Search results for: virtual optical memory
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3971

Search results for: virtual optical memory

2321 An Integrated Lightweight Naïve Bayes Based Webpage Classification Service for Smartphone Browsers

Authors: Mayank Gupta, Siba Prasad Samal, Vasu Kakkirala

Abstract:

The internet world and its priorities have changed considerably in the last decade. Browsing on smart phones has increased manifold and is set to explode much more. Users spent considerable time browsing different websites, that gives a great deal of insight into user’s preferences. Instead of plain information classifying different aspects of browsing like Bookmarks, History, and Download Manager into useful categories would improve and enhance the user’s experience. Most of the classification solutions are server side that involves maintaining server and other heavy resources. It has security constraints and maybe misses on contextual data during classification. On device, classification solves many such problems, but the challenge is to achieve accuracy on classification with resource constraints. This on device classification can be much more useful in personalization, reducing dependency on cloud connectivity and better privacy/security. This approach provides more relevant results as compared to current standalone solutions because it uses content rendered by browser which is customized by the content provider based on user’s profile. This paper proposes a Naive Bayes based lightweight classification engine targeted for a resource constraint devices. Our solution integrates with Web Browser that in turn triggers classification algorithm. Whenever a user browses a webpage, this solution extracts DOM Tree data from the browser’s rendering engine. This DOM data is a dynamic, contextual and secure data that can’t be replicated. This proposal extracts different features of the webpage that runs on an algorithm to classify into multiple categories. Naive Bayes based engine is chosen in this solution for its inherent advantages in using limited resources compared to other classification algorithms like Support Vector Machine, Neural Networks, etc. Naive Bayes classification requires small memory footprint and less computation suitable for smartphone environment. This solution has a feature to partition the model into multiple chunks that in turn will facilitate less usage of memory instead of loading a complete model. Classification of the webpages done through integrated engine is faster, more relevant and energy efficient than other standalone on device solution. This classification engine has been tested on Samsung Z3 Tizen hardware. The Engine is integrated into Tizen Browser that uses Chromium Rendering Engine. For this solution, extensive dataset is sourced from dmoztools.net and cleaned. This cleaned dataset has 227.5K webpages which are divided into 8 generic categories ('education', 'games', 'health', 'entertainment', 'news', 'shopping', 'sports', 'travel'). Our browser integrated solution has resulted in 15% less memory usage (due to partition method) and 24% less power consumption in comparison with standalone solution. This solution considered 70% of the dataset for training the data model and the rest 30% dataset for testing. An average accuracy of ~96.3% is achieved across the above mentioned 8 categories. This engine can be further extended for suggesting Dynamic tags and using the classification for differential uses cases to enhance browsing experience.

Keywords: chromium, lightweight engine, mobile computing, Naive Bayes, Tizen, web browser, webpage classification

Procedia PDF Downloads 161
2320 In-Situ Studies of Cyclohexane Oxidation Using Laser Raman Spectroscopy for the Refinement of Mechanism Based Kinetic Models

Authors: Christine Fräulin, Daniela Schurr, Hamed Shahidi Rad, Gerrit Waters, Günter Rinke, Roland Dittmeyer, Michael Nilles

Abstract:

The reaction mechanisms of many liquid-phase reactions in organic chemistry have not yet been sufficiently clarified. Process conditions of several hundred degrees celsius and pressures to ten megapascals complicate the sampling and the determination of kinetic data. Space resolved in-situ measurements promises new insights. A non-invasive in-situ measurement technique has the advantages that no sample preparation is necessary, there is no change in sample mixture before analysis and the sampling do no lead to interventions in the flow. Thus, the goal of our research was the development of a contact-free spatially resolved measurement technique for kinetic studies of liquid phase reaction under process conditions. Therefore we used laser Raman spectroscopy combined with an optical transparent microchannel reactor. To show the performance of the system we choose the oxidation of cyclohexane as sample reaction. Cyclohexane oxidation is an economically important process. The products are intermediates for caprolactam and adipic acid, which are starting materials for polyamide 6 and 6.6 production. To maintain high selectivities of 70 to 90 %, the reaction is performed in industry at a low conversion of about six percent. As Raman spectroscopy is usually very selective but not very sensitive the detection of the small product concentration in cyclohexane oxidation is quite challenging. To meet these requirements, an optical experimental setup was optimized to determine the concentrations by laser Raman spectroscopy with respect to good detection sensitivity. With this measurement technique space resolved kinetic studies of uncatalysed and homogeneous catalyzed cyclohexane oxidation were carried out to obtain details about the reaction mechanism.

Keywords: in-situ laser raman spectroscopy, space resolved kinetic measurements, homogeneous catalysis, chemistry

Procedia PDF Downloads 328
2319 A Review of Lexical Retrieval Intervention in Primary Progressive Aphasia and Alzheimer's Disease: Mechanisms of Change, Cognition, and Generalisation

Authors: Ashleigh Beales, Anne Whitworth, Jade Cartwright

Abstract:

Background: While significant benefits of lexical retrieval intervention are evident within the Primary Progressive Aphasia (PPA) and Alzheimer’s disease (AD) literature, an understanding of the mechanisms that underlie change or improvement is limited. Change mechanisms have been explored in the non-progressive post-stroke literature that may offer insight into how interventions affect change with progressive language disorders. The potential influences of cognitive factors may also play a role here, interacting with the aims of intervention. Exploring how such processes have been applied is likely to grow our understanding of how interventions have, or have not, been effective, and how and why generalisation is likely, or not, to occur. Aims: This review of the literature aimed to (1) investigate the proposed mechanisms of change which underpin lexical interventions, mapping the PPA and AD lexical retrieval literature to theoretical accounts of mechanisms that underlie change within the broader intervention literature, (2) identify whether and which nonlinguistic cognitive functions have been engaged in intervention with these populations and any proposed influence, and (3) explore evidence of linguistic generalisation, with particular reference to change mechanisms employed in interventions. Main contribution: A search of Medline, PsycINFO, and CINAHL identified 36 articles that reported data for individuals with PPA or AD following lexical retrieval intervention. A review of the mechanisms of change identified 10 studies that used stimulation, 21 studies utilised relearning, three studies drew on reorganisation, and two studies used cognitive-relay. Significant treatment gains, predominantly based on linguistic performance measures, were reported for all client groups for each of the proposed mechanisms. Reorganisation and cognitive-relay change mechanisms were only targeted in PPA. Eighteen studies incorporated nonlinguistic cognitive functions in intervention; these were limited to autobiographical memory (16 studies), episodic memory (three studies), or both (one study). Linguistic generalisation outcomes were inconsistently reported in PPA and AD studies. Conclusion: This review highlights that individuals with PPA and AD may benefit from lexical retrieval intervention, irrespective of the mechanism of change. Thorough application of a theory of intervention is required to gain a greater understanding of the change mechanisms, as well as the interplay of nonlinguistic cognitive functions.

Keywords: Alzheimer's disease, lexical retrieval, mechanisms of change, primary progressive aphasia

Procedia PDF Downloads 195
2318 Metagenomics Analysis of Bacteria in Sorghum Using next Generation Sequencing

Authors: Kedibone Masenya, Memory Tekere, Jasper Rees

Abstract:

Sorghum is an important cereal crop in the world. In particular, it has attracted breeders due to capacity to serve as food, feed, fiber and bioenergy crop. Like any other plant, sorghum hosts a variety of microbes, which can either, have a neutral, negative and positive influence on the plant. In the current study, regions (V3/V4) of 16 S rRNA were targeted to extensively assess bacterial multitrophic interactions in the phyllosphere of sorghum. The results demonstrated that the presence of a pathogen has a significant effect on the endophytic bacterial community. Understanding these interactions is key to develop new strategies for plant protection.

Keywords: bacteria, multitrophic, sorghum, target sequencing

Procedia PDF Downloads 277
2317 Developing VR-Based Neurorehabilitation Support Tools: A Step-by-Step Approach for Cognitive Rehabilitation and Pain Distraction during Invasive Techniques in Hospital Settings

Authors: Alba Prats-Bisbe, Jaume López-Carballo, David Leno-Colorado, Alberto García Molina, Alicia Romero Marquez, Elena Hernández Pena, Eloy Opisso Salleras, Raimon Jané Campos

Abstract:

Neurological disorders are a leading cause of disability and premature mortality worldwide. Neurorehabilitation (NRHB) is a clinical process aimed at reducing functional impairment, promoting societal participation, and improving the quality of life for affected individuals. Virtual reality (VR) technology is emerging as a promising NRHB support tool. Its immersive nature fosters a strong sense of agency and embodiment, motivating patients to engage in meaningful tasks and increasing adherence to therapy. However, the clinical benefits of VR interventions are challenging to determine due to the high heterogeneity among health applications. This study explores a stepwise development approach for creating VR-based tools to assist individuals with neurological disorders in medical practice, aiming to enhance reproducibility, facilitate comparison, and promote the generalization of findings. Building on previous research, the step-by-step methodology encompasses: Needs Identification– conducting cross-disciplinary meetings to brainstorm problems, solutions, and address barriers. Intervention Definition– target population, set goals, and conceptualize the VR system (equipment and environments). Material Selection and Placement– choose appropriate hardware and software, place the device within the hospital setting, and test equipment. Co-design– collaboratively create VR environments, user interfaces, and data management strategies. Prototyping– develop VR prototypes, conduct user testing, and make iterative redesigns. Usability and Feasibility Assessment– design protocols and conduct trials with stakeholders in the hospital setting. Efficacy Assessment– conduct clinical trials to evaluate outcomes and long-term effects. Cost-Effectiveness Validation– assess reproducibility, sustainability, and balance between costs and benefits. NRHB is complex due to the multifaceted needs of patients and the interdisciplinary healthcare architecture. VR has the potential to support various applications, such as motor skill training, cognitive tasks, pain management, unilateral spatial neglect (diagnosis and treatment), mirror therapy, and ecologically valid activities of daily living. Following this methodology was crucial for launching a VR-based system in a real hospital environment. Collaboration with neuropsychologists lead to develop A) a VR-based tool for cognitive rehabilitation in patients with acquired brain injury (ABI). The system comprises a head-mounted display (HTC Vive Pro Eye) and 7 tasks targeting attention, memory, and executive functions. A desktop application facilitates session configuration, while database records in-game variables. The VR tool's usability and feasibility were demonstrated in proof-of-concept trials with 20 patients, and effectiveness is being tested through a clinical protocol with 12 patients completing 24-session treatment. Another case involved collaboration with nurses and paediatric physiatrists to create B) a VR-based distraction tool during invasive techniques. The goal is to alleviate pain and anxiety associated with botulinum toxin (BTX) injections, blood tests, or intravenous placements. An all-in-one headset (HTC Vive Focus 3) deploys 360º videos to improve the experience for paediatric patients and their families. This study presents a framework for developing clinically relevant and technologically feasible VR-based support tools for hospital settings. Despite differences in patient type, intervention purpose, and VR system, the methodology demonstrates usability, viability, reproducibility and preliminary clinical benefits. It highlights the importance approach centred on clinician and patient needs for any aspect of NRHB within a real hospital setting.

Keywords: neurological disorders, neurorehabilitation, stepwise development approach, virtual reality

Procedia PDF Downloads 17
2316 The Effect of Expanding the Early Pregnancy Assessment Clinic and COVID-19 on Emergency Department and Urgent Care Visits for Early Pregnancy Bleeding

Authors: Harley Bray, Helen Pymar, Michelle Liu, Chau Pham, Tomislav Jelic, Fran Mulhall

Abstract:

Background: Our study assesses the impact of the COVID-19 pandemic on early pregnancy assessment clinic (EPAC) referrals and the use of virtual consultation in Winnipeg, Manitoba. Our clinic expanded to accept referrals from all Winnipeg Emergency Department (ED)/Urgent Care (UC) sites beginning November 2019 to April 2020. By May 2020, the COVID-19 pandemic reached Manitoba and EPAC virtual care was expanded by performing hCG remotely and reviewing blood and ED/UC ultrasound results by phone. Methods: Emergency Department Information Systems (EDIS) and EPAC data reviewed ED/UC visits for pregnancy <20 weeks and vaginal bleeding 1-year pre-COVID (March 12, 2019, to March 11, 2020) and during COVID (March 12, 2020 (first case in Manitoba) to March 11, 2021). Results: There were fewer patient visits for vaginal bleeding or pregnancy of <20 weeks (4264 vs. 5180), diagnoses of threatened abortion (1895 vs. 2283), and ectopic pregnancy (78 vs. 97) during COVID compared with pre-COVID, respectively. ICD 10 codes were missing in 849 (20%) and 1183 (23%) of patients during COVID and pre-COVID, respectively. Wait times for all patient visits improved during COVID-19 compared to pre-COVID (5.1 ± 4.4 hours vs. 5.5 ± 3.8 hours), more patients received obstetrical ultrasounds, 761 (18%) vs. 787 (15%), and fewer patients returned within 30 days (1360 (32%) vs. 1848 (36%); p<0.01). EPAC saw 708 patients (218; 31% new ED/UC) during COVID-19 compared to 552 (37; 7% new ED/UC) pre-COVID. Fewer operative interventions for pregnancy loss (346 vs. 456) and retained products (236 vs. 272) were noted. Surgeries to treat ectopic pregnancy (106 vs 113) remained stable during the study time interval. Conclusion: Accurate identification of pregnancy complications was difficult, with over 20% missing ICD-10 diagnostic codes. There were fewer ED/UC visits and surgical management for threatened abortion during COVID-19, but ectopic pregnancy operative management remained unchanged.

Keywords: early pregnancy, ultrasound, COVID-19, obstetrics

Procedia PDF Downloads 16
2315 The Relationship between Adolescent Self Well Being and Cyber Bully/Victim Being

Authors: Nesrin Demir, Betül Demirbağ

Abstract:

In recent years, the type and content of bullying in schools changes together with technological development. Many studies attribute bullying movement to virtual platform to the widespread use of social media and internet. The main goal of this research is to determine if there is a correlation between subjective well-being as a popular conception of Positive Psychology and being cyber bully/victim. For this purpose, 287 students from various public high schools in Malatya have reached. As assessment tool, Cyber Bully/Victim Scale and Self Well Being Scale for Adolescents were used. Results were discussed in the relevant literature.

Keywords: cyber bully, cyber victim, school counseling, subjective well-being

Procedia PDF Downloads 410
2314 Quantitative Analysis of Camera Setup for Optical Motion Capture Systems

Authors: J. T. Pitale, S. Ghassab, H. Ay, N. Berme

Abstract:

Biomechanics researchers commonly use marker-based optical motion capture (MoCap) systems to extract human body kinematic data. These systems use cameras to detect passive or active markers placed on the subject. The cameras use triangulation methods to form images of the markers, which typically require each marker to be visible by at least two cameras simultaneously. Cameras in a conventional optical MoCap system are mounted at a distance from the subject, typically on walls, ceiling as well as fixed or adjustable frame structures. To accommodate for space constraints and as portable force measurement systems are getting popular, there is a need for smaller and smaller capture volumes. When the efficacy of a MoCap system is investigated, it is important to consider the tradeoff amongst the camera distance from subject, pixel density, and the field of view (FOV). If cameras are mounted relatively close to a subject, the area corresponding to each pixel reduces, thus increasing the image resolution. However, the cross section of the capture volume also decreases, causing reduction of the visible area. Due to this reduction, additional cameras may be required in such applications. On the other hand, mounting cameras relatively far from the subject increases the visible area but reduces the image quality. The goal of this study was to develop a quantitative methodology to investigate marker occlusions and optimize camera placement for a given capture volume and subject postures using three-dimension computer-aided design (CAD) tools. We modeled a 4.9m x 3.7m x 2.4m (LxWxH) MoCap volume and designed a mounting structure for cameras using SOLIDWORKS (Dassault Systems, MA, USA). The FOV was used to generate the capture volume for each camera placed on the structure. A human body model with configurable posture was placed at the center of the capture volume on CAD environment. We studied three postures; initial contact, mid-stance, and early swing. The human body CAD model was adjusted for each posture based on the range of joint angles. Markers were attached to the model to enable a full body capture. The cameras were placed around the capture volume at a maximum distance of 2.7m from the subject. We used the Camera View feature in SOLIDWORKS to generate images of the subject as seen by each camera and the number of markers visible to each camera was tabulated. The approach presented in this study provides a quantitative method to investigate the efficacy and efficiency of a MoCap camera setup. This approach enables optimization of a camera setup through adjusting the position and orientation of cameras on the CAD environment and quantifying marker visibility. It is also possible to compare different camera setup options on the same quantitative basis. The flexibility of the CAD environment enables accurate representation of the capture volume, including any objects that may cause obstructions between the subject and the cameras. With this approach, it is possible to compare different camera placement options to each other, as well as optimize a given camera setup based on quantitative results.

Keywords: motion capture, cameras, biomechanics, gait analysis

Procedia PDF Downloads 306
2313 Condition Monitoring for Controlling the Stability of the Rotating Machinery

Authors: A. Chellil, I. Gahlouz, S. Lecheb, A. Nour, S. Chellil, H. Mechakra, H. Kebir

Abstract:

In this paper, the experimental study for the instability of a separator rotor is presented, under dynamic loading response in the harmonic analysis condition. The analysis of the stress which operates the rotor is done. Calculations of different energies and the virtual work of the aerodynamic loads from the rotor are developed. Numerical calculations on the model develop of three dimensions prove that the defects effect has a negative effect on the stability of the rotor. Experimentally, the study of the rotor in the transient system allowed to determine the vibratory responses due to the unbalances and various excitations.

Keywords: rotor, frequency, finite element, specter

Procedia PDF Downloads 378
2312 Photocatalytic Properties of Pt/Er-KTaO3

Authors: Anna Krukowska, Tomasz Klimczuk, Adriana Zaleska-Medynska

Abstract:

Photoactive materials have attracted attention due to their potential application in the degradation of environmental pollutants to non-hazardous compounds in an eco-friendly route. Among semiconductor photocatalysts, tantalates such as potassium tantalate (KTaO3) is one of the excellent functional photomaterial. However, tantalates-based materials are less active under visible-light irradiation, the enhancement in photoactivity could be improved with the modification of opto-eletronic properties of KTaO3 by doping rare earth metal (Er) and further photodeposition of noble metal nanoparticles (Pt). Inclusion of rare earth element in orthorhombic structure of tantalate can generate one high-energy photon by absorbing two or more incident low-energy photons, which convert visible-light and infrared-light into the ultraviolet-light to satisfy the requirement of KTaO3 photocatalysts. On the other hand, depositions of noble metal nanoparticles on the surface of semiconductor strongly absorb visible-light due to their surface plasmon resonance, in which their conducting electrons undergo a collective oscillation induced by electric field of visible-light. Furthermore, the high dispersion of Pt nanoparticles, which will be obtained by photodeposition process is additional important factor to improve the photocatalytic activity. The present work is aimed to study the effect of photocatalytic process of the prepared Er-doped KTaO3 and further incorporation of Pt nanoparticles by photodeposition. Moreover, the research is also studied correlations between photocatalytic activity and physico-chemical properties of obtained Pt/Er-KTaO3 samples. The Er-doped KTaO3 microcomposites were synthesized by a hydrothermal method. Then photodeposition method was used for Pt loading over Er-KTaO3. The structural and optical properties of Pt/Er-KTaO3 photocatalytic were characterized using scanning electron microscope (SEM), X-ray diffraction (XRD), volumetric adsorption method (BET), UV-Vis absorption measurement, Raman spectroscopy and luminescence spectroscopy. The photocatalytic properties of Pt/Er-KTaO3 microcomposites were investigated by degradation of phenol in aqueous phase as model pollutant under visible and ultraviolet-light irradiation. Results of this work show that all the prepared photocatalysis exhibit low BET surface area, although doping of the bare KTaO3 with rare earth element (Er) presents a slight increase in this value. The crystalline structure of Pt/Er-KTaO3 powders exhibited nearly identical positions for the main peak at about 22,8o and the XRD pattern could be assigned to an orthorhombic distorted perovskite structure. The Raman spectra of obtained semiconductors confirmed demonstrating perovskite-like structure. The optical absorption spectra of Pt nanoparticles exhibited plasmon absorption band for main peaks at about 216 and 264 nm. The addition of Pt nanoparticles increased photoactivity compared to Er-KTaO3 and pure KTaO3. Summary optical properties of KTaO3 change with its doping Er-element and further photodeposition of Pt nanoparticles.

Keywords: heterogeneous photocatalytic, KTaO3 photocatalysts, Er3+ ion doping, Pt photodeposition

Procedia PDF Downloads 357
2311 Game “EZZRA” as an Innovative Solution

Authors: Mane Varosyan, Diana Tumanyan, Agnesa Martirosyan

Abstract:

There are many catastrophic events that end with dire consequences, and to avoid them, people should be well-armed with the necessary information about these situations. During the last years, Serious Games have increasingly gained popularity for training people for different types of emergencies. The major discussed problem is the usage of gamification in education. Moreover, it is mandatory to understand how and what kind of gamified e-learning modules promote engagement. As the theme is emergency, we also find out people’s behavior for creating the final approach. Our proposed solution is an educational video game, “EZZRA”.

Keywords: gamification, education, emergency, serious games, game design, virtual reality, digitalisation

Procedia PDF Downloads 72
2310 Analysis of Anti-Tuberculosis Immune Response Induced in Lungs by Intranasal Immunization with Mycobacterium indicus pranii

Authors: Ananya Gupta, Sangeeta Bhaskar

Abstract:

Mycobacterium indicus pranii (MIP) is a saprophytic mycobacterium. It is a predecessor of M. avium complex (MAC). Whole genome analysis and growth kinetics studies have placed MIP in between pathogenic and non-pathogenic species. It shares significant antigenic repertoire with M. tuberculosis and have unique immunomodulatory properties. MIP provides better protection than BCG against pulmonary tuberculosis in animal models. Immunization with MIP by aerosol route provides significantly higher protection as compared to immunization by subcutaneous (s.c.) route. However, mechanism behind differential protection has not been studied. In this study, using mice model we have evaluated and compared the M.tb specific immune response in lung compartments (airway lumen / lung interstitium) as well as spleen following MIP immunization via nasal (i.n.) and s.c. route. MIP i.n. vaccination resulted in increased seeding of memory T cells (CD4+ and CD8+ T-cells) in the airway lumen. Frequency of CD4+ T cells expressing Th1 migratory marker (CXCR3) and activation marker (CD69) were also high in airway lumen of MIP i.n. group. Significantly high ex vivo secretion of cytokines- IFN-, IL-12, IL-17 and TNF- from cells of airway luminal spaces provides evidence of antigen-specific lung immune response, besides generating systemic immunity comparable to MIP s.c. group. Analysis of T cell response on per cell basis revealed that antigen specific T-cells of MIP i.n. group were functionally superior as higher percentage of these cells simultaneously secreted IFN-gamma, IL-2 and TNF-alpha cytokines as compared to MIP s.c. group. T-cells secreting more than one of the cytokines simultaneously are believed to have robust effector response and crucial for protection, compared with single cytokine secreting T-cells. Adoptive transfer of airway luminal T-cells from MIP i.n. group into trachea of naive B6 mice revealed that MIP induced CD8 T-cells play crucial role in providing long term protection. Thus the study demonstrates that MIP intranasal vaccination induces M.tb specific memory T-cells in the airway lumen that results in an early and robust recall response against M.tb infection.

Keywords: airway lumen, Mycobacterium indicus pranii, Th1 migratory markers, vaccination

Procedia PDF Downloads 184
2309 Forming-Free Resistive Switching Effect in ZnₓTiᵧHfzOᵢ Nanocomposite Thin Films for Neuromorphic Systems Manufacturing

Authors: Vladimir Smirnov, Roman Tominov, Vadim Avilov, Oleg Ageev

Abstract:

The creation of a new generation micro- and nanoelectronics elements opens up unlimited possibilities for electronic devices parameters improving, as well as developing neuromorphic computing systems. Interest in the latter is growing up every year, which is explained by the need to solve problems related to the unstructured classification of data, the construction of self-adaptive systems, and pattern recognition. However, for its technical implementation, it is necessary to fulfill a number of conditions for the basic parameters of electronic memory, such as the presence of non-volatility, the presence of multi-bitness, high integration density, and low power consumption. Several types of memory are presented in the electronics industry (MRAM, FeRAM, PRAM, ReRAM), among which non-volatile resistive memory (ReRAM) is especially distinguished due to the presence of multi-bit property, which is necessary for neuromorphic systems manufacturing. ReRAM is based on the effect of resistive switching – a change in the resistance of the oxide film between low-resistance state (LRS) and high-resistance state (HRS) under an applied electric field. One of the methods for the technical implementation of neuromorphic systems is cross-bar structures, which are ReRAM cells, interconnected by cross data buses. Such a structure imitates the architecture of the biological brain, which contains a low power computing elements - neurons, connected by special channels - synapses. The choice of the ReRAM oxide film material is an important task that determines the characteristics of the future neuromorphic system. An analysis of literature showed that many metal oxides (TiO2, ZnO, NiO, ZrO2, HfO2) have a resistive switching effect. It is worth noting that the manufacture of nanocomposites based on these materials allows highlighting the advantages and hiding the disadvantages of each material. Therefore, as a basis for the neuromorphic structures manufacturing, it was decided to use ZnₓTiᵧHfzOᵢ nanocomposite. It is also worth noting that the ZnₓTiᵧHfzOᵢ nanocomposite does not need an electroforming, which degrades the parameters of the formed ReRAM elements. Currently, this material is not well studied, therefore, the study of the effect of resistive switching in forming-free ZnₓTiᵧHfzOᵢ nanocomposite is an important task and the goal of this work. Forming-free nanocomposite ZnₓTiᵧHfzOᵢ thin film was grown by pulsed laser deposition (Pioneer 180, Neocera Co., USA) on the SiO2/TiN (40 nm) substrate. Electrical measurements were carried out using a semiconductor characterization system (Keithley 4200-SCS, USA) with W probes. During measurements, TiN film was grounded. The analysis of the obtained current-voltage characteristics showed a resistive switching from HRS to LRS resistance states at +1.87±0.12 V, and from LRS to HRS at -2.71±0.28 V. Endurance test shown that HRS was 283.21±32.12 kΩ, LRS was 1.32±0.21 kΩ during 100 measurements. It was shown that HRS/LRS ratio was about 214.55 at reading voltage of 0.6 V. The results can be useful for forming-free nanocomposite ZnₓTiᵧHfzOᵢ films in neuromorphic systems manufacturing. This work was supported by RFBR, according to the research project № 19-29-03041 mk. The results were obtained using the equipment of the Research and Education Center «Nanotechnologies» of Southern Federal University.

Keywords: nanotechnology, nanocomposites, neuromorphic systems, RRAM, pulsed laser deposition, resistive switching effect

Procedia PDF Downloads 128
2308 Colour and Travel: Design of an Innovative Infrastructure for Travel Applications with Entertaining and Playful Features

Authors: Avrokomi Zavitsanou, Spiros Papadopoulos, Theofanis Alexandridis

Abstract:

This paper presents the research project ‘Colour & Travel’, which is co-funded by the European Union and national resources through the Operational Programme “Competitiveness, Entrepreneurship and Innovation” 2014-2020, under the Single RTDI State Aid Action "RESEARCH - CREATE - INNOVATE". The research project proposes the design of an innovative, playful framework for exploring a variety of travel destinations and creating personalised travel narratives, aiming to entertain, educate, and promote culture and tourism. Gamification of the cultural and touristic environment can enhance its experiential, multi-sensory aspects and broaden the perception of the traveler. The latter's involvement in creating and shaping his personal travel narrations and the possibility of sharing it with others can offer him an alternative, more binding way of getting acquainted with a place. In particular, the paper presents the design of an infrastructure: (a) for the development of interactive travel guides for mobile devices, where sites with specific points of interest will be recommended, with which the user can interact in playful ways and then create his personal travel narratives, (b) for the development of innovative games within virtual reality environment, where the interaction will be offered while the user is moving within the virtual environment; and (c) for an online application where the content will be offered through the browser and the modern 3D imaging technologies (WebGL). The technological products that will be developed within the proposed project can strengthen important sectors of economic and social life, such as trade, tourism, exploitation and promotion of the cultural environment, creative industries, etc. The final applications delivered at the end of the project will guarantee an improved level of service for visitors and will be a useful tool for content creators with increased adaptability, expansibility, and applicability in many regions of Greece and abroad. This paper aims to present the research project by referencing the state of the art and the methodological scheme, ending with a brief reflection on the expected outcome in terms of results.

Keywords: gamification, culture, tourism, AR, VR, applications

Procedia PDF Downloads 139
2307 Generation of Ultra-Broadband Supercontinuum Ultrashort Laser Pulses with High Energy

Authors: Walid Tawfik

Abstract:

The interaction of intense short nano- and picosecond laser pulses with plasma leads to reach variety of important applications, including time-resolved laser induced breakdown spectroscopy (LIBS), soft x-ray lasers, and laser-driven accelerators. The progress in generating of femtosecond down to sub-10 fs optical pulses has opened a door for scientists with an essential tool in many ultrafast phenomena, such as femto-chemistry, high field physics, and high harmonic generation (HHG). The advent of high-energy laser pulses with durations of few optical cycles provided scientists with very high electric fields, and produce coherent intense UV to NIR radiation with high energy which allows for the investigation of ultrafast molecular dynamics with femtosecond resolution. In this work, we could experimentally achieve the generation of a two-octave-wide supercontinuum ultrafast pulses extending from ultraviolet at 3.5 eV to the near-infrared at 1.3 eV in neon-filled capillary fiber. These pulses are created due to nonlinear self-phase modulation (SPM) in neon as a nonlinear medium. The measurements of the generated pulses were performed using spectral phase interferometry for direct electric-field reconstruction. A full characterization of the output pulses was studied. The output pulse characterization includes the pulse width, the beam profile, and the spectral bandwidth. Under optimization conditions, the reconstructed pulse intensity autocorrelation function was exposed for the shorts possible pulse duration to achieve transform-limited pulses with energies up to 600µJ. Furthermore, the effect of variation of neon pressure on the pulse-width was studied. The nonlinear SPM found to be increased with the neon pressure. The obtained results may give an opportunity to monitor and control ultrafast transit interaction in femtosecond chemistry.

Keywords: femtosecond laser, ultrafast, supercontinuum, ultra-broadband

Procedia PDF Downloads 200
2306 Design of a 4-DOF Robot Manipulator with Optimized Algorithm for Inverse Kinematics

Authors: S. Gómez, G. Sánchez, J. Zarama, M. Castañeda Ramos, J. Escoto Alcántar, J. Torres, A. Núñez, S. Santana, F. Nájera, J. A. Lopez

Abstract:

This paper shows in detail the mathematical model of direct and inverse kinematics for a robot manipulator (welding type) with four degrees of freedom. Using the D-H parameters, screw theory, numerical, geometric and interpolation methods, the theoretical and practical values of the position of robot were determined using an optimized algorithm for inverse kinematics obtaining the values of the particular joints in order to determine the virtual paths in a relatively short time.

Keywords: kinematics, degree of freedom, optimization, robot manipulator

Procedia PDF Downloads 459
2305 Implementation of ADETRAN Language Using Message Passing Interface

Authors: Akiyoshi Wakatani

Abstract:

This paper describes the Message Passing Interface (MPI) implementation of ADETRAN language, and its evaluation on SX-ACE supercomputers. ADETRAN language includes pdo statement that specifies the data distribution and parallel computations and pass statement that specifies the redistribution of arrays. Two methods for implementation of pass statement are discussed and the performance evaluation using Splitting-Up CG method is presented. The effectiveness of the parallelization is evaluated and the advantage of one dimensional distribution is empirically confirmed by using the results of experiments.

Keywords: iterative methods, array redistribution, translator, distributed memory

Procedia PDF Downloads 265
2304 Bridging Healthcare Information Systems and Customer Relationship Management for Effective Pandemic Response

Authors: Sharda Kumari

Abstract:

As the Covid-19 pandemic continues to leave its mark on the global business landscape, companies have had to adapt to new realities and find ways to sustain their operations amid social distancing measures, government restrictions, and heightened public health concerns. This unprecedented situation has placed considerable stress on both employees and employers, underscoring the need for innovative approaches to manage the risks associated with Covid-19 transmission in the workplace. In response to these challenges, the pandemic has accelerated the adoption of digital technologies, with an increasing preference for remote interactions and virtual collaboration. Customer relationship management (CRM) systems have risen to prominence as a vital resource for organizations navigating the post-pandemic world, providing a range of benefits that include acquiring new customers, generating insightful consumer data, enhancing customer relationships, and growing market share. In the context of pandemic management, CRM systems offer three primary advantages: (1) integration features that streamline operations and reduce the need for multiple, costly software systems; (2) worldwide accessibility from any internet-enabled device, facilitating efficient remote workforce management during a pandemic; and (3) the capacity for rapid adaptation to changing business conditions, given that most CRM platforms boast a wide array of remotely deployable business growth solutions, a critical attribute when dealing with a dispersed workforce in a pandemic-impacted environment. These advantages highlight the pivotal role of CRM systems in helping organizations remain resilient and adaptive in the face of ongoing global challenges.

Keywords: healthcare, CRM, customer relationship management, customer experience, digital transformation, pandemic response, patient monitoring, patient management, healthcare automation, electronic health record, patient billing, healthcare information systems, remote workforce, virtual collaboration, resilience, adaptable business models, integration features, CRM in healthcare, telehealth, pandemic management

Procedia PDF Downloads 98
2303 Multi-Walled Carbon Nanotubes as Nucleating Agents

Authors: Rabindranath Jana, Plabani Basu, Keka Rana

Abstract:

Nucleating agents are widely used to modify the properties of various polymers. The rate of crystallization and the size of the crystals have a strong impact on mechanical and optical properties of a polymer. The addition of nucleating agents to the semi-crystalline polymers provides a surface on which the crystal growth can start easily. As a consequence, fast crystal formation will result in many small crystal domains so that the cycle times for injection molding may be reduced. Moreover, the mechanical properties e.g., modulus, tensile strength, heat distortion temperature and hardness may increase. In the present work, multi-walled carbon nanotubes (MWNTs) as nucleating agents for the crystallization of poly (e-caprolactone)diol (PCL). Thus nanocomposites of PCL filled with MWNTs were prepared by solution blending. Differential scanning calorimetry (DSC) tests were carried out to study the effect of CNTs on on-isothermal crystallization of PCL. The polarizing optical microscopy (POM), and wide-angle X-ray diffraction (WAXD) were used to study the morphology and crystal structure of PCL and its nanocomposites. It is found that MWNTs act as effective nucleating agents that significantly shorten the induction period of crystallization and however, decrease the crystallization rate of PCL, exhibiting a remarkable decrease in the Avrami exponent n, surface folding energy σe and crystallization activation energy ΔE. The carbon-based fillers act as templates for hard block chains of PCL to form an ordered structure on the surface of nanoparticles during the induction period, bringing about some increase in equilibrium temperature. The melting process of PCL and its nanocomposites are also studied; the nanocomposites exhibit two melting peaks at higher crystallization temperature which mainly refer to the melting of the crystals with different crystal sizes however, PCL shows only one melting temperature.

Keywords: poly(e-caprolactone)diol, multiwalled carbon nanotubes, composite materials, nonisothermal crystallization, crystal structure, nucleation

Procedia PDF Downloads 491
2302 Developing NAND Flash-Memory SSD-Based File System Design

Authors: Jaechun No

Abstract:

This paper focuses on I/O optimizations of N-hybrid (New-Form of hybrid), which provides a hybrid file system space constructed on SSD and HDD. Although the promising potentials of SSD, such as the absence of mechanical moving overhead and high random I/O throughput, have drawn a lot of attentions from IT enterprises, its high ratio of cost/capacity makes it less desirable to build a large-scale data storage subsystem composed of only SSDs. In this paper, we present N-hybrid that attempts to integrate the strengths of SSD and HDD, to offer a single, large hybrid file system space. Several experiments were conducted to verify the performance of N-hybrid.

Keywords: SSD, data section, I/O optimizations, hybrid system

Procedia PDF Downloads 413
2301 Impact of the COVID-19 Pandemic and Social Isolation on the Clients’ Experiences in Counselling and their Access to Services: Perspectives of Violence Against Women Program Staff - A Qualitative Study

Authors: Habiba Nahzat, Karen Crow, Lisa Manuel, Maria Huijbregts

Abstract:

Background and Rationale: The World Health Organization (WHO) declared COVID-19 a pandemic on March 11, 2020. Shortly after, the Ontario provincial and Toronto municipal governments also released multiple directives that led to the mass closure of businesses both in the public and private sectors. Recent research has identified connections between Intimate Partner Violence (IPV) and COVID-19 related stressors - especially because of lockdown and social isolation measures. Psychological impacts of lengthy seclusion coupled with disconnection from extended family and diminished support services can take a toll on families at risk and may increase mental health issues and the prevalence of IPV. Research Question: Thus, the purpose of the study was to understand the perspective of the Violence Against Women (VAW) program staff on the impact of the COVID-19 pandemic; we especially wanted to understand staff views of restrictions on clients’ counseling experiences and the ability to access services in general. The study also aimed to examine VAW program staff experiences regarding remote work and explore how the pandemic restriction measures affected the ability of their program operations to support their clients and each other. Method: A cross-sectional, descriptive qualitative study was conducted with a purposive sample of 9 VAW program staff – eight VAW counselors and one VAW manager. Prior to data collection, program staff collaborated in the development of the study purpose, interview questions and methodology. Ethics approval was obtained from the sponsoring organization’s Research Ethics Board. In-depth individual interviews were conducted with study participants using a semi-structured interview questionnaire. Brief demographic information was also collected prior to the interview. Descriptive statistics were used to analyze quantitative data and qualitative data was analyzed by thematic content analysis. Results: Findings from this study indicate that the COVID-19 pandemic restrictions had an adverse impact on clients seeking VAW services based on VAW staff perspectives. Program staff reported a perceived increase in abuse among women, especially in emotional and financial abuse and experiences of isolation and trauma. Findings further highlight the challenges women experienced when trying to access services in general as well as counseling and legal services. This was perceived to be more prominent among newcomers and marginalized women. The study also revealed client and staff challenges when participating in virtual counseling, their innovations and clients’ creativity in accessing needed counseling and how staff over time adapted to providing virtual support during the pandemic. Conclusion and Next Steps: This study builds upon existing evidence on the impact of COVID-19 restrictions on VAW and may inform future research to better understand the association between the COVID-19 pandemic restrictions and VAW on a broader scale and to inform and support possible short-term and long-term changes in the client experience and counselling practice.

Keywords: COVID-19, pandemic, virtual, violence against women (VAW)

Procedia PDF Downloads 186
2300 The Role of Electronic Banking Technology in the Modernization of Algerian Banking System

Authors: Azzi Mohammed Amin

Abstract:

In the last decade Algeria has investigated in a scale of economic reforms including different areas, among these; reforms in the banking system. This was mainly through the implementation of some regulations that facilitate the shift to market economy and guarantee integration into global economy. The most important new ideas that have emerged in this area are perhaps to find a possibility of integrating the so called e-banking. Based on what has already been stated, we will try in this study to highlight the significant role of electronic banking services as novel trends in the modernization and development of Algerian banks.

Keywords: banking technology, Internet banks, modernization of banks, virtual banks

Procedia PDF Downloads 434
2299 Simple Ways to Enhance the Security of Web Services

Authors: Majid Azarniush, Soroush Mokallaei

Abstract:

Although robust security software, including anti-viruses, anti spy wares, anti-spam and firewalls, are amalgamated with new technologies such as Safe Zone, Hybrid Cloud, Sand Box etc., and it can be said that they have managed to prepare highest level of security against viruses, spy wares and other malwares in 2012, but in fact hackers' attacks to websites are increasingly becoming more and more complicated. Because of security matters and developments, it can be said that it was expected to happen so. Here in this work, we try to point out to some functional and vital notes to enhance security on the web enabling the user to browse safely in no limit web world and to use virtual space securely.

Keywords: firewalls, security, web services, software

Procedia PDF Downloads 499
2298 Virtual Approach to Simulating Geotechnical Problems under Both Static and Dynamic Conditions

Authors: Varvara Roubtsova, Mohamed Chekired

Abstract:

Recent studies on the numerical simulation of geotechnical problems show the importance of considering the soil micro-structure. At this scale, soil is a discrete particle medium where the particles can interact with each other and with water flow under external forces, structure loads or natural events. This paper presents research conducted in a virtual laboratory named SiGran, developed at IREQ (Institut de recherche d’Hydro-Quebec) for the purpose of investigating a broad range of problems encountered in geotechnics. Using Discrete Element Method (DEM), SiGran simulated granular materials directly by applying Newton’s laws to each particle. The water flow was simulated by using Marker and Cell method (MAC) to solve the full form of Navier-Stokes’s equation for non-compressible viscous liquid. In this paper, examples of numerical simulation and their comparisons with real experiments have been selected to show the complexity of geotechnical research at the micro level. These examples describe transient flows into a porous medium, interaction of particles in a viscous flow, compacting of saturated and unsaturated soils and the phenomenon of liquefaction under seismic load. They also provide an opportunity to present SiGran’s capacity to compute the distribution and evolution of energy by type (particle kinetic energy, particle internal elastic energy, energy dissipated by friction or as a result of viscous interaction into flow, and so on). This work also includes the first attempts to apply micro discrete results on a macro continuum level where the Smoothed Particle Hydrodynamics (SPH) method was used to resolve the system of governing equations. The material behavior equation is based on the results of simulations carried out at a micro level. The possibility of combining three methods (DEM, MAC and SPH) is discussed.

Keywords: discrete element method, marker and cell method, numerical simulation, multi-scale simulations, smoothed particle hydrodynamics

Procedia PDF Downloads 298
2297 The Effects of Shift Work on Neurobehavioral Performance: A Meta Analysis

Authors: Thomas Vlasak, Tanja Dujlociv, Alfred Barth

Abstract:

Shift work is an essential element of modern labor, ensuring ideal conditions of service for today’s economy and society. Despite the beneficial properties, its impact on the neurobehavioral performance of exposed subjects remains controversial. This meta-analysis aims to provide first summarizing the effects regarding the association between shift work exposure and different cognitive functions. A literature search was performed via the databases PubMed, PsyINFO, PsyARTICLES, MedLine, PsycNET and Scopus including eligible studies until December 2020 that compared shift workers with non-shift workers regarding neurobehavioral performance tests. A random-effects model was carried out using Hedge’s g as a meta-analytical effect size with a restricted likelihood estimator to summarize the mean differences between the exposure group and controls. The heterogeneity of effect sizes was addressed by a sensitivity analysis using funnel plots, egger’s tests, p-curve analysis, meta-regressions, and subgroup analysis. The meta-analysis included 18 studies resulting in a total sample of 18,802 participants and 37 effect sizes concerning six different neurobehavioral outcomes. The results showed significantly worse performance in shift workers compared to non-shift workers in the following cognitive functions with g (95% CI): processing speed 0.16 (0.02 - 0.30), working memory 0.28 (0.51 - 0.50), psychomotor vigilance 0.21 (0.05 - 0.37), cognitive control 0.86 (0.45 - 1.27) and visual attention 0.19 (0.11 - 0.26). Neither significant moderating effects of publication year or study quality nor significant subgroup differences regarding type of shift or type of profession were indicated for the cognitive outcomes. These are the first meta-analytical findings that associate shift work with decreased cognitive performance in processing speed, working memory, psychomotor vigilance, cognitive control, and visual attention. Further studies should focus on a more homogenous measurement of cognitive functions, a precise assessment of experience of shift work and occupation types which are underrepresented in the current literature (e.g., law enforcement). In occupations where shift work is fundamental (e.g., healthcare, industries, law enforcement), protective countermeasures should be promoted for workers.

Keywords: meta-analysis, neurobehavioral performance, occupational psychology, shift work

Procedia PDF Downloads 106
2296 Single-Molecule Optical Study of Cholesterol-Mediated Dimerization Process of EGFRs in Different Cell Lines

Authors: Chien Y. Lin, Jung Y. Huang, Leu-Wei Lo

Abstract:

A growing body of data reveals that the membrane cholesterol molecules can alter the signaling pathways of living cells. However, the understanding about how membrane cholesterol modulates receptor proteins is still lacking. Single-molecule tracking can effectively probe into the microscopic environments and thermal fluctuations of receptor proteins in a living cell. In this study we applies single-molecule optical tracking on ligand-induced dimerization process of EGFRs in the plasma membranes of two cancer cell lines (HeLa and A431) and one normal endothelial cell line (MCF12A). We tracked individual EGFR and dual receptors, diffusing in a correlated manner in the plasma membranes of live cells. We developed an energetic model by integrating the generalized Langevin equation with the Cahn-Hilliard equation to help extracting important information from single-molecule trajectories. From the study, we discovered that ligand-bound EGFRs move from non-raft areas into lipid raft domains. This ligand-induced motion is a common behavior in both cancer and normal cells. By manipulating the total amount of membrane cholesterol with methyl-β-cyclodextrin and the local concentration of membrane cholesterol with nystatin, we further found that the amount of cholesterol can affect the stability of EGFR dimers. The EGFR dimers in the plasma membrane of normal cells are more sensitive to the local concentration changes of cholesterol than EGFR dimers in the cancer cells. Our method successfully captures dynamic interactions of receptors at the single-molecule level and provides insight into the functional architecture of both the diffusing EGFR molecules and their local cellular environment.

Keywords: membrane proteins, single-molecule tracking, Cahn-Hilliard equation, EGFR dimers

Procedia PDF Downloads 411
2295 Security Threats on Wireless Sensor Network Protocols

Authors: H. Gorine, M. Ramadan Elmezughi

Abstract:

In this paper, we investigate security issues and challenges facing researchers in wireless sensor networks and countermeasures to resolve them. The broadcast nature of wireless communication makes Wireless Sensor Networks prone to various attacks. Due to resources limitation constraint in terms of limited energy, computation power and memory, security in wireless sensor networks creates different challenges than wired network security. We will discuss several attempts at addressing the issues of security in wireless sensor networks in an attempt to encourage more research into this area.

Keywords: wireless sensor networks, network security, light weight encryption, threats

Procedia PDF Downloads 518
2294 Deep Learning for Renewable Power Forecasting: An Approach Using LSTM Neural Networks

Authors: Fazıl Gökgöz, Fahrettin Filiz

Abstract:

Load forecasting has become crucial in recent years and become popular in forecasting area. Many different power forecasting models have been tried out for this purpose. Electricity load forecasting is necessary for energy policies, healthy and reliable grid systems. Effective power forecasting of renewable energy load leads the decision makers to minimize the costs of electric utilities and power plants. Forecasting tools are required that can be used to predict how much renewable energy can be utilized. The purpose of this study is to explore the effectiveness of LSTM-based neural networks for estimating renewable energy loads. In this study, we present models for predicting renewable energy loads based on deep neural networks, especially the Long Term Memory (LSTM) algorithms. Deep learning allows multiple layers of models to learn representation of data. LSTM algorithms are able to store information for long periods of time. Deep learning models have recently been used to forecast the renewable energy sources such as predicting wind and solar energy power. Historical load and weather information represent the most important variables for the inputs within the power forecasting models. The dataset contained power consumption measurements are gathered between January 2016 and December 2017 with one-hour resolution. Models use publicly available data from the Turkish Renewable Energy Resources Support Mechanism. Forecasting studies have been carried out with these data via deep neural networks approach including LSTM technique for Turkish electricity markets. 432 different models are created by changing layers cell count and dropout. The adaptive moment estimation (ADAM) algorithm is used for training as a gradient-based optimizer instead of SGD (stochastic gradient). ADAM performed better than SGD in terms of faster convergence and lower error rates. Models performance is compared according to MAE (Mean Absolute Error) and MSE (Mean Squared Error). Best five MAE results out of 432 tested models are 0.66, 0.74, 0.85 and 1.09. The forecasting performance of the proposed LSTM models gives successful results compared to literature searches.

Keywords: deep learning, long short term memory, energy, renewable energy load forecasting

Procedia PDF Downloads 259
2293 Digital Transformation in Fashion System Design: Tools and Opportunities

Authors: Margherita Tufarelli, Leonardo Giliberti, Elena Pucci

Abstract:

The fashion industry's interest in virtuality is linked, on the one hand, to the emotional and immersive possibilities of digital resources and the resulting languages and, on the other, to the greater efficiency that can be achieved throughout the value chain. The interaction between digital innovation and deep-rooted manufacturing traditions today translates into a paradigm shift for the entire fashion industry where, for example, the traditional values of industrial secrecy and know-how give way to experimentation in an open as well as participatory way, and the complete emancipation of virtual reality from actual 'reality'. The contribution aims to investigate the theme of digitisation in the Italian fashion industry, analysing its opportunities and the criticalities that have hindered its diffusion. There are two reasons why the most common approach in the fashion sector is still analogue: (i) the fashion product lives in close contact with the human body, so the sensory perception of materials plays a central role in both the use and the design of the product, but current technology is not able to restore the sense of touch; (ii) volumes are obtained by stitching flat surfaces that once assembled, given the flexibility of the material, can assume almost infinite configurations. Managing the fit and styling of virtual garments involves a wide range of factors, including mechanical simulation, collision detection, and user interface techniques for garment creation. After briefly reviewing some of the salient historical milestones in the resolution of problems related to the digital simulation of deformable materials and the user interface for the procedures for the realisation of the clothing system, the paper will describe the operation and possibilities offered today by the latest generation of specialised software. Parametric avatars and digital sartorial approach; drawing tools optimised for pattern making; materials both from the point of view of simulated physical behaviour and of aesthetic performance, tools for checking wearability, renderings, but also tools and procedures useful to companies both for dialogue with prototyping software and machinery and for managing the archive and the variants to be made. The article demonstrates how developments in technology and digital procedures now make it possible to intervene in different stages of design in the fashion industry. An integrated and additive process in which the constructed 3D models are usable both in the prototyping and communication of physical products and in the possible exclusively digital uses of 3D models in the new generation of virtual spaces. Mastering such tools requires the acquisition of specific digital skills and, at the same time, traditional skills for the design of the clothing system, but the benefits are manifold and applicable to different business dimensions. We are only at the beginning of the global digital transformation: the emergence of new professional figures and design dynamics leaves room for imagination, but in addition to applying digital tools to traditional procedures, traditional fashion know-how needs to be transferred into emerging digital practices to ensure the continuity of the technical-cultural heritage beyond the transformation.

Keywords: digital fashion, digital technology and couture, digital fashion communication, 3D garment simulation

Procedia PDF Downloads 67
2292 Identification of Potential Small Molecule Inhibitors Against β-hCG for Cancer Therapy: An In-Silico Study

Authors: Shreya Sara Ittycheria, K. C. Sivakumar, Shijulal Nelson Sathi, Priya Srinivas

Abstract:

hCG, a heterodimer composed of α and β subunits, is a peptide hormone having numerous biological functions. Although hCG is expressed by placenta during pregnancy, ectopic β-hCG secretion is observed in many non-trophoblastic tumors including that of breast. In-vitro and in-vivo studies done in the lab, have proved that BRCA1 defective cancers express β-hCG and when β-hCG is expressed or supplemented, it promotes tumor progression and exhibits resistance to carboplatin and ABT888, in such cancers but not in BRCA1 wild type cancers. In cancer cells, instead of binding to its regular receptor, LH-CGR, β-hCG binds with Transforming Growth Factor Receptor 2 (TGFβRII) and phosphorylates it resulting in faster tumor progression through the Smad signaling pathway. Targeting β-hCG could be a potential therapeutic strategy for managing BRCA1 defective cancers. Here, molecular docking and dynamic simulation studies were done to identify potential small molecule inhibitors against β-hCG as there are currently no such inhibitors reported. The binding sites of TGFβRII on β-hCG were identified from the top 10 predicted complexes from Z Dock. Virtual screening of selected commercially available small molecules from various libraries such as ZINC, NCI and Life Chemicals amounting to a total of 50,025 molecules were done. Four potential small molecule inhibitors were identified, RgcbPs-1, RgcbPs-2, RgcbPs-3 and RgcbPs-4 with binding affinities -60.778 kcal/mol, -45.447 kcal/mol, -65.2268 kcal/mol and -82.040 kcal/mol respectively. Further, 100ns Molecular Dynamics (MD) simulation showed that these molecules form stable complexes with β-hCG. RgcbPs-1 maintains hydrogen bonds with Q54, L52, Q46, C100, G36, C57, C38 residues, RgcbPs-2 maintains hydrogen bonds with A83 residue, RgcbPs-3 maintains hydrogen bonds with C57, Y58, R94, G101 residues and RgcbPs-4 maintains hydrogen bonds with G36, C38, T40, C57, D99, C100, G101 and L104 residues of β-hCG all of which coincide with the TGFβRII binding site on β-hCG. These results show that these two inhibitors could be used either singly or in combination for inhibiting β-hCG from binding to TGFβRII and thereby directly inhibiting the tumorigenesis pathway.

Keywords: β-hCG, breast cancer, dynamic simulations, molecular docking, small molecule inhibitors, virtual screening.

Procedia PDF Downloads 101