Search results for: CO₂ uptake and construction and demolition waste.
5201 Integrated Clean Development Mechanism and Risk Management Approach for Infrastructure Transportation Project
Authors: Debasis Sarkar
Abstract:
Clean development mechanism (CDM) can act as an effective instrument for mitigating climate change. This mechanism can effectively reduce the emission of CO2 and other green house gases (GHG). Construction of a mega infrastructure project like underground corridor construction for metro rail operation involves in consumption of substantial quantity of concrete which consumes huge quantity of energy consuming materials like cement and steel. This paper is an attempt to develop an integrated clean development mechanism and risk management approach for sustainable development for an underground corridor metro rail project in India during its construction phase. It was observed that about 35% reduction in CO2 emission can be obtained by adding fly ash as a part replacement of cement. The reduced emission quantity of CO2 which is of the quantum of about 21,646.36 MT would result in cost savings of approximately INR 8.5 million (USD 1,29,878).But construction and operation of such infrastructure projects of the present era are subject to huge risks and uncertainties throughout all the phases of the project, thus reducing the probability of successful completion of the project within stipulated time and cost frame. Thus, an integrated approach of combining CDM with risk management would enable the metro rail authorities to develop a sustainable risk mitigation measure framework to ensure more cost and energy savings and lesser time and cost over-run.Keywords: clean development mechanism (CDM), infrastructure transportation, project risk management, underground metro rail
Procedia PDF Downloads 4755200 City Management Transformation: Urban Renewal Empowered by Chinese City Culture in the New Era
Abstract:
China's urbanization rate has exceeded 60%, and in the long term, China's urbanization development will enter a new stage of transformation and development focusing on quality improvement, and urban renewal has become an important part of China's urban development. In the past, many cities in the process of renewal in order to maximize the pursuit of economic interests, large-scale demolition of the old to build new, accelerating the disappearance of regional history and culture, aggravating the homogenization of the city. With the changes in the economic and social development environment, urban renewal requires a more comprehensive perspective of action. Starting from the perspective of the core of urban management theory, this paper is oriented to culture-enabled urban renewal and takes the urban renewal of Changbin Road Area in Yuzhong District of Chongqing as an example to expound the problems and renewal strategies in its urban renewal, so as to provide references for the urban renewal of other Chinese cities in the new period.Keywords: Urban management, Urban culture, Urban renewal in mountainous areas, urban renewal
Procedia PDF Downloads 955199 Accurate Positioning Method of Indoor Plastering Robot Based on Line Laser
Authors: Guanqiao Wang, Hongyang Yu
Abstract:
There is a lot of repetitive work in the traditional construction industry. These repetitive tasks can significantly improve production efficiency by replacing manual tasks with robots. There- fore, robots appear more and more frequently in the construction industry. Navigation and positioning are very important tasks for construction robots, and the requirements for accuracy of positioning are very high. Traditional indoor robots mainly use radiofrequency or vision methods for positioning. Compared with ordinary robots, the indoor plastering robot needs to be positioned closer to the wall for wall plastering, so the requirements for construction positioning accuracy are higher, and the traditional navigation positioning method has a large error, which will cause the robot to move. Without the exact position, the wall cannot be plastered, or the error of plastering the wall is large. A new positioning method is proposed, which is assisted by line lasers and uses image processing-based positioning to perform more accurate positioning on the traditional positioning work. In actual work, filter, edge detection, Hough transform and other operations are performed on the images captured by the camera. Each time the position of the laser line is found, it is compared with the standard value, and the position of the robot is moved or rotated to complete the positioning work. The experimental results show that the actual positioning error is reduced to less than 0.5 mm by this accurate positioning method.Keywords: indoor plastering robot, navigation, precise positioning, line laser, image processing
Procedia PDF Downloads 1485198 Solid Waste and Its Impact on the Human Health
Authors: Waseem Akram, Hafiz Azhar Ali Khan
Abstract:
Unplanned urbanization together with change in life from simple to more technologically advanced style with flow of rural masses to urban areas has played a vital role in pilling loads of solid wastes in our environment. The cities and towns have expanded beyond boundaries. Even the uncontrolled population expansion has caused the overall environmental burden. Thus, today the indifference remains as one of the biggest trash that has come up due to the non-responsive behavior of the people. Everyday huge amount of solid waste is thrown in the streets, on the roads, parks, and in all those places that are frequently and often visited by the human beings. This behavior based response in many countries of the world has led to serious health concerns and environmental issues. Over 80% of our products that are sold in the market are packed in plastic bags. None of the bags are later recycled but simply become a permanent environment concern that flies, choke lines or are burnt and release toxic gases in the environment or form dumps of heaps. Lack of classification of the daily waste generated from houses and other places lead to worst clogging of the sewerage lines and formation of ponding areas which ultimately favor vector borne disease and sometimes become a cause of transmission of polio virus. Solid waste heaps were checked at different places of the cities. All of the wastes on visual assessments were classified into plastic bags, papers, broken plastic pots, clay pots, steel boxes, wrappers etc. All solid waste dumping sites in the cities and wastes that were thrown outside of the trash containers usually contained wrappers, plastic bags, and unconsumed food products. Insect populations seen in these sites included the house flies, bugs, cockroaches and mosquito larvae breeding in water filled wrappers, containers or plastic bags. The population of the mosquitoes, cockroaches and houseflies were relatively very high in dumping sites close to human population. This population has been associated with cases like dengue, malaria, dysentery, gastro and also to skin allergies during the monsoon and summer season. Thus, dumping of the huge amount of solid wastes in and near the residential areas results into serious environmental concerns, bad smell circulation, and health related issues. In some places, the same waste is burnt to get rid of mosquitoes through smoke which ultimately releases toxic material in the atmosphere. Therefore, a proper environmental strategy is needed to minimize environmental burden and promote concepts of recycled products and thus, reduce the disease burden.Keywords: solid waste accumulation, disease burden, mosquitoes, vector borne diseases
Procedia PDF Downloads 2785197 How Participatory Climate Information Services Assist Farmers to Uptake Rice Disease Forecasts and Manage Diseases in Advance: Evidence from Coastal Bangladesh
Authors: Moriom Akter Mousumi, Spyridon Paparrizos, Fulco Ludwig
Abstract:
Rice yield reduction due to climate change-induced disease occurrence is becoming a great concern for coastal farmers of Bangladesh. The development of participatory climate information services (CIS) based on farmers’ needs could implicitly facilitate farmers to get disease forecasts and make better decisions to manage diseases. Therefore, this study aimed to investigate how participatory climate information services assist coastal rice farmers to take up rice disease forecasts and better manage rice diseases by improving their informed decision-making. Through participatory approaches, we developed a tailor-made agrometeorological service through the DROP app to forecast rice diseases and manage them in advance. During farmers field schools (FFS) we communicated 7-day disease forecasts during face-to-face weekly meetings using printed paper and, messenger app derived from DROP app. Results show that the majority of the farmers understand disease forecasts through visualization, symbols, and text. The majority of them use disease forecast information directly from the DROP app followed by face-to-face meetings, messenger app, and printed paper. Farmers participation and engagement during capacity building training at FFS also assist them in making more informed decisions and improved management of diseases using both preventive measures and chemical measures throughout the rice cultivation period. We conclude that the development of participatory CIS and the associated capacity-building and training of farmers has increased farmers' understanding and uptake of disease forecasts to better manage of rice diseases. Participatory services such as the DROP app offer great potential as an adaptation option for climate-smart rice production under changing climatic conditions.Keywords: participatory climate service, disease forecast, disease management, informed decision making, coastal Bangladesg
Procedia PDF Downloads 465196 Learning Fashion Construction and Manufacturing Methods from the Past: Cultural History and Genealogy at the Middle Tennessee State University Historic Clothing Collection
Authors: Teresa B. King
Abstract:
In the millennial age, with more students desiring a fashion major yet fewer having sewing and manufacturing knowledge, this increases demand on academicians to adequately educate. While fashion museums have a prominent place for historical preservation, the need for apparel education via working collections of handmade or mass manufactured apparel is lacking in most universities in the United States, especially in the Southern region. Created in 1988, Middle Tennessee State University’s historic clothing collection provides opportunities to study apparel construction methods throughout history, to compare and apply to today’s construction and manufacturing methods, as well as to learn the cyclical nature/importance of historic styles on current and upcoming fashion. In 2019, a class exercise experiment was implemented for which students researched their family genealogy using Ancestry.com, identified the oldest visual media (photographs, etc.) available, and analyzed the garment represented in said media. The student then located a comparable garment in the historic collection and evaluated the construction methods of the ancestor’s time period. A class 'fashion' genealogy tree was created and mounted for public viewing/education. Results of this exercise indicated that student learning increased due to the 'personal/familial connection' as it triggered more interest in historical garments as related to the student’s own personal culture. Students better identified garments regarding the historical time period, fiber content, fabric, and construction methods utilized, thus increasing learning and retention. Students also developed increased learning and recognition of custom construction methods versus current mass manufacturing techniques, which impact today’s fashion industry. A longitudinal effort will continue with the growth of the historic collection and as students continue to utilize the historic clothing collection.Keywords: ancestry, clothing history, fashion history, genealogy, historic fashion museum collection
Procedia PDF Downloads 1375195 Environmental Aspects in the Job Performed by Supervisors Working in Industries
Authors: Mahesh Chandra Paliwal, Ajay Kumar Jain
Abstract:
Supervisors working in the industries must have the knowledge and skills for performing their job for environmental protection and sustainable development. A survey of thirty industries was conducted to know the roles of supervisors related to environmental protection and sustainable development. A questionnaire was prepared based on the discussion with the environmental experts. The findings of the study show that supervisors must be aware of practices followed for good housekeeping, water management, waste management, maintenance of effluent treatment plants, monitoring pollution control level to perform their job to save the environment. These aspects must be incorporated in diploma curriculum so that the diploma pass outs may use this knowledge and skills in the industries.Keywords: environmental protection, sustainable development, water management, waste management, curriculum
Procedia PDF Downloads 3295194 Cost-Effective Materials for Hydrocarbons Recovery from Produced Water
Authors: Fahd I. Alghunaimi, Hind S. Dossary, Norah W. Aljuryyed, Tawfik A. Saleh
Abstract:
Produced water (PW) is one of the largest by-volume waste streams and one of the most challenging effluents in the oil and gas industry. This is due to the variation of contaminants that make up PW. Severalmaterialshavebeen developed, studied, and implemented to remove hydrocarbonsfrom PW. Adsorption is one of the most effective ways ofremoving oil fromPW. In this work, three new and cost-effective hydrophobic adsorbentmaterials based on 9-octadecenoic acid grafted graphene (POG) were synthesized for oil/water separation. Graphene derived from graphite was modified with 9-octadecenoic acid to yield 9-octadecenoic acid grafted graphene (OG). The newsynthesized materials which called POG25, POG50, and POG75 were characterized by using N₂-physisorption (BET) and Fourier transform infrared (FTIR). The BET surface area of POG75 was the highest with 288 m²/g, whereas POG50 was 225 m²/g and POG25 was lowest 79 m²/g. These three materials were also evaluated for their oil-water separation efficiency using a model mixture, whichdemonstrated that POG-75 has the highest oil removal efficiency and the faster rate of the adsorption (Figure-1). POG75 was regenerated, and its performance was verified again with a little reduced adsorption rate compared to the fresh material. The mixtures that used in the performance test were prepared by mixing nonpolar organic liquids such as heptane, dodecane, or hexadecane into the colored water. In general, the new materials showed fast uptake of the certain quantity of the oildue to the high hydrophobicity nature of the materials, which repel water as confirmed by the contact angle of approximately 150˚. Besides that, novel superhydrophobic material was also synthesized by introducing hydrophobic branches of laurate on the surface of the stainless steel mesh (SSM). This novel mesh could help to hold the novel adsorbent materials in a column to remove oil from PW. Both BOG-75 and the novel mesh have the potential to remove oil contaminants from produced water, which will help to provide an opportunity to recover useful components, in addition, to reduce the environmental impact and reuse produced water in several applications such as fracturing.Keywords: graphite to graphene, oleophilic, produced water, separation
Procedia PDF Downloads 1225193 Occupational Safety in Construction Projects
Authors: Heba Elbibas, Esra Gnijeewa, Zedan Hatush
Abstract:
This paper presents research on occupational safety in construction projects, where the importance of safety management in projects was studied, including the preparation of a safety plan and program for each project and the identification of the responsibilities of each party to the contract. The research consists of two parts: 1-Field visits: which were field visits to three construction projects, including building projects, road projects, and tower installation. The safety level of these projects was evaluated through a checklist that includes the most important safety elements in terms of the application of these items in the projects. 2-Preparation of a questionnaire: which included supervisors and engineers and aimed to determine the level of awareness and commitment of different project categories to safety standards. The results showed the following: i) There is a moderate occupational safety policy. ii) The preparation and storage of maintenance reports are not fully complied with. iii) There is a moderate level of training on occupational safety for project workers. iv) The company does not impose penalties on safety violators permanently. v) There is a moderate policy for equipment and machinery safety. vi) Self-injuries occur due to (fatigue, lack of attention, deliberate error, and emotional factors), with a rate of 82.4%.Keywords: management, safety, occupational safety, classification
Procedia PDF Downloads 1065192 A Review of Digital Twins to Reduce Emission in the Construction Industry
Authors: Zichao Zhang, Yifan Zhao, Samuel Court
Abstract:
The carbon emission problem of the traditional construction industry has long been a pressing issue. With the growing emphasis on environmental protection and advancement of science and technology, the organic integration of digital technology and emission reduction has gradually become a mainstream solution. Among various sophisticated digital technologies, digital twins, which involve creating virtual replicas of physical systems or objects, have gained enormous attention in recent years as tools to improve productivity, optimize management and reduce carbon emissions. However, the relatively high implementation costs including finances, time, and manpower associated with digital twins have limited their widespread adoption. As a result, most of the current applications are primarily concentrated within a few industries. In addition, the creation of digital twins relies on a large amount of data and requires designers to possess exceptional skills in information collection, organization, and analysis. Unfortunately, these capabilities are often lacking in the traditional construction industry. Furthermore, as a relatively new concept, digital twins have different expressions and usage methods across different industries. This lack of standardized practices poses a challenge in creating a high-quality digital twin framework for construction. This paper firstly reviews the current academic studies and industrial practices focused on reducing greenhouse gas emissions in the construction industry using digital twins. Additionally, it identifies the challenges that may be encountered during the design and implementation of a digital twin framework specific to this industry and proposes potential directions for future research. This study shows that digital twins possess substantial potential and significance in enhancing the working environment within the traditional construction industry, particularly in their ability to support decision-making processes. It proves that digital twins can improve the work efficiency and energy utilization of related machinery while helping this industry save energy and reduce emissions. This work will help scholars in this field to better understand the relationship between digital twins and energy conservation and emission reduction, and it also serves as a conceptual reference for practitioners to implement related technologies.Keywords: digital twins, emission reduction, construction industry, energy saving, life cycle, sustainability
Procedia PDF Downloads 1015191 Improvement of Deficient Soils in Nigeria Using Bagasse Ash - A Review
Authors: Musa Alhassan, Alhaji Mohammed Mustapha
Abstract:
Review of studies carried out on the use of bagasse ash in the improvement of deficient soils in Nigeria, with emphasis on lateritic and black cotton soils is presented. Although, the bagasse ash is mostly used as additive to the conventional soil stabilizer (cement and lime), the studies generally showed improvement of geotechnical properties of the soils either modified or stabilized with the ash. This showed the potentials of using this agricultural waste (bagasse ash) in the improvement of geotechnical properties of deficient soils. Thus suggesting that using this material at large scale level, in geotechnical engineering practice could help in the provision of stable and durable structures, reduce cost of soil improvement and also reduces environmental nuisance caused by the unused waste in NigeriaKeywords: bagasse ash, black cotton soil, deficient soil, laterite, soil improvement
Procedia PDF Downloads 4195190 The Evaluation of the Re-Construction Project Hamamönü, Ankara in Turkey as a Case from Socio-Cultural Perspective
Authors: Tuğçe Kök, Gözen Güner Aktaş, Nur Ayalp
Abstract:
In a global world, Social and cultural sustainability are subjects which have gained significant importance in recent years. The concept of sustainability was included in the document of the World Conservation Union (IUCN) by World Charter for Nature, adopted in 1982 for the first time. However, merged with urban sustainability a new phenomenon has emerged. Sustainability is an essential fact, This fact is discussed via the socio-cultural field of sustainability. Together with central government and local authorities, conservation activities have been intensified on the protection of values on an area scale. Today, local authorities play an important role in the urban historic site rehabilitation and re-construction of traditional houses projects in Ankara, Turkey. Many conservative acts have occurred after 1980’s. To give a remarkable example about the conservation implementations of traditional Turkish houses is ‘Hamamönü, Ankara Re-Construction Project which is one of the historical parts that has suffered from deterioration and unplanned urban development. In this region, preexisting but unused historic fibre of the site has been revised and according to result of this case-study, the relationship between users and re-construction were discussed. Most of the houses were re-constructed in order to build a new tourist attraction area. This study discusses the socio-cultural relations between the new built environment and the visitors, from the point of cultural sustainability. This study questions the transmission of cultural stimulations. A case study was conducted to discuss the perception of cultural aspects of the visitors in the site. The relationship between the real cultural identities and existent ones after the re-constructed project, Which has been transmitted through the visitors and the users of those spaces will be discussed. The aim of the study is to analyze the relation between the cultural identities, which have been tried to be protected with the re-construction project and the users. The purposes of this study are to evaluate the implementations of Altındağ Municipality in Hamamönü and examine the socio-cultural sustainability with the user responses. After the assessment of implementation under socio-cultural sustainability, some proposals for the future of Hamamönü were introduced.Keywords: social sustainability, cultural sustainability, Hamamönü, Turkey, re-construction
Procedia PDF Downloads 4805189 Sky Farming: The Alternative Concept of Green Building Using Vertical Landscape Model in Urban Area as an Effort to Achieve Sustainable Development
Authors: Nadiah Yola Putri, Nesia Putri Sharfina, Traviata Prakarti
Abstract:
This paper is a literature review presented descriptively to review the concept of green building to face the challenge of sustainable development and food in urban areas. In this paper, researchers initiated the concept of green building with sky farming method. Sky farming use vertical landscape system in order to realizing food self-sufficient green city. Sky farming relying on plantings and irrigation system efficiency in the building which is adopted the principles of green building. Planting system is done by applying hydroponic plants with Nutrient Film Technique (NFT) using energy source of solar cell and grey water from the processing of waste treatment plant. The application of sky farming in urban areas can be a recommendation for the design of environmental-friendly construction. In order to keep the land and distance efficiency, this system is a futuristic idea that would be the connector of human civilization in the future.Keywords: green building, urban area, sky farming, vertical landscape
Procedia PDF Downloads 3615188 Identifying and Optimizing the Critical Excipients in Moisture Activated Dry Granulation Process for Two Anti TB Drugs of Different Aqueous Solubilities
Authors: K. Srujana, Vinay U. Rao, M. Sudhakar
Abstract:
Isoniazide (INH) a freely water soluble and pyrazinamide (Z) a practically water insoluble first line anti tubercular (TB) drugs were identified as candidates for optimizing the Moisture Activated Dry Granulation (MADG) process. The work focuses on identifying the effect of binder type and concentration as well as the effect of magnesium stearate level on critical quality attributes of Disintegration time (DT) and in vitro dissolution test when the tablets are processed by the MADG process. Also, the level of the drug concentration, binder concentration and fluid addition during the agglomeration stage of the MADG process was evaluated and optimized. For INH, it was identified that for tablets with HPMC as binder at both 2% w/w and 5% w/w level and Magnesium stearate upto 1%w/w as lubrication the DT is within 1 minute and the dissolution rate is the fastest (> 80% in 15 minutes) as compared to when PVP or pregelatinized starch is used as binder. Regarding the process, fast disintegrating and rapidly dissolving tablets are obtained when the level of drug, binder and fluid uptake in agglomeration stage is 25% w/w 0% w/w binder and 0.033%. w/w. At the other 2 levels of these three ingredients, the DT is significantly impacted and dissolution is also slower. For pyrazinamide,it was identified that for the tablets with 2% w/w level of each of PVP as binder and Cross Caramellose Sodium disintegrant the DT is within 2 minutes and the dissolution rate is the fastest(>80 in 15 minutes)as compared to when HPMC or pregelatinized starch is used as binder. This may be attributed to the fact that PVP may be acting as a solubilizer for the practically insoluble Pyrazinamide. Regarding the process,fast dispersing and rapidly disintegrating tablets are obtained when the level of drug, binder and fluid uptake in agglomeration stage is 10% w/w,25% w/w binder and 1% w/w.At the other 2 levels of these three ingredients, the DT is significantly impacted and dissolution is comparatively slower and less complete.Keywords: agglomeration stage, isoniazide, MADG, moisture distribution stage, pyrazinamide
Procedia PDF Downloads 2395187 Valorization of Clay Material in the Road Sector By Adding Granulated Recycled Plastic
Authors: Ouaaz Oum Essaad, Melbouci Bachir
Abstract:
The experimental study conducted has a dual purpose: to valorize the clay material in the road domain and improve the lift of the shape layers by strengthening with plastic waste (in the form of aggregates). To do this, six mixtures of Clay and sand of different percentages were studied: 100% Clay, 95% Clay + 05% Sand, 90% Clay + 10% Sand, 85% Clay + 15% Sand, 80% Clay + 20% Sand, 75% Clay + 25% Sand. Proctor compaction and simple compression tests have been carried out on mixtures (sand + clay + plastic waste). The results obtained show a clear evolution of the characteristics of the Proctor test and the compressive strength of the mixtures according to the different types and percentages of the recycled plastic Plasticity and consistency index are important parameters that play a role in the toughness of plastic soil.Keywords: valorization, recycling, soil mixture, mechanical tests
Procedia PDF Downloads 1035186 Boosting the Agrophysiological Performance of Chickpea Crop (Cicer Arietinum L.) Under Low-P Soil Conditions with the Co-application of Bacterial Consortium (Phosphate Solubilizing Bacteria and Rhizobium) and P-Fertilizers (RP and TSP Forms)
Authors: Rym Saidi, Pape Alioune Ndiaye, Ibnyasser Ammar, Zineb Rchiad, Khalid Daoui, Issam Kadmiri Meftahi, Adnane Bargaz
Abstract:
Chickpea (Cicer arietinum L.) is an important leguminous crop grown worldwide and plays a significant role in humans’ dietary consumption. Alongside nitrogen (N), low phosphorus (P) availability within agricultural soils is one of the major factors limiting chickpea growth and productivity. The combined application of beneficial bacterial inoculants and Rock P-fertilizer could boost chickpea performance and productivity, increasing P-utilization efficiency and minimizing nutrient losses under P-deficiency conditions. A greenhouse experiment was conducted to evaluate the response of chickpeas to two P-fertilizer forms (RP and TSP) under N2-fixer and P-solubilizer consortium inoculation to improve biological N fixation and P nutrition under P-deficient conditions. Under inoculation, chickpea chlorophyll content and chlorophyll fluorescence (RP+I and TSP+I) were increased compared to uninoculated treatments. The RP+I treatment increased both shoot and root dry weights by 48,80% and 72,68%, respectively, compared to the uninoculated RP fertilized control. Indeed, the bacterial consortium contributed to enhancing root morphological traits (e.g., root volume, surface area, and diameter) of all inoculated treatments versus the uninoculated treatments. Furthermore, soil available P and root inorganic P were significantly improved in RP+I by 162,84% and 73,24%, respectively, compared to uninoculated RP control. Our research outcomes suggest that the co-inoculation of chickpeas with N2-fixing, and P-solubilizing bacteria improves biomass yield and nutrient uptake. Eventually, enhancing chickpea agrophysiological performance, especially in restricted P-availability conditions.Keywords: chickpea, consortium, beneficial bacterial inoculants, phosphorus deficiency, rock p-fertilizer, nutrient uptake
Procedia PDF Downloads 655185 Optimization of Ultrasound-Assisted Extraction of Oil from Spent Coffee Grounds Using a Central Composite Rotatable Design
Authors: Malek Miladi, Miguel Vegara, Maria Perez-Infantes, Khaled Mohamed Ramadan, Antonio Ruiz-Canales, Damaris Nunez-Gomez
Abstract:
Coffee is the second consumed commodity worldwide, yet it also generates colossal waste. Proper management of coffee waste is proposed by converting them into products with higher added value to achieve sustainability of the economic and ecological footprint and protect the environment. Based on this, a study looking at the recovery of coffee waste is becoming more relevant in recent decades. Spent coffee grounds (SCG's) resulted from brewing coffee represents the major waste produced among all coffee industry. The fact that SCGs has no economic value be abundant in nature and industry, do not compete with agriculture and especially its high oil content (between 7-15% from its total dry matter weight depending on the coffee varieties, Arabica or Robusta), encourages its use as a sustainable feedstock for bio-oil production. The bio-oil extraction is a crucial step towards biodiesel production by the transesterification process. However, conventional methods used for oil extraction are not recommended due to their high consumption of energy, time, and generation of toxic volatile organic solvents. Thus, finding a sustainable, economical, and efficient extraction technique is crucial to scale up the process and to ensure more environment-friendly production. Under this perspective, the aim of this work was the statistical study to know an efficient strategy for oil extraction by n-hexane using indirect sonication. The coffee waste mixed Arabica and Robusta, which was used in this work. The temperature effect, sonication time, and solvent-to-solid ratio on the oil yield were statistically investigated as dependent variables by Central Composite Rotatable Design (CCRD) 23. The results were analyzed using STATISTICA 7 StatSoft software. The CCRD showed the significance of all the variables tested (P < 0.05) on the process output. The validation of the model by analysis of variance (ANOVA) showed good adjustment for the results obtained for a 95% confidence interval, and also, the predicted values graph vs. experimental values confirmed the satisfactory correlation between the model results. Besides, the identification of the optimum experimental conditions was based on the study of the surface response graphs (2-D and 3-D) and the critical statistical values. Based on the CCDR results, 29 ºC, 56.6 min, and solvent-to-solid ratio 16 were the better experimental conditions defined statistically for coffee waste oil extraction using n-hexane as solvent. In these conditions, the oil yield was >9% in all cases. The results confirmed the efficiency of using an ultrasound bath in extracting oil as a more economical, green, and efficient way when compared to the Soxhlet method.Keywords: coffee waste, optimization, oil yield, statistical planning
Procedia PDF Downloads 1195184 Microbial Fuel Cells in Waste Water Treatment and Electricity Generation
Authors: Rajalaxmi N., Padma Bhat, Pooja Garag, Pooja N. M., V. S. Hombalimath
Abstract:
Microbial fuel cell (MFC) is the advancement of science that aims at utilizing the oxidizing potential of bacteria for wastewater treatment and production of bio-hydrogen and bio-electricity. Salt-bridge is the economic alternative to highly priced proton-exchange membrane in the construction of a microbial fuel cell. This paper studies the electricity generating capacity of E.coli and Clostridium sporogenes in microbial fuel cells (MFCs). Unlike most of MFC research, this targets the long term goals of renewable energy production and wastewater treatment. In present study the feasibility and potential of bioelectricity production from different wastewater was observed. Different wastewater was primarily treated which were confirmed by the COD tests which showed reduction of COD. We observe that the electricity production of MFCs decreases almost linearly after 120 hrs. The sewage wastewater containing Clostridium sporogenes showed bioelectricity production up to 188mV with COD removal of 60.52%. Sewage wastewater efficiently produces bioelectricity and this also helpful to reduce wastewater pollution load.Keywords: microbial fuel cell, bioelectricity, wastewater, salt bridge, COD
Procedia PDF Downloads 5375183 Feasibility Study and Energy Conversion Evaluation of Agricultural Waste Gasification in the Pomelo Garden, Taiwan
Authors: Yi-Hao Pai, Wen-Feng Chen
Abstract:
The planting area of Pomelo in Hualien, Taiwan amounts to thousands of hectares. Especially in the blooming season of Pomelo, it is an important producing area for Pomelo honey, and it is also a good test field for promoting the "Under-forest Economy". However, in the current Pomelo garden planting and management operations, the large amount of agricultural waste generated by the pruning of the branches causes environmental sanitation concerns, which can lead to the hiding of pests or the infection of the Pomelo tree, and indirectly increase the health risks of bees. Therefore, how to deal with the pruning of the branches and avoid open burning is a topic of social concern in recent years. In this research, afeasibility study evaluating energy conversion efficiency through agricultural waste gasification from the Pomelo garden, Taiwan, is demonstrated. we used a high-temperature gasifier to convert the pruning of the branches into syngas and biochar. In terms of syngas composition and calorific value assessment, we use the biogas monitoring system for analysis. Then, we used Raman spectroscopy and electron microscopy (EM) to diagnose the microstructure and surface morphology of biochar. The results indicate that the 1 ton of pruning of the branches can produce 1797.03m3 of syngas, corresponding to a calorific value of 9.1MJ/m3. The main components of the gas include CH4, H2, CO, and CO2, and the corresponding gas composition ratio is 16.8%, 7.1%, 13.7%, and 24.5%. Through the biomass syngas generator with a conversion efficiency of 30% for power generation, a total of 1,358kWh can be obtained per ton of pruning of the branches. In the research of biochar, its main characteristics in Raman spectroscopy are G bands and D bands. The first-order G and D bands are at 1580 and 1350 cm⁻¹, respectively. The G bands originates from the in-plane tangential stretching of the C−C bonds in the graphitic structure, and theD band corresponds to scattering from local defects or disorders present in carbon. The area ratio of D and G peaks (D/G) increases with the decrease of reaction temperature. The larger the D/G, the higher the defect concentration and the higher the porosity. This result is consistent with the microstructure displayed by SEM. The study is expected to be able to reuse agricultural waste and promote the development of agricultural and green energy circular economy.Keywords: agricultural waste, gasification, energy conversion, pomelo garden
Procedia PDF Downloads 1425182 The Current Application of BIM - An Empirical Study Focusing on the BIM-Maturity Level
Authors: Matthias Stange
Abstract:
Building Information Modelling (BIM) is one of the most promising methods in the building design process and plays an important role in the digitalization of the Architectural, Engineering, and Construction (AEC) Industry. The application of BIM is seen as the key enabler for increasing productivity in the construction industry. The model-based collaboration using the BIM method is intended to significantly reduce cost increases, schedule delays, and quality problems in the planning and construction of buildings. Numerous qualitative studies based on expert interviews support this theory and report perceived benefits from the use of BIM in terms of achieving project objectives related to cost, schedule, and quality. However, there is a large research gap in analysing quantitative data collected from real construction projects regarding the actual benefits of applying BIM based on representative sample size and different application regions as well as different project typologies. In particular, the influence of the project-related BIM maturity level is completely unexplored. This research project examines primary data from 105 construction projects worldwide using quantitative research methods. Projects from the areas of residential, commercial, and industrial construction as well as infrastructure and hydraulic engineering were examined in application regions North America, Australia, Europe, Asia, MENA region, and South America. First, a descriptive data analysis of 6 independent project variables (BIM maturity level, application region, project category, project type, project size, and BIM level) were carried out using statistical methods. With the help of statisticaldata analyses, the influence of the project-related BIM maturity level on 6 dependent project variables (deviation in planning time, deviation in construction time, number of planning collisions, frequency of rework, number of RFIand number of changes) was investigated. The study revealed that most of the benefits of using BIM perceived through numerous qualitative studies have not been confirmed. The results of the examined sample show that the application of BIM did not have an improving influence on the dependent project variables, especially regarding the quality of the planning itself and the adherence to the schedule targets. The quantitative research suggests the conclusion that the BIM planning method in its current application has not (yet) become a recognizable increase in productivity within the planning and construction process. The empirical findings indicate that this is due to the overall low level of BIM maturity in the projects of the examined sample. As a quintessence, the author suggests that the further implementation of BIM should primarily focus on an application-oriented and consistent development of the project-related BIM maturity level instead of implementing BIM for its own sake. Apparently, there are still significant difficulties in the interweaving of people, processes, and technology.Keywords: AEC-process, building information modeling, BIM maturity level, project results, productivity of the construction industry
Procedia PDF Downloads 735181 Environmental Engineering Case Study of Waste Water Treatement
Authors: Harold Jideofor
Abstract:
Wastewater treatment consists of applying known technology to improve or upgrade the quality of a wastewater. Usually wastewater treatment will involve collecting the wastewater in a central, segregated location (the Wastewater Treatment Plant) and subjecting the wastewater to various treatment processes. Most often, since large volumes of wastewater are involved, treatment processes are carried out on continuously flowing wastewaters (continuous flow or "open" systems) rather than as "batch" or a series of periodic treatment processes in which treatment is carried out on parcels or "batches" of wastewaters. While most wastewater treatment processes are continuous flow, certain operations, such as vacuum filtration, involving storage of sludge, the addition of chemicals, filtration and removal or disposal of the treated sludge, are routinely handled as periodic batch operations.Keywords: wastewater treatment, environmental engineering, waste water
Procedia PDF Downloads 5865180 Tackling Food Waste Challenge with Nanotechnology: Controllable Ripening via Metal Organic Framework
Authors: Boce Zhang, Yaguang Luo
Abstract:
Ripening of climacteric fruits, such as bananas and avocados, are usually initiated days prior to the retail marketing. However, upon the onset of irreversible ripening, they undergo rapid spoilage if not consumed within a narrow climacteric time window. Controlled ripening of climacteric fruits is a critical step to provide consumers with high-quality products while reducing postharvest losses and food waste. There is a high demand for technologies that can retard the ripening process or enable accelerated ripening immediately before consumption. In this work, metal−organic framework (MOF) was developed as a solid porous matrix to encapsulate gaseous hormone, including ethylene, for subsequent application. The feasibility of the on-demand stimulated ripening of bananas and avocados is also evaluated. MOF was synthesized and loaded with ethylene gas. The MOF−ethylene was placed inside sealed containers with preclimacteric bananas and avocados and stored at 16 °C. The fruits were treated for 24-48 hours, and evaluated for ripening progress. Results indicate that MOF−ethylene treatment significantly accelerated the ripening-related changes of color and textural properties in treated bananas and avocados. The average ripening period for both avocados and bananas were reduced in half by using this method. No significant differences of quality characteristics at respective ripening stages were observed between produce ripened via MOF-ethylene versus exogenously supplied ethylene gas or endogenously produced ethylene. Solid MOF matrices could have multiple advantages compared to existing systems, including easy to transport and safe to use by minimally trained produce handlers and consumers. We envision that this technology can help tackle food waste challenges at the critical retail and consumer stages in the food supply chain.Keywords: climacteric produce, controllable ripening, food waste challenge, metal organic framework
Procedia PDF Downloads 2475179 Methanol Steam Reforming with Heat Recovery for Hydrogen-Rich Gas Production
Authors: Horng-Wen Wu, Yi Chao, Rong-Fang Horng
Abstract:
This study is to develop a methanol steam reformer with a heat recovery zone, which recovers heat from exhaust gas of a diesel engine, and to investigate waste heat recovery ratio at the required reaction temperature. The operation conditions of the reformer are reaction temperature (200 °C, 250 °C, and 300 °C), steam to carbonate (S/C) ratio (0.9, 1.1, and 1.3), and N2 volume flow rate (40 cm3/min, 70 cm3/min, and 100 cm3/min). Finally, the hydrogen concentration, the CO, CO2, and N2 concentrations are measured and recorded to calculate methanol conversion efficiency, hydrogen flow rate, and assisting combustion gas and impeding combustion gas ratio. The heat source of this reformer comes from electric heater and waste heat of exhaust gas from diesel engines. The objective is to recover waste heat from the engine and to make more uniform temperature distribution within the reformer. It is beneficial for the reformer to enhance the methanol conversion efficiency and hydrogen-rich gas production. Experimental results show that the highest hydrogen flow rate exists at N2 of the volume rate 40 cm3/min and reforming reaction temperature of 300 °C and the value is 19.6 l/min. With the electric heater and heat recovery from exhaust gas, the maximum heat recovery ratio is 13.18 % occurring at water-methanol (S/C) ratio of 1.3 and the reforming reaction temperature of 300 °C.Keywords: heat recovery, hydrogen-rich production, methanol steam reformer, methanol conversion efficiency
Procedia PDF Downloads 4665178 The Construction of Healthy Bodies in U.S. and China: A Comparative Analysis of Women's Health and Trends Health
Authors: Yang L. Frances
Abstract:
Women's health and wellness has been becoming an increasingly important issue in mass media in the age of globalization. In this context, the current research focuses on comparing the construction of healthy bodies in women's health magazines of China and U.S. Trends Health in China and Women's Health in U.S are chosen. Textual analysis and in depth interviews are combined to examine how the healthy bodies are constructed in two magazines through discursive strategies. The interviews with the Deputy Editorial Director, Creative Director and Senior Visual Design of two magazines are undertaken to make the further comparisons. In both Trends Health and Women's Health, women's subjectivity is realized in the construction of ideal healthy body; nevertheless in the process of constructing healthy body, the disciplinary practices imposed on women's bodies are different in two magazines. This paper argues that women's health magazines in both China and America provide an alternative discourse to speak their voices on the one hand, but on the other hand, Women's Health and Trends Health construct the healthy body through disparate disciplinary practices because of the different socio-cultural contexts in two societies.Keywords: healthy body, women's health magazines, Foucault, textual analysis
Procedia PDF Downloads 3505177 Auditing of Building Information Modeling Application in Decoration Engineering Projects in China
Authors: Lan Luo
Abstract:
In China’s construction industry, it is a normal practice to separately subcontract the decoration engineering part from construction engineering, and Building Information Modeling (BIM) is also done separately. Application of BIM in decoration engineering should be integrated with other disciplines, but Chinese current practice makes this very difficult and complicated. Currently, there are three barriers in the auditing of BIM application in decoration engineering in China: heavy workload; scarcity of qualified professionals; and lack of literature concerning audit contents, standards, and methods. Therefore, it is significant to perform research on what (contents) should be evaluated, in which phase, and by whom (professional qualifications) in BIM application in decoration construction so that the application of BIM can be promoted in a better manner. Based on this consideration, four principles of BIM auditing are proposed: Comprehensiveness of information, accuracy of data, aesthetic attractiveness of appearance, and scheme optimization. In the model audit, three methods should be used: Collision, observation, and contrast. In addition, BIM auditing at six stages is discussed and a checklist for work items and results to be submitted is proposed. This checklist can be used for reference by decoration project participants.Keywords: audit, evaluation, dimensions, methods, standards, BIM application in decoration engineering projects
Procedia PDF Downloads 3435176 Preliminary Experience in Multiple Green Health Hospital Construction
Authors: Ming-Jyh Chen, Wen-Ming Huang, Yi-Chu Liu, Li-Hui Yang
Abstract:
Introduction: Social responsibility is the key to sustainable organizational development. Under the ground Green Health Hospital Declaration signed by our superintendent, we have launched comprehensive energy conservation management in medical services, the community, and the staff’s life. To execute environment-friendly promotion with robust strategies, we build up a low-carbon medical system and community with smart green public construction promotion as well as intensifying energy conservation education and communication. Purpose/Methods: With the support of the board and the superintendent, we construct an energy management team, commencing with an environment-friendly system, management, education, and ISO 50001 energy management system; we have ameliorated energy performance and energy efficiency and continuing. Results: In the year 2021, we have achieved multiple goals. The energy management system efficiently controls diesel, natural gas, and electricity usage. About 5% of the consumption is saved when compared to the numbers from 2018 and 2021. Our company develops intelligent services and promotes various paperless electronic operations to provide people with a vibrant and environmentally friendly lifestyle. The goal is to save 68.6% on printing and photocopying by reducing 35.15 million sheets of paper yearly. We strengthen the concept of environmental protection classification among colleagues. In the past two years, the amount of resource recycling has reached more than 650 tons, and the resource recycling rate has reached 70%. The annual growth rate of waste recycling is about 28 metric tons. Conclusions: To build a green medical system with “high efficacy, high value, low carbon, low reliance,” energy stewardship, economic prosperity, and social responsibility are our principles when it comes to formulation of energy conservation management strategies, converting limited sources to efficient usage, developing clean energy, and continuing with sustainable energy.Keywords: energy efficiency, environmental education, green hospital, sustainable development
Procedia PDF Downloads 795175 Analytical Studies on Subgrade Soil Using Jute Geotextiles
Authors: A. Vinod Kumar, G. Sunny Deol, Rakesh Kumar, B. Chandra
Abstract:
Application of fiber reinforcement in road construction is gaining some interest in enhancing soil strength. In this paper, the natural Geotextile material obtained from gunny bags was used due to vast local availability material. Construction of flexible pavement on weaker soil such as clay soils are a significant problem in construction as well as in design due to its expansive characteristics. Jute Geotextile (JGT) was used on a foundation layer of flexible pavement on rural roads. This problem will be conquered by increasing the subgrade strength by decreasing sub-base layer thickness by improving their overall pavement strength characteristics which ultimately reduces the cost of construction and leads to economically design. The California Bearing Ratio (CBR), unconfined compressive strength (UCS) and triaxial laboratory tests were conducted on two different soil samples CI and MI. Weaker soil is reinforced with JGT, JGT+Bitumen; JGT+polythene sheet was varied with heights while performing the laboratory tests. Subgrade strength evaluation was investigated by conducting soak CBR test in the laboratory for clayey and silt soils. Laboratory results reveal that reinforced soak CBR value of clayey soil (CI) observed was 10.35%, and silty soil (MI) was 15.6%. This study intends to develop new technique for reinforcing weaker soil with JGT varying parameters for the need of low volume flexible pavements. It was observed that the performance of JGT is inferior when used with bitumen and polyethylene sheets.Keywords: CBR, Jute geotextile, low volume road, weaker soil
Procedia PDF Downloads 4285174 Stress-Strain Behavior of Banana Fiber Reinforced and Biochar Amended Compressed Stabilized Earth Blocks
Authors: Farnia Nayar Parshi, Mohammad Shariful Islam
Abstract:
Though earth construction is an ancient technology, researchers are working on increasing its strength by adding different types of stabilizers. Ordinary Portland cement for sandy soil and lime for clayey soil is very popular practice as well as recommended by various authorities for making stabilized blocks for satisfactory performance. The addition of these additives improves compressive strength but fails to improve ductility. The addition of both synthetic and natural fibers increases both compressive strength and ductility. Studies are conducted to make earth blocks more cost-effective, energy-efficient and sustainable. In this experiment, an agricultural waste banana fiber and biochar is used to study the compressive stress-strain behavior of earth blocks made with four types of soil low plastic clay, sandy low plastic clay, very fine sand and medium to fine sand. Biochar is a charcoal-like carbon usually produced from organic or agricultural waste in high temperatures through a controlled condition called pyrolysis. In this experimental study, biochar was collected from BBI (Bangladesh Biochar Initiative) produced from wood flakes around 400 deg. Celsius. Locally available PPC (Portland Pozzolana Cement) is used. 5 cm × 5 cm × 5 cm earth blocks were made with eight different combinations such as bare soil, soil with 6% cement, soil with 6% cement and 5% biochar, soil with 6% cement, 5% biochar and 1% fiber, soil with 1% fiber, soil with 5% biochar and 1% fiber and soil with 6% cement and 1% fiber. All samples were prepared with 10-12% water content. Uniaxial compressive strength tests were conducted on 21 days old earth blocks. Stress-strain diagram shows that the addition of banana fiber improved compressive strength drastically, but the combined effect of fiber and biochar is different based on different soil types. For clayey soil, 6% cement and 1% fiber give maximum compressive strength of 991 kPa, and for very fine sand, a combination of 5% biochar, 6% cement and 1% fiber gives maximum compressive strength of 522 kPa as well as ductility. For medium-to-find sand, 6% cement and 1% fiber give the best result, 1530 kPa, among other combinations. The addition of fiber increases not only ductility but also compressive strength as well. The effect of biochar with fiber varies with the soil type.Keywords: banana fiber, biochar, cement, compressed stabilized earth blocks, compressive strength
Procedia PDF Downloads 1215173 Handshake Algorithm for Minimum Spanning Tree Construction
Authors: Nassiri Khalid, El Hibaoui Abdelaaziz et Hajar Moha
Abstract:
In this paper, we introduce and analyse a probabilistic distributed algorithm for a construction of a minimum spanning tree on network. This algorithm is based on the handshake concept. Firstly, each network node is considered as a sub-spanning tree. And at each round of the execution of our algorithm, a sub-spanning trees are merged. The execution continues until all sub-spanning trees are merged into one. We analyze this algorithm by a stochastic process.Keywords: Spanning tree, Distributed Algorithm, Handshake Algorithm, Matching, Probabilistic Analysis
Procedia PDF Downloads 6595172 Modeling the Impacts of Road Construction on Lands Values
Authors: Maha Almumaiz, Harry Evdorides
Abstract:
Change in land value typically occurs when a new interurban road construction causes an increase in accessibility; this change in the adjacent lands values differs according to land characteristics such as geographic location, land use type, land area and sale time (appraisal time). A multiple regression model is obtained to predict the percent change in land value (CLV) based on four independent variables namely land distance from the constructed road, area of land, nature of land use and time from the works completion of the road. The random values of percent change in land value were generated using Microsoft Excel with a range of up to 35%. The trend of change in land value with the four independent variables was determined from the literature references. The statistical analysis and model building process has been made by using the IBM SPSS V23 software. The Regression model suggests, for lands that are located within 3 miles as the straight distance from the road, the percent CLV is between (0-35%) which is depending on many factors including distance from the constructed road, land use, land area and time from works completion of the new road.Keywords: interurban road, land use types, new road construction, percent CLV, regression model
Procedia PDF Downloads 266