this machine could be utilized in a hospital, in the selection of candidates for the army or police, or in university entrance.

Keywords: CNN, smoker detection, non-smoker detection, OpenCV, artificial Intelligence, X-ray Image detection

Procedia PDF Downloads 84
1260 The Artificial Intelligence Driven Social Work

Authors: Avi Shrivastava

Abstract:

Our world continues to grapple with a lot of social issues. Economic growth and scientific advancements have not completely eradicated poverty, homelessness, discrimination and bias, gender inequality, health issues, mental illness, addiction, and other social issues. So, how do we improve the human condition in a world driven by advanced technology? The answer is simple: we will have to leverage technology to address some of the most important social challenges of the day. AI, or artificial intelligence, has emerged as a critical tool in the battle against issues that deprive marginalized and disadvantaged groups of the right to enjoy benefits that a society offers. Social work professionals can transform their lives by harnessing it. The lack of reliable data is one of the reasons why a lot of social work projects fail. Social work professionals continue to rely on expensive and time-consuming primary data collection methods, such as observation, surveys, questionnaires, and interviews, instead of tapping into AI-based technology to generate useful, real-time data and necessary insights. By leveraging AI’s data-mining ability, we can gain a deeper understanding of how to solve complex social problems and change lives of people. We can do the right work for the right people and at the right time. For example, AI can enable social work professionals to focus their humanitarian efforts on some of the world’s poorest regions, where there is extreme poverty. An interdisciplinary team of Stanford scientists, Marshall Burke, Stefano Ermon, David Lobell, Michael Xie, and Neal Jean, used AI to spot global poverty zones – identifying such zones is a key step in the fight against poverty. The scientists combined daytime and nighttime satellite imagery with machine learning algorithms to predict poverty in Nigeria, Uganda, Tanzania, Rwanda, and Malawi. In an article published by Stanford News, Stanford researchers use dark of night and machine learning, Ermon explained that they provided the machine-learning system, an application of AI, with the high-resolution satellite images and asked it to predict poverty in the African region. “The system essentially learned how to solve the problem by comparing those two sets of images [daytime and nighttime].” This is one example of how AI can be used by social work professionals to reach regions that need their aid the most. It can also help identify sources of inequality and conflict, which could reduce inequalities, according to Nature’s study, titled The role of artificial intelligence in achieving the Sustainable Development Goals, published in 2020. The report also notes that AI can help achieve 79 percent of the United Nation’s (UN) Sustainable Development Goals (SDG). AI is impacting our everyday lives in multiple amazing ways, yet some people do not know much about it. If someone is not familiar with this technology, they may be reluctant to use it to solve social issues. So, before we talk more about the use of AI to accomplish social work objectives, let’s put the spotlight on how AI and social work can complement each other.

Keywords: social work, artificial intelligence, AI based social work, machine learning, technology

Procedia PDF Downloads 102
1259 Popular Modern Devotional Prints: The Construction of Identity between the Visual and Viewer in Public Interaction Spaces

Authors: Muhammad Asghar, Muhammad Ali, Farwah Batool

Abstract:

Despite the general belief in Islam that figural representations should be avoided, particularly propagated by the Deobandis, a religious group influenced by Salafi and Wahhabi ideas, nevertheless the public interaction spaces such as Shops and offices are decorated with popular, mass-produced, modern devotional prints. This study seeks to focus on popular visual culture, its display in public interaction places such as shops and discusses how people establish relationships with images. The method adopted was basically ethnographic: to describe as precisely and completely as possible the phenomena to be studied, using the language and conceptual categories of the interlocutors themselves. This study has been enriched by ethnographic field research conducted during the months from October to December 2015 in the major cities of Punjab and their brief forays and surroundings where we explored how seeing upon images performs religious identity within the public space. The study examines the pattern of aesthetics and taste in the shops of especially common people whose sensibilities have not been refined or influenced by being exposed to any narrative or fine arts. Furthermore, it is our intention to question the general beliefs and opinions in the context of popular practices, the way in which people relate to these prints. The interpretations and analyses presented in this study illuminate how people create meaning through the display of such items of material culture in the immediate settings of their spaces. This study also seeks to demonstrate how popular Islam is practiced, transformed and understood through the display of popular representations of popular figures of piety like Sufi saints or their shrines are important to many believers and thus occupy important places in their shops. The findings are supported with empirical evidence and based on interviews with the shopkeepers, owners and office employees. Looking upon those popular modern devotional prints keeps people’s reverence of the personages alive. Because of their sacred themes they affect a relationship between the saint and the beholders as well as serve to symbolize and reinforce their belief since they become powerful loci of emotional attachment. Collectively such devotional prints satisfy a local taste to help people establish contact with God through the saints’ intercession in order to receive protection and benediction, and help in spiritual, mental and material problems. By putting all these facets of belief together we gain an insight into both the subjective and cognizant role that icons’ of saints play in the lives of believers. Their veneration through ingeniously contrived modern means of production makes a significant contribution to an understanding of how such imagery promotes a powerful belief in Sufi saints, which ultimately gives indications of how popular Islam is practiced and understood at its gross roots level.

Keywords: ethnographic field research, popular visual culture, protected space, religious identity

Procedia PDF Downloads 227
1258 Evaluating the Understanding of the University Students (Basic Sciences and Engineering) about the Numerical Representation of the Average Rate of Change

Authors: Saeid Haghjoo, Ebrahim Reyhani, Fahimeh Kolahdouz

Abstract:

The present study aimed to evaluate the understanding of the students in Tehran universities (Iran) about the numerical representation of the average rate of change based on the Structure of Observed Learning Outcomes (SOLO). In the present descriptive-survey research, the statistical population included undergraduate students (basic sciences and engineering) in the universities of Tehran. The samples were 604 students selected by random multi-stage clustering. The measurement tool was a task whose face and content validity was confirmed by math and mathematics education professors. Using Cronbach's Alpha criterion, the reliability coefficient of the task was obtained 0.95, which verified its reliability. The collected data were analyzed by descriptive statistics and inferential statistics (chi-squared and independent t-tests) under SPSS-24 software. According to the SOLO model in the prestructural, unistructural, and multistructural levels, basic science students had a higher percentage of understanding than that of engineering students, although the outcome was inverse at the relational level. However, there was no significant difference in the average understanding of both groups. The results indicated that students failed to have a proper understanding of the numerical representation of the average rate of change, in addition to missconceptions when using physics formulas in solving the problem. In addition, multiple solutions were derived along with their dominant methods during the qualitative analysis. The current research proposed to focus on the context problems with approximate calculations and numerical representation, using software and connection common relations between math and physics in the teaching process of teachers and professors.

Keywords: average rate of change, context problems, derivative, numerical representation, SOLO taxonomy

Procedia PDF Downloads 92
1257 A Bio-Inspired Approach to Produce Wettable Nylon Fabrics

Authors: Sujani B. Y. Abeywardena, Srimala Perera, K. M. Nalin De Silva, S. Walpalage

Abstract:

Surface modifications are vital to accomplish the moisture management property in highly demanded synthetic fabrics. Biomimetic and bio-inspired surface modifications are identified as one of the fascinating areas of research. In this study, nature’s way of cooling elephants’ body temperature using mud bathing was mimicked to create a superior wettable nylon fabric with improved comfortability. For that, bentonite nanoclay was covalently grafted on nylon fabric using silane as a coupling agent. Fourier transform infrared spectra and Scanning electron microscopy images confirmed the successful grafting of nanoclay on nylon. The superior wettability of surface modified nylon was proved by standard protocols. This fabric coating strongly withstands more than 50 cycles of laundry. It is expected that this bio-inspired wettable nylon fabric may break the barrier of using nylon in various hydrophilic textile applications.

Keywords: bentonite nanoclay, biomimetic, covalent modification, nylon fabric, surface, wettability

Procedia PDF Downloads 200
1256 Novel Technique for calculating Surface Potential Gradient of Overhead Line Conductors

Authors: Sudip Sudhir Godbole

Abstract:

In transmission line surface potential gradient is a critical design parameter for planning overhead line, as it determines the level of corona loss (CL), radio interference (RI) and audible noise (AN).With increase of transmission line voltage level bulk power transfer is possible, using bundle conductor configuration used, it is more complex to find accurate surface stress in bundle configuration. The majority of existing models for surface gradient calculations are based on analytical methods which restrict their application in simulating complex surface geometry. This paper proposes a novel technique which utilizes both analytical and numerical procedure to predict the surface gradient. One of 400 kV transmission line configurations has been selected as an example to compare the results for different methods. The different strand shapes are a key variable in determining.

Keywords: surface gradient, Maxwell potential coefficient method, market and Mengele’s method, successive images method, charge simulation method, finite element method

Procedia PDF Downloads 538
1255 Anodization-Assisted Synthesis of Shape-Controlled Cubic Zirconia Nanotubes

Authors: Ibrahim Dauda Muhammad, Mokhtar Awang

Abstract:

To synthesize a specific phase of zirconia (ZrO₂) nanotubes, zirconium (Zr) foil was subjected to the anodization process in a fluorine-containing electrochemical bath for a fixed duration. The resulting zirconia nanotubes (ZNTs) were then characterized using various techniques, including UV-vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). The XRD diffraction pattern confirmed that the ZNTs were crystalline, with a predominant texture along the [111] direction, indicating that the majority of the phase was cubic. TEM images revealed that most of the nanotubes were vertically aligned and self-organized, with diameters ranging from 32.9 to 38.8 nm and wall thicknesses between 3.0 and 7.3 nm. Additionally, the synthesized ZNTs had a length-to-width ratio of 235, which closely matches the ratio of 240 observed in another study where anodization was not used. This study demonstrates that a specific phase of zirconia nanotube can be successfully synthesized, with promising potential applications in catalysis and other areas.

Keywords: zirconia nanotubes, anodization, characterization, cubic phase

Procedia PDF Downloads 18
1254 The Role of Emotion in Attention Allocation

Authors: Michaela Porubanova

Abstract:

In this exploratory study to examine the effects of emotional significance on change detection using the flicker paradigm, three different categories of scenes were randomly presented (neutral, positive and negative) in three different blocks. We hypothesized that because of the different effects on attention, performance in change detection tasks differs for scenes with different effective values. We found the greatest accuracy of change detection was for changes occurring in positive and negative scenes (compared with neutral scenes). Secondly and most importantly, changes in negative scenes (and also positive scenes, though not with statistical significance) were detected faster than changes in neutral scenes. Interestingly, women were less accurate than men in detecting changes in emotionally significant scenes (both negative and positive), i.e., women detected fewer changes in emotional scenes in the time limit of 40s. But on the other hand, women were quicker to detect changes in positive and negative images than men. The study makes important contributions to the area of the role of emotions on information processing. The role of emotion in attention will be discussed.

Keywords: attention, emotion, flicker task, IAPS

Procedia PDF Downloads 354
1253 Production and Quality Control of a Novel 153Sm-Complex for Radiotherapy of Bone-Metastases

Authors: H. Yousefnia, R. Enayati, M. Hosntalab, S. Zolghadri, A. Bahrami-Samani

Abstract:

Bone metastases occur in many cases at an early stage of the tumour disease, however their symptoms are recognized rather late. The aim of this study was the preparation of 153Sm-(4-{[bis-(phosphonomethyl))carbamoyl]methyl}-7,10-bis(carboxymethyl) 1,4,7,10-tetraazacyclododec-1-yl) acetic acid (BPAMD) for bone pain palliation therapy. 153Sm was produced at Tehran research reactor via 152Sm(n,γ)153Sm reaction. 200 µl of 1mg/ml BPAMD solution was added to the vial containing 1 mCi 153Sm and the mixture was heated up to 90 0C for 1 h. The radiochemical purity of the complex was measured by ITLC method. The final solution with radiochemical purity of more than 95% was injected to BALB mice and bio distribution was determined up to 48 h. SPECT images were acquired after 2 and 24 h post injection. While high bone uptake was confirmed by both the bio distribution studies and SPECT imaging, accumulation in other organs was approximately negligible. The results show that 153Sm-BPAMD can be used as an excellent tracer for bone pain palliation therapy.

Keywords: bone metastases, BPAMD, 153Sm, radiotherapy

Procedia PDF Downloads 597
1252 The Design of Children’s Picture Book from the Tales of Amphawa Fireflies

Authors: Marut Phichetvit

Abstract:

The research objective aims to search information about storytelling and fable associated with fireflies in Amphawa community, in order to design and create a story book which is appropriate for the interests of children in early childhood. This book should help building the development of learning about the natural environment, imagination, and creativity among children, which then, brings about the promotion of the development, conservation and dissemination of cultural values and uniqueness of the Amphawa community. The population used in this study were 30 students in early childhood aged between 6-8 years-old, grade 1-3 from the Demonstration School of Suan Sunandha Rajabhat University. The method used for this study was purposive sampling and the research conducted by the query and analysis of data from both the document and the narrative field tales and fable associated with the fireflies of Amphawa community. Then, using the results to synthesize and create a conceptual design in a form of 8 visual images which were later applied to 1 illustrated children’s book and presented to the experts to evaluate and test this media.

Keywords: children’s illustrated book, fireflies, Amphawa

Procedia PDF Downloads 205
1251 Detection of Curvilinear Structure via Recursive Anisotropic Diffusion

Authors: Sardorbek Numonov, Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Dongeun Choi, Byung-Woo Hong

Abstract:

The detection of curvilinear structures often plays an important role in the analysis of images. In particular, it is considered as a crucial step for the diagnosis of chronic respiratory diseases to localize the fissures in chest CT imagery where the lung is divided into five lobes by the fissures that are characterized by linear features in appearance. However, the characteristic linear features for the fissures are often shown to be subtle due to the high intensity variability, pathological deformation or image noise involved in the imaging procedure, which leads to the uncertainty in the quantification of anatomical or functional properties of the lung. Thus, it is desired to enhance the linear features present in the chest CT images so that the distinctiveness in the delineation of the lobe is improved. We propose a recursive diffusion process that prefers coherent features based on the analysis of structure tensor in an anisotropic manner. The local image features associated with certain scales and directions can be characterized by the eigenanalysis of the structure tensor that is often regularized via isotropic diffusion filters. However, the isotropic diffusion filters involved in the computation of the structure tensor generally blur geometrically significant structure of the features leading to the degradation of the characteristic power in the feature space. Thus, it is required to take into consideration of local structure of the feature in scale and direction when computing the structure tensor. We apply an anisotropic diffusion in consideration of scale and direction of the features in the computation of the structure tensor that subsequently provides the geometrical structure of the features by its eigenanalysis that determines the shape of the anisotropic diffusion kernel. The recursive application of the anisotropic diffusion with the kernel the shape of which is derived from the structure tensor leading to the anisotropic scale-space where the geometrical features are preserved via the eigenanalysis of the structure tensor computed from the diffused image. The recursive interaction between the anisotropic diffusion based on the geometry-driven kernels and the computation of the structure tensor that determines the shape of the diffusion kernels yields a scale-space where geometrical properties of the image structure are effectively characterized. We apply our recursive anisotropic diffusion algorithm to the detection of curvilinear structure in the chest CT imagery where the fissures present curvilinear features and define the boundary of lobes. It is shown that our algorithm yields precise detection of the fissures while overcoming the subtlety in defining the characteristic linear features. The quantitative evaluation demonstrates the robustness and effectiveness of the proposed algorithm for the detection of fissures in the chest CT in terms of the false positive and the true positive measures. The receiver operating characteristic curves indicate the potential of our algorithm as a segmentation tool in the clinical environment. This work was supported by the MISP(Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by the IITP(Institute for Information and Communications Technology Promotion).

Keywords: anisotropic diffusion, chest CT imagery, chronic respiratory disease, curvilinear structure, fissure detection, structure tensor

Procedia PDF Downloads 232
1250 Infra Red Laser Induced Ablation of Graphene Based Polymer Nanocomposites

Authors: Jadranka Blazhevska Gilev

Abstract:

IR laser-induced ablation of poly(butylacrylate-methylmethacrylate/hydroxyl ethyl methacrylate)/reduced graphene oxide (p(BA/MMA/HEMA)/rGO) was examined with 0.5, 0.75 and 1 wt% reduced graphene oxide content in relation to polymer. The irradiation was performed with TEA (transversely excited atmosphere) CO₂ laser using incident fluence of 15-20 J/cm², repetition frequency of 1 Hz, in an evacuated (10-3 Pa) Pyrex spherical vessel. Thin deposited nanocomposites films with large specific area were obtained using different substrates. The properties of the films deposited on these substrates were evaluated by TGA, FTIR, (Thermogravimetric analysis, Fourier Transformation Infrared) Raman spectroscopy and SEM microscopy. Homogeneous distribution of graphene sheets was observed from the SEM images, making polymer/rGO deposit an ideal candidate for SERS application. SERS measurements were performed using Rhodamine 6G as probe molecule on the substrate Ag/p(BA/MMA/HEMA)/rGO.

Keywords: laser ablation, reduced graphene oxide, polymer/rGO nanocomposites, thin deposited film

Procedia PDF Downloads 198
1249 X-Corner Detection for Camera Calibration Using Saddle Points

Authors: Abdulrahman S. Alturki, John S. Loomis

Abstract:

This paper discusses a corner detection algorithm for camera calibration. Calibration is a necessary step in many computer vision and image processing applications. Robust corner detection for an image of a checkerboard is required to determine intrinsic and extrinsic parameters. In this paper, an algorithm for fully automatic and robust X-corner detection is presented. Checkerboard corner points are automatically found in each image without user interaction or any prior information regarding the number of rows or columns. The approach represents each X-corner with a quadratic fitting function. Using the fact that the X-corners are saddle points, the coefficients in the fitting function are used to identify each corner location. The automation of this process greatly simplifies calibration. Our method is robust against noise and different camera orientations. Experimental analysis shows the accuracy of our method using actual images acquired at different camera locations and orientations.

Keywords: camera calibration, corner detector, edge detector, saddle points

Procedia PDF Downloads 406
1248 Nonuniformity Correction Technique in Infrared Video Using Feedback Recursive Least Square Algorithm

Authors: Flavio O. Torres, Maria J. Castilla, Rodrigo A. Augsburger, Pedro I. Cachana, Katherine S. Reyes

Abstract:

In this paper, we present a scene-based nonuniformity correction method using a modified recursive least square algorithm with a feedback system on the updates. The feedback is designed to remove impulsive noise contamination images produced by a recursive least square algorithm by measuring the output of the proposed algorithm. The key advantage of the method is based on its capacity to estimate detectors parameters and then compensate for impulsive noise contamination image in a frame by frame basics. We define the algorithm and present several experimental results to demonstrate the efficacy of the proposed method in comparison to several previously published recursive least square-based methods. We show that the proposed method removes impulsive noise contamination image.

Keywords: infrared focal plane arrays, infrared imaging, least mean square, nonuniformity correction

Procedia PDF Downloads 143
1247 A Context-Sensitive Algorithm for Media Similarity Search

Authors: Guang-Ho Cha

Abstract:

This paper presents a context-sensitive media similarity search algorithm. One of the central problems regarding media search is the semantic gap between the low-level features computed automatically from media data and the human interpretation of them. This is because the notion of similarity is usually based on high-level abstraction but the low-level features do not sometimes reflect the human perception. Many media search algorithms have used the Minkowski metric to measure similarity between image pairs. However those functions cannot adequately capture the aspects of the characteristics of the human visual system as well as the nonlinear relationships in contextual information given by images in a collection. Our search algorithm tackles this problem by employing a similarity measure and a ranking strategy that reflect the nonlinearity of human perception and contextual information in a dataset. Similarity search in an image database based on this contextual information shows encouraging experimental results.

Keywords: context-sensitive search, image search, similarity ranking, similarity search

Procedia PDF Downloads 365