Search results for: features engineering methods for forecasting
19296 Detecting of Crime Hot Spots for Crime Mapping
Authors: Somayeh Nezami
Abstract:
The management of financial and human resources of police in metropolitans requires many information and exact plans to reduce a rate of crime and increase the safety of the society. Geographical Information Systems have an important role in providing crime maps and their analysis. By using them and identification of crime hot spots along with spatial presentation of the results, it is possible to allocate optimum resources while presenting effective methods for decision making and preventive solutions. In this paper, we try to explain and compare between some of the methods of hot spots analysis such as Mode, Fuzzy Mode and Nearest Neighbour Hierarchical spatial clustering (NNH). Then the spots with the highest crime rates of drug smuggling for one province in Iran with borderline with Afghanistan are obtained. We will show that among these three methods NNH leads to the best result.Keywords: GIS, Hot spots, nearest neighbor hierarchical spatial clustering, NNH, spatial analysis of crime
Procedia PDF Downloads 32919295 Comparative Analysis of Characterologic Features of Cadets with High Psychomotor Skills Who Study in Polish Air Force Academy
Authors: Justyna Skrzyńska, Zdzisław Kobos, Zbigniew Wochyński
Abstract:
The assessment of characterologic type is an essential element which decides about the proper task performance in the Air Forces. The aim of the research was to specify the percentage distribution of characterologic features by cadets studying particular courses in Polish Air Force Academy with the use of questionnaire. 34 first-year cadets chosen by lot and disunited into aircrafts pilots (N-10), helicopter pilots (N-13) and navigators(N-11) participated in the research. All of the questioned have had their psychomotor education examined in Military Aviation Medicine Institute in Warsaw, Poland. Moreover all of them are characterised by very good fitness. In the research, an anonymous poll(based on Myers-Briggs Type Indicator) appraising cadets’ characterologic type has been used. Cadets were provided with the same accommodation and nutrition. The findings have shown that percentage distribution was diversified, however it could be distinctly observed that most of future helicopter pilots (69%) are introverts whereas the majority of aircrafts pilots (70%) and navigators (100%) are extraverts. Moreover, it was also observed that 70% of cadets studying aircrafts pilotage run regular lifestyle and have judging skill according to Myers-Briggs Type Indicator. In future navigators group, 73% of students do not have this characteristic. The research has shown that cadets studying pilotage are more likely to demonstrate the characteristics which are essential for a performance of the important tasks in pilots environment than the cadets studying navigation.Keywords: pilot, Myers-Briggs Type indicator, questionnaire research, cadets, psychomotor education
Procedia PDF Downloads 48519294 Emerging Methods as a Tool for Obtaining Subconscious Feedback in E-Commerce and Marketplace
Authors: J. Berčík, A. Mravcová, A. Rusková, P. Jurčišin, R. Virágh
Abstract:
The online world is changing every day. With this comes the emergence and development of new business models. One of them is the sale of several types of products in one place. This type of sales in the form of online marketplaces has undergone a positive development in recent years and represents a kind of alternative to brick-and-mortar shopping centres. The main philosophy is to buy several products under one roof. Examples of popular e-commerce marketplaces are Amazon, eBay, and Allegro. Their share of total e-commerce turnover is expected to even double in the coming years. The paper highlights possibilities for testing web applications and online marketplace using emerging methods like stationary eye cameras (eye tracking) and facial analysis (FaceReading).Keywords: emerging methods, consumer neuroscience, e-commerce, marketplace, user experience, user interface
Procedia PDF Downloads 7119293 The “Bright Side” of COVID-19: Effects of Livestream Affordances on Consumer Purchase Willingness: Explicit IT Affordances Perspective
Authors: Isaac Owusu Asante, Yushi Jiang, Hailin Tao
Abstract:
Live streaming marketing, the new electronic commerce element, became an optional marketing channel following the COVID-19 pandemic. Many sellers have leveraged the features presented by live streaming to increase sales. Studies on live streaming have focused on gaming and consumers’ loyalty to brands through live streaming, using interview questionnaires. This study, however, was conducted to measure real-time observable interactions between consumers and sellers. Based on the affordance theory, this study conceptualized constructs representing the interactive features and examined how they drive consumers’ purchase willingness during live streaming sessions using 1238 datasets from Amazon Live, following the manual observation of transaction records. Using structural equation modeling, the ordinary least square regression suggests that live viewers, new followers, live chats, and likes positively affect purchase willingness. The Sobel and Monte Carlo tests show that new followers, live chats, and likes significantly mediate the relationship between live viewers and purchase willingness. The study introduces a new way of measuring interactions in live streaming commerce and proposes a way to manually gather data on consumer behaviors in live streaming platforms when the application programming interface (API) of such platforms does not support data mining algorithms.Keywords: livestreaming marketing, live chats, live viewers, likes, new followers, purchase willingness
Procedia PDF Downloads 8119292 Encephalon-An Implementation of a Handwritten Mathematical Expression Solver
Authors: Shreeyam, Ranjan Kumar Sah, Shivangi
Abstract:
Recognizing and solving handwritten mathematical expressions can be a challenging task, particularly when certain characters are segmented and classified. This project proposes a solution that uses Convolutional Neural Network (CNN) and image processing techniques to accurately solve various types of equations, including arithmetic, quadratic, and trigonometric equations, as well as logical operations like logical AND, OR, NOT, NAND, XOR, and NOR. The proposed solution also provides a graphical solution, allowing users to visualize equations and their solutions. In addition to equation solving, the platform, called CNNCalc, offers a comprehensive learning experience for students. It provides educational content, a quiz platform, and a coding platform for practicing programming skills in different languages like C, Python, and Java. This all-in-one solution makes the learning process engaging and enjoyable for students. The proposed methodology includes horizontal compact projection analysis and survey for segmentation and binarization, as well as connected component analysis and integrated connected component analysis for character classification. The compact projection algorithm compresses the horizontal projections to remove noise and obtain a clearer image, contributing to the accuracy of character segmentation. Experimental results demonstrate the effectiveness of the proposed solution in solving a wide range of mathematical equations. CNNCalc provides a powerful and user-friendly platform for solving equations, learning, and practicing programming skills. With its comprehensive features and accurate results, CNNCalc is poised to revolutionize the way students learn and solve mathematical equations. The platform utilizes a custom-designed Convolutional Neural Network (CNN) with image processing techniques to accurately recognize and classify symbols within handwritten equations. The compact projection algorithm effectively removes noise from horizontal projections, leading to clearer images and improved character segmentation. Experimental results demonstrate the accuracy and effectiveness of the proposed solution in solving a wide range of equations, including arithmetic, quadratic, trigonometric, and logical operations. CNNCalc features a user-friendly interface with a graphical representation of equations being solved, making it an interactive and engaging learning experience for users. The platform also includes tutorials, testing capabilities, and programming features in languages such as C, Python, and Java. Users can track their progress and work towards improving their skills. CNNCalc is poised to revolutionize the way students learn and solve mathematical equations with its comprehensive features and accurate results.Keywords: AL, ML, hand written equation solver, maths, computer, CNNCalc, convolutional neural networks
Procedia PDF Downloads 12319291 Analysis of the Topics of Research of Brazilian Researchers Acting in the Areas of Engineering
Authors: Jether Gomes, Thiago M. R. Dias, Gray F. Moita
Abstract:
The production and publication of scientific works have increased significantly in the last years, being the Internet the main factor of access and diffusion of these. In view of this, researchers from several areas of knowledge have carried out several studies on scientific production data in order to analyze phenomena and trends about science. The understanding of how research has evolved can, for example, serve as a basis for building scientific policies for further advances in science and stimulating research groups to become more productive. In this context, the objective of this work is to analyze the main research topics investigated along the trajectory of the Brazilian science of researchers working in the areas of engineering, in order to map scientific knowledge and identify topics in highlights. To this end, studies are carried out on the frequency and relationship of the keywords of the set of scientific articles registered in the existing curricula in the Lattes Platform of each one of the selected researchers, counting with the aid of bibliometric analysis features.Keywords: research topics, bibliometrics, topics of interest, Lattes Platform
Procedia PDF Downloads 22119290 Computational Intelligence and Machine Learning for Urban Drainage Infrastructure Asset Management
Authors: Thewodros K. Geberemariam
Abstract:
The rapid physical expansion of urbanization coupled with aging infrastructure presents a unique decision and management challenges for many big city municipalities. Cities must therefore upgrade and maintain the existing aging urban drainage infrastructure systems to keep up with the demands. Given the overall contribution of assets to municipal revenue and the importance of infrastructure to the success of a livable city, many municipalities are currently looking for a robust and smart urban drainage infrastructure asset management solution that combines management, financial, engineering and technical practices. This robust decision-making shall rely on sound, complete, current and relevant data that enables asset valuation, impairment testing, lifecycle modeling, and forecasting across the multiple asset portfolios. On this paper, predictive computational intelligence (CI) and multi-class machine learning (ML) coupled with online, offline, and historical record data that are collected from an array of multi-parameter sensors are used for the extraction of different operational and non-conforming patterns hidden in structured and unstructured data to determine and produce actionable insight on the current and future states of the network. This paper aims to improve the strategic decision-making process by identifying all possible alternatives; evaluate the risk of each alternative, and choose the alternative most likely to attain the required goal in a cost-effective manner using historical and near real-time urban drainage infrastructure data for urban drainage infrastructures assets that have previously not benefited from computational intelligence and machine learning advancements.Keywords: computational intelligence, machine learning, urban drainage infrastructure, machine learning, classification, prediction, asset management space
Procedia PDF Downloads 15219289 Efficacy of Deep Learning for Below-Canopy Reconstruction of Satellite and Aerial Sensing Point Clouds through Fractal Tree Symmetry
Authors: Dhanuj M. Gandikota
Abstract:
Sensor-derived three-dimensional (3D) point clouds of trees are invaluable in remote sensing analysis for the accurate measurement of key structural metrics, bio-inventory values, spatial planning/visualization, and ecological modeling. Machine learning (ML) holds the potential in addressing the restrictive tradeoffs in cost, spatial coverage, resolution, and information gain that exist in current point cloud sensing methods. Terrestrial laser scanning (TLS) remains the highest fidelity source of both canopy and below-canopy structural features, but usage is limited in both coverage and cost, requiring manual deployment to map out large, forested areas. While aerial laser scanning (ALS) remains a reliable avenue of LIDAR active remote sensing, ALS is also cost-restrictive in deployment methods. Space-borne photogrammetry from high-resolution satellite constellations is an avenue of passive remote sensing with promising viability in research for the accurate construction of vegetation 3-D point clouds. It provides both the lowest comparative cost and the largest spatial coverage across remote sensing methods. However, both space-borne photogrammetry and ALS demonstrate technical limitations in the capture of valuable below-canopy point cloud data. Looking to minimize these tradeoffs, we explored a class of powerful ML algorithms called Deep Learning (DL) that show promise in recent research on 3-D point cloud reconstruction and interpolation. Our research details the efficacy of applying these DL techniques to reconstruct accurate below-canopy point clouds from space-borne and aerial remote sensing through learned patterns of tree species fractal symmetry properties and the supplementation of locally sourced bio-inventory metrics. From our dataset, consisting of tree point clouds obtained from TLS, we deconstructed the point clouds of each tree into those that would be obtained through ALS and satellite photogrammetry of varying resolutions. We fed this ALS/satellite point cloud dataset, along with the simulated local bio-inventory metrics, into the DL point cloud reconstruction architectures to generate the full 3-D tree point clouds (the truth values are denoted by the full TLS tree point clouds containing the below-canopy information). Point cloud reconstruction accuracy was validated both through the measurement of error from the original TLS point clouds as well as the error of extraction of key structural metrics, such as crown base height, diameter above root crown, and leaf/wood volume. The results of this research additionally demonstrate the supplemental performance gain of using minimum locally sourced bio-inventory metric information as an input in ML systems to reach specified accuracy thresholds of tree point cloud reconstruction. This research provides insight into methods for the rapid, cost-effective, and accurate construction of below-canopy tree 3-D point clouds, as well as the supported potential of ML and DL to learn complex, unmodeled patterns of fractal tree growth symmetry.Keywords: deep learning, machine learning, satellite, photogrammetry, aerial laser scanning, terrestrial laser scanning, point cloud, fractal symmetry
Procedia PDF Downloads 10319288 Comprehensive Review of Adversarial Machine Learning in PDF Malware
Authors: Preston Nabors, Nasseh Tabrizi
Abstract:
Portable Document Format (PDF) files have gained significant popularity for sharing and distributing documents due to their universal compatibility. However, the widespread use of PDF files has made them attractive targets for cybercriminals, who exploit vulnerabilities to deliver malware and compromise the security of end-user systems. This paper reviews notable contributions in PDF malware detection, including static, dynamic, signature-based, and hybrid analysis. It presents a comprehensive examination of PDF malware detection techniques, focusing on the emerging threat of adversarial sampling and the need for robust defense mechanisms. The paper highlights the vulnerability of machine learning classifiers to evasion attacks. It explores adversarial sampling techniques in PDF malware detection to produce mimicry and reverse mimicry evasion attacks, which aim to bypass detection systems. Improvements for future research are identified, including accessible methods, applying adversarial sampling techniques to malicious payloads, evaluating other models, evaluating the importance of features to malware, implementing adversarial defense techniques, and conducting comprehensive examination across various scenarios. By addressing these opportunities, researchers can enhance PDF malware detection and develop more resilient defense mechanisms against adversarial attacks.Keywords: adversarial attacks, adversarial defense, adversarial machine learning, intrusion detection, PDF malware, malware detection, malware detection evasion
Procedia PDF Downloads 3919287 The Effect of Education given to Parents of Children with Sickle Cell Anemia in Turkey and Chad to Reduce Children's Pain
Authors: Fatima El Zahra Amin, Emine Efe
Abstract:
This study was carried out to evaluate the effect of the education program for parents of children with Sickle Cell Anemia, on the knowledge level of parents and the reduction of pain relief by non-pharmacological methods used by parents at home. In Turkey, 54 parents and 109 from Chad agreed to participate in the survey. The data were collected by the researcher using a face-to-face interview method. Non-pharmacological treatment information form for parents, face expressions rating scale, and parent education program for non-pharmacological methods used in children with sickle cell anemia were used. It was determined that there was a statistically significant difference between the educational status, occupation, disease status, place of residence, family structure and age of parents of Chad and Turkey. According to the ratings of facial expressions scale, it was concluded that there was no significant difference between the children’s average degree of pain before and after administration of non-pharmacological methods by the groups of Chad and Turkey. It was determined that the educational programs prepared for parents of children with sickle cell anemia in both Turkey and Chad were effective in increasing the knowledge level of parents and also in reducing pain crisis with non-pharmacological methods parents used at home.Keywords: Chad, child, non-pharmacological treatment methods, nurse, sickle cell anemia, Turkey
Procedia PDF Downloads 26919286 Using Shape Memory Alloys for Structural Engineering Applications
Authors: Donatello Cardone
Abstract:
Shape memory alloys (SMAs) have great potential for use in the field of civil engineering. The author of this manuscript has been involved, since 1996, in several experimental and theoretical studies on the application of SMAs in structural engineering, within national and international research projects. This paper provides an overview of the main results achieved, including the conceptual design, implementation, and testing of different SMA-based devices, namely: (i) energy-dissipating braces for RC buildings, (ii) seismic isolation devices for buildings and bridges, (iii) smart tie-rods for arches and vaults and (iv) seismic restrainers for bridges. The main advantages of using SMA-based devices in the seismic protection of structures derive from the double-flag shape of their hysteresis loops, which implies three favourable features, i.e., self-centering capability, good energy dissipation capability, and high stiffness for small displacements. The main advantages of SMA-based units for steel tie-rods are associated with the thermal behaviour of superelastic SMAs, which is antagonistic compared to that of steel. This implies a strong reduction of force changes due to air temperature variations. Finally, SMA-based seismic restrainers proved to be effective in preventing bridge deck unseating and pounding.Keywords: seismic protection of structures, shape memory alloys, structural engineering, steel tie-rods, seismic restrainers for bridges
Procedia PDF Downloads 9819285 Vibroacoustic Modulation of Wideband Vibrations and its Possible Application for Windmill Blade Diagnostics
Authors: Abdullah Alnutayfat, Alexander Sutin, Dong Liu
Abstract:
Wind turbine has become one of the most popular energy productions. However, failure of blades and maintenance costs evolve into significant issues in the wind power industry, so it is essential to detect the initial blade defects to avoid the collapse of the blades and structure. This paper aims to apply modulation of high-frequency blade vibrations by low-frequency blade rotation, which is close to the known Vibro-Acoustic Modulation (VAM) method. The high-frequency wideband blade vibration is produced by the interaction of the surface blades with the environment air turbulence, and the low-frequency modulation is produced by alternating bending stress due to gravity. The low-frequency load of rotational wind turbine blades ranges between 0.2-0.4 Hz and can reach up to 2 Hz for strong wind. The main difference between this study and previous ones on VAM methods is the use of a wideband vibration signal from the blade's natural vibrations. Different features of the vibroacoustic modulation are considered using a simple model of breathing crack. This model considers the simple mechanical oscillator, where the parameters of the oscillator are varied due to low-frequency blade rotation. During the blade's operation, the internal stress caused by the weight of the blade modifies the crack's elasticity and damping. The laboratory experiment using steel samples demonstrates the possibility of VAM using a probe wideband noise signal. A cycle load with a small amplitude was used as a pump wave to damage the tested sample, and a small transducer generated a wideband probe wave. The received signal demodulation was conducted using the Detecting of Envelope Modulation on Noise (DEMON) approach. In addition, the experimental results were compared with the modulation index (MI) technique regarding the harmonic pump wave. The wideband and traditional VAM methods demonstrated similar sensitivity for earlier detection of invisible cracks. Importantly, employing a wideband probe signal with the DEMON approach speeds up and simplifies testing since it eliminates the need to conduct tests repeatedly for various harmonic probe frequencies and to adjust the probe frequency.Keywords: vibro-acoustic modulation, detecting of envelope modulation on noise, damage, turbine blades
Procedia PDF Downloads 9919284 Square Concrete Columns under Axial Compression
Authors: Suniti Suparp, Panuwat Joyklad, Qudeer Hussain
Abstract:
This is a well-known fact that the actual latera forces due to natural disasters, for example, earthquakes, floods and storms are difficult to predict accurately. Among these natural disasters, so far, the highest amount of deaths and injuries have been recorded for the case of earthquakes all around the world. Therefore, there is always an urgent need to establish suitable strengthening methods for existing concrete and steel structures. This paper is investigating the structural performance of square concrete columns strengthened using low cost and easily available steel clamps. The salient features of these steel clamps are comparatively low cost, easy availability and ease of installation. To achieve research objectives, a large-scale experimental program was established in which a total number of 12 square concrete columns were constructed and tested under pure axial compression. Three square concrete columns were tested without any steel lamps to serve as a reference specimen. Whereas, remaining concrete columns were externally strengthened using steel clamps. The steel clamps were installed at a different spacing to investigate the best configuration of the steel clamps. The experimental results indicate that steel clamps are very effective in altering the structural performance of the square concrete columns. The square concrete columns externally strengthened using steel clamps demonstrate higher load carrying capacity and ductility as compared with the control specimens.Keywords: concrete, strength, ductility, pre-stressed, steel, clamps, axial compression, columns, stress and strain
Procedia PDF Downloads 13019283 A Real-Time Snore Detector Using Neural Networks and Selected Sound Features
Authors: Stelios A. Mitilineos, Nicolas-Alexander Tatlas, Georgia Korompili, Lampros Kokkalas, Stelios M. Potirakis
Abstract:
Obstructive Sleep Apnea Hypopnea Syndrome (OSAHS) is a widespread chronic disease that mostly remains undetected, mainly due to the fact that it is diagnosed via polysomnography which is a time and resource-intensive procedure. Screening the disease’s symptoms at home could be used as an alternative approach in order to alert individuals that potentially suffer from OSAHS without compromising their everyday routine. Since snoring is usually linked to OSAHS, developing a snore detector is appealing as an enabling technology for screening OSAHS at home using ubiquitous equipment like commodity microphones (included in, e.g., smartphones). In this context, this study developed a snore detection tool and herein present the approach and selection of specific sound features that discriminate snoring vs. environmental sounds, as well as the performance of the proposed tool. Furthermore, a Real-Time Snore Detector (RTSD) is built upon the snore detection tool and employed in whole-night sleep sound recordings resulting to a large dataset of snoring sound excerpts that are made freely available to the public. The RTSD may be used either as a stand-alone tool that offers insight to an individual’s sleep quality or as an independent component of OSAHS screening applications in future developments.Keywords: obstructive sleep apnea hypopnea syndrome, apnea screening, snoring detection, machine learning, neural networks
Procedia PDF Downloads 20719282 Effects of Different Drying Methods on the Properties of Viscose Single Jersey Fabrics
Authors: Merve Kucukali Ozturk, Yesim Beceren, Banu Nergis
Abstract:
The study discussed in this paper was conducted in an attempt to investigate effects of different drying methods (line dry and tumble dry) on viscose single jersey fabrics knitted with ring yarn.Keywords: color change, dimensional properties, drying method, fabric tightness, physical properties
Procedia PDF Downloads 29019281 Autonomous Vehicle Detection and Classification in High Resolution Satellite Imagery
Authors: Ali J. Ghandour, Houssam A. Krayem, Abedelkarim A. Jezzini
Abstract:
High-resolution satellite images and remote sensing can provide global information in a fast way compared to traditional methods of data collection. Under such high resolution, a road is not a thin line anymore. Objects such as cars and trees are easily identifiable. Automatic vehicles enumeration can be considered one of the most important applications in traffic management. In this paper, autonomous vehicle detection and classification approach in highway environment is proposed. This approach consists mainly of three stages: (i) first, a set of preprocessing operations are applied including soil, vegetation, water suppression. (ii) Then, road networks detection and delineation is implemented using built-up area index, followed by several morphological operations. This step plays an important role in increasing the overall detection accuracy since vehicles candidates are objects contained within the road networks only. (iii) Multi-level Otsu segmentation is implemented in the last stage, resulting in vehicle detection and classification, where detected vehicles are classified into cars and trucks. Accuracy assessment analysis is conducted over different study areas to show the great efficiency of the proposed method, especially in highway environment.Keywords: remote sensing, object identification, vehicle and road extraction, vehicle and road features-based classification
Procedia PDF Downloads 23219280 Application of the Global Optimization Techniques to the Optical Thin Film Design
Authors: D. Li
Abstract:
Optical thin films are used in a wide variety of optical components and there are many software tools programmed for advancing multilayer thin film design. The available software packages for designing the thin film structure may not provide optimum designs. Normally, almost all current software programs obtain their final designs either from optimizing a starting guess or by technique, which may or may not involve a pseudorandom process, that give different answers every time, depending upon the initial conditions. With the increasing power of personal computers, functional methods in optimization and synthesis of optical multilayer systems have been developed such as DGL Optimization, Simulated Annealing, Genetic Algorithms, Needle Optimization, Inductive Optimization and Flip-Flop Optimization. Among these, DGL Optimization has proved its efficiency in optical thin film designs. The application of the DGL optimization technique to the design of optical coating is presented. A DGL optimization technique is provided, and its main features are discussed. Guidelines on the application of the DGL optimization technique to various types of design problems are given. The innovative global optimization strategies used in a software tool, OnlyFilm, to optimize multilayer thin film designs through different filter designs are outlined. OnlyFilm is a powerful, versatile, and user-friendly thin film software on the market, which combines optimization and synthesis design capabilities with powerful analytical tools for optical thin film designers. It is also the only thin film design software that offers a true global optimization function.Keywords: optical coatings, optimization, design software, thin film design
Procedia PDF Downloads 31619279 Estimation of Sediment Transport into a Reservoir Dam
Authors: Kiyoumars Roushangar, Saeid Sadaghian
Abstract:
Although accurate sediment load prediction is very important in planning, designing, operating and maintenance of water resources structures, the transport mechanism is complex, and the deterministic transport models are based on simplifying assumptions often lead to large prediction errors. In this research, firstly, two intelligent ANN methods, Radial Basis and General Regression Neural Networks, are adopted to model of total sediment load transport into Madani Dam reservoir (north of Iran) using the measured data and then applicability of the sediment transport methods developed by Engelund and Hansen, Ackers and White, Yang, and Toffaleti for predicting of sediment load discharge are evaluated. Based on comparison of the results, it is found that the GRNN model gives better estimates than the sediment rating curve and mentioned classic methods.Keywords: sediment transport, dam reservoir, RBF, GRNN, prediction
Procedia PDF Downloads 49619278 Combination of Unmanned Aerial Vehicle and Terrestrial Laser Scanner Data for Citrus Yield Estimation
Authors: Mohammed Hmimou, Khalid Amediaz, Imane Sebari, Nabil Bounajma
Abstract:
Annual crop production is one of the most important macroeconomic indicators for the majority of countries around the world. This information is valuable, especially for exporting countries which need a yield estimation before harvest in order to correctly plan the supply chain. When it comes to estimating agricultural yield, especially for arboriculture, conventional methods are mostly applied. In the case of the citrus industry, the sale before harvest is largely practiced, which requires an estimation of the production when the fruit is on the tree. However, conventional method based on the sampling surveys of some trees within the field is always used to perform yield estimation, and the success of this process mainly depends on the expertise of the ‘estimator agent’. The present study aims to propose a methodology based on the combination of unmanned aerial vehicle (UAV) images and terrestrial laser scanner (TLS) point cloud to estimate citrus production. During data acquisition, a fixed wing and rotatory drones, as well as a terrestrial laser scanner, were tested. After that, a pre-processing step was performed in order to generate point cloud and digital surface model. At the processing stage, a machine vision workflow was implemented to extract points corresponding to fruits from the whole tree point cloud, cluster them into fruits, and model them geometrically in a 3D space. By linking the resulting geometric properties to the fruit weight, the yield can be estimated, and the statistical distribution of fruits size can be generated. This later property, which is information required by importing countries of citrus, cannot be estimated before harvest using the conventional method. Since terrestrial laser scanner is static, data gathering using this technology can be performed over only some trees. So, integration of drone data was thought in order to estimate the yield over a whole orchard. To achieve that, features derived from drone digital surface model were linked to yield estimation by laser scanner of some trees to build a regression model that predicts the yield of a tree given its features. Several missions were carried out to collect drone and laser scanner data within citrus orchards of different varieties by testing several data acquisition parameters (fly height, images overlap, fly mission plan). The accuracy of the obtained results by the proposed methodology in comparison to the yield estimation results by the conventional method varies from 65% to 94% depending mainly on the phenological stage of the studied citrus variety during the data acquisition mission. The proposed approach demonstrates its strong potential for early estimation of citrus production and the possibility of its extension to other fruit trees.Keywords: citrus, digital surface model, point cloud, terrestrial laser scanner, UAV, yield estimation, 3D modeling
Procedia PDF Downloads 14219277 Calibration of Syringe Pumps Using Interferometry and Optical Methods
Authors: E. Batista, R. Mendes, A. Furtado, M. C. Ferreira, I. Godinho, J. A. Sousa, M. Alvares, R. Martins
Abstract:
Syringe pumps are commonly used for drug delivery in hospitals and clinical environments. These instruments are critical in neonatology and oncology, where any variation in the flow rate and drug dosing quantity can lead to severe incidents and even death of the patient. Therefore it is very important to determine the accuracy and precision of these devices using the suitable calibration methods. The Volume Laboratory of the Portuguese Institute for Quality (LVC/IPQ) uses two different methods to calibrate syringe pumps from 16 nL/min up to 20 mL/min. The Interferometric method uses an interferometer to monitor the distance travelled by a pusher block of the syringe pump in order to determine the flow rate. Therefore, knowing the internal diameter of the syringe with very high precision, the travelled distance, and the time needed for that travelled distance, it was possible to calculate the flow rate of the fluid inside the syringe and its uncertainty. As an alternative to the gravimetric and the interferometric method, a methodology based on the application of optical technology was also developed to measure flow rates. Mainly this method relies on measuring the increase of volume of a drop over time. The objective of this work is to compare the results of the calibration of two syringe pumps using the different methodologies described above. The obtained results were consistent for the three methods used. The uncertainties values were very similar for all the three methods, being higher for the optical drop method due to setup limitations.Keywords: calibration, flow, interferometry, syringe pump, uncertainty
Procedia PDF Downloads 10919276 Altered TP53 Mutations in de Novo Acute Myeloid Leukemia Patients in Iran
Authors: Naser Shagerdi Esmaeli, Mohsen Hamidpour, Parisa Hasankhani Tehrani
Abstract:
Background: The TP53 mutation is frequently detected in acute myeloid leukemia (AML) patients with complex karyotype (CK), but the stability of this mutation during the clinical course remains unclear. Material and Methods: In this study, TP53 mutations were identified in 7% of 500 patients with de novo AML and 58.8% of patients with CK in Tabriz, Iran. TP53 mutations were closely associated with older age, lower white blood cell (WBC) and platelet counts, FAB M6 subtype, unfavorable-risk cytogenetics, and CK, but negatively associated with NPM1 mutation, FLT3/ITD and DNMT3A mutation. Result: Multivariate analysis demonstrated that TP53 mutation was an independent poor prognostic factor for overall survival and disease-free survival among the total cohort and the subgroup of patients with CK. A scoring system incorporating TP53 mutation and nine other prognostic factors, including age, WBC counts, cytogenetics, and gene mutations, into survival analysis proved to be very useful to stratify AML patients. Sequential study of 420 samples showed that TP53 mutations were stable during AML evolution, whereas the mutation was acquired only in 1 of the 126 TP53 wild-type patients when therapy-related AML originated from different clone emerged. Conclusion: In conclusion, TP53 mutations are associated with distinct clinic-biological features and poor prognosis in de novo AML patients and are rather stable during disease progression.Keywords: acute myloblastic leukemia, TP53, FLT3/ITD, Iran
Procedia PDF Downloads 10719275 A Case Study on the Guidelines for Application of Project Management Methods in Infrastructure Projects
Authors: Fernanda Varella Borges, Silvio Burrattino Melhado
Abstract:
Motivated by the importance of public infrastructure projects in the civil construction chain, this research shows the study of project management methods and the infrastructure projects’ characteristics. The research aims at the objective of improving management efficiency by proposing guidelines for the application of project management methods in infrastructure projects. Through literature review and case studies, the research analyses two major infrastructure projects underway in Brazil, identifying the critical points for achieving its success. As a result, the proposed guidelines indicate that special attention should be given to the management of stakeholders, focusing on their knowledge and experience, their different interests, the efficient management of their communication, and their behavior in the day-by-day project management process.Keywords: construction, infrastructure, project management, public projects
Procedia PDF Downloads 49419274 Evaluation of the Internal Quality for Pineapple Based on the Spectroscopy Approach and Neural Network
Authors: Nonlapun Meenil, Pisitpong Intarapong, Thitima Wongsheree, Pranchalee Samanpiboon
Abstract:
In Thailand, once pineapples are harvested, they must be classified into two classes based on their sweetness: sweet and unsweet. This paper has studied and developed the assessment of internal quality of pineapples using a low-cost compact spectroscopy sensor according to the Spectroscopy approach and Neural Network (NN). During the experiments, Batavia pineapples were utilized, generating 100 samples. The extracted pineapple juice of each sample was used to determine the Soluble Solid Content (SSC) labeling into sweet and unsweet classes. In terms of experimental equipment, the sensor cover was specifically designed to install the sensor and light source to read the reflectance at a five mm depth from pineapple flesh. By using a spectroscopy sensor, data on visible and near-infrared reflectance (Vis-NIR) were collected. The NN was used to classify the pineapple classes. Before the classification step, the preprocessing methods, which are Class balancing, Data shuffling, and Standardization were applied. The 510 nm and 900 nm reflectance values of the middle parts of pineapples were used as features of the NN. With the Sequential model and Relu activation function, 100% accuracy of the training set and 76.67% accuracy of the test set were achieved. According to the abovementioned information, using a low-cost compact spectroscopy sensor has achieved favorable results in classifying the sweetness of the two classes of pineapples.Keywords: neural network, pineapple, soluble solid content, spectroscopy
Procedia PDF Downloads 7719273 General Architecture for Automation of Machine Learning Practices
Authors: U. Borasi, Amit Kr. Jain, Rakesh, Piyush Jain
Abstract:
Data collection, data preparation, model training, model evaluation, and deployment are all processes in a typical machine learning workflow. Training data needs to be gathered and organised. This often entails collecting a sizable dataset and cleaning it to remove or correct any inaccurate or missing information. Preparing the data for use in the machine learning model requires pre-processing it after it has been acquired. This often entails actions like scaling or normalising the data, handling outliers, selecting appropriate features, reducing dimensionality, etc. This pre-processed data is then used to train a model on some machine learning algorithm. After the model has been trained, it needs to be assessed by determining metrics like accuracy, precision, and recall, utilising a test dataset. Every time a new model is built, both data pre-processing and model training—two crucial processes in the Machine learning (ML) workflow—must be carried out. Thus, there are various Machine Learning algorithms that can be employed for every single approach to data pre-processing, generating a large set of combinations to choose from. Example: for every method to handle missing values (dropping records, replacing with mean, etc.), for every scaling technique, and for every combination of features selected, a different algorithm can be used. As a result, in order to get the optimum outcomes, these tasks are frequently repeated in different combinations. This paper suggests a simple architecture for organizing this largely produced “combination set of pre-processing steps and algorithms” into an automated workflow which simplifies the task of carrying out all possibilities.Keywords: machine learning, automation, AUTOML, architecture, operator pool, configuration, scheduler
Procedia PDF Downloads 5819272 The Effect of Exposure to High Noise Level on the Performance and Rate of Error in Manual Activities
Authors: Zahra Zamanian, Alireza Zamanian, Jafar Hasanzadeh
Abstract:
Background: Unwanted sound, as one of the most important physical factors in the majority of production units, imposes a great number of problems on the industrial workers. Sound is one of the environmental factors which can cause physical as well as psychological damages and also affects the individuals’ performance and productivity. Therefore, the present study aimed to determine the effect of noise exposure on human performance. Methods: The present study assessed the effect of noise on the performance of 50 students of Shiraz University of Medical Sciences (25 males and 25 females) at the sound pressures of 70, 90, and 110 dB by using two factors of physical features and the creation of different conditions of sound pressure source as well as applying Two-Arm coordination Test. Results: The results of the present study revealed no significant difference between male and female subjects as well as different conditions of creating sound pressure regarding the length of performance (p> 0.05). In addition, as the sound pressure increased, the length of performance increased, as well. According to the results, no significant difference was found between the performance at 70 and 90 dB. On the other hand, the performance at 110 dB was significantly different from the performance at 70 and 90 dB (p<0.05 and p<0.001). Conclusion: In general, as the sound pressure increases, the performance decreases which results in a considerable increase in the individuals’ rate of error.Keywords: physical factors, two-arm coordination test, Shiraz University of Medical Sciences, noise
Procedia PDF Downloads 30519271 Immigration without Settlement: Causes and Consequences of Exclusionary Migration Regime in East Asia
Authors: Yen-Fen Tseng
Abstract:
Studying migration regimes enables one to identify clusters of countries with policy features in common. A few researchers have pointed out the origin of hardship experienced by foreign workers in Taiwan, Japan, and South Korea, stems from their exclusionary migration regime. This paper aims to understand the causes and consequences of the East Asia migration regime, exploring the common exclusionary policies features of Taiwan, Japan, and South Korea, focusing on the foreign labor policy. It will then present explanations as to factors shaping migration regime; the perspective of factors within political system is adopted, as opposed to political economy and pluralist society approach. In the minds of political elites across East Asia, there exists a powerful belief in mono-ethnicity, namely, the benefits of mono-ethnicity and the social ill of “minority problems”. Guest workers policies of various alterations become the compromise between the want for foreign labor and the desire to maintain mono-ethnicity. The paper discusses the absence of immigrant settlement and formation of ethnic communities as a result of the reluctant hosts. Migrant workers in these societies commonly suffer from irregular working conditions as well as unprotected rights out of their denied legality. The case of Taiwan will be presented with greater details, drawing on data from both first-hand and secondary sources.Keywords: migration regime, guest worker policies, East Asia, society
Procedia PDF Downloads 38019270 Towards the Reverse Engineering of UML Sequence Diagrams Using Petri Nets
Authors: C. Baidada, M. H. Abidi, A. Jakimi, E. H. El Kinani
Abstract:
Reverse engineering has become a viable method to measure an existing system and reconstruct the necessary model from tis original. The reverse engineering of behavioral models consists in extracting high-level models that help understand the behavior of existing software systems. In this paper, we propose an approach for the reverse engineering of sequence diagrams from the analysis of execution traces produced dynamically by an object-oriented application using petri nets. Our methods show that this approach can produce state diagrams in reasonable time and suggest that these diagrams are helpful in understanding the behavior of the underlying application. Finally we will discuss approachs and tools that are needed in the process of reverse engineering UML behavior. This work is a substantial step towards providing high-quality methodology for effectiveand efficient reverse engineering of sequence diagram.Keywords: reverse engineering, UML behavior, sequence diagram, execution traces, petri nets
Procedia PDF Downloads 44619269 Microwave and Ultrasound Assisted Extraction of Pectin from Mandarin and Lemon Peel: Comparisons between Sources and Methods
Authors: Pınar Karbuz, A. Seyhun Kıpcak, Mehmet B. Piskin, Emek Derun, Nurcan Tugrul
Abstract:
Pectin is a complex colloidal polysaccharide, found on the cell walls of all young plants such as fruit and vegetables. It acts as a thickening, stabilizing and gelling agent in foods. Pectin was extracted from mandarin and lemon peels using ultrasound and microwave assisted extraction methods to compare with these two different sources and methods of pectin production. In this work, the effect of microwave power (360, 600 W) and irradiation time (1, 2, 3 min) on the yield of extracted pectin from mandarin and lemon peels for microwave assisted extraction (MAE) were investigated. For ultrasound assisted extraction (UAE), parameters were determined as temperature (60, 75 °C) and sonication time (15, 30, 45 min) and hydrochloric acid (HCl) was used as an extracting agent for both extraction methods. The highest yields of extracted pectin from lemon peels were found to be 8.16 % (w/w) for 75 °C, 45 min by UAE and 8.58 % (w/w) for 360 W, 1 min by MAE. Additionally, the highest yields of extracted pectin from mandarin peels were found to be 11.29 % (w/w) for 75 °C, 45 min by UAE and 16.44 % (w/w) for 600 W, 1 min by MAE. The results showed that the use of microwave assisted extraction promoted a better yield when compared to the two extraction methods. On the other hand, according to the results of experiments, mandarin peels contain more pectin than lemon peels when the compared to the pectin product values of two sources. Therefore, these results suggested that MAE could be used as an efficient and rapid method for extraction of pectin and mandarin peels should be preferred as sources of pectin production compared to lemon peels.Keywords: mandarin peel, lemon peel, pectin, ultrasound, microwave, extraction
Procedia PDF Downloads 23419268 Fractional, Component and Morphological Composition of Ambient Air Dust in the Areas of Mining Industry
Authors: S.V. Kleyn, S.Yu. Zagorodnov, А.А. Kokoulina
Abstract:
Technogenic emissions of the mining and processing complex are characterized by a high content of chemical components and solid dust particles. However, each industrial enterprise and the surrounding area have features that require refinement and parameterization. Numerous studies have shown the negative impact of fine dust PM10 and PM2.5 on the health, as well as the possibility of toxic components absorption, including heavy metals by dust particles. The target of the study was the quantitative assessment of the fractional and particle size composition of ambient air dust in the area of impact by primary magnesium production complex. Also, we tried to describe the morphology features of dust particles. Study methods. To identify the dust emission sources, the analysis of the production process has been carried out. The particulate composition of the emissions was measured using laser particle analyzer Microtrac S3500 (covered range of particle size is 20 nm to 2000 km). Particle morphology and the component composition were established by electron microscopy by scanning microscope of high resolution (magnification rate - 5 to 300 000 times) with X-ray fluorescence device S3400N ‘HITACHI’. The chemical composition was identified by X-ray analysis of the samples using an X-ray diffractometer XRD-700 ‘Shimadzu’. Determination of the dust pollution level was carried out using model calculations of emissions in the atmosphere dispersion. The calculations were verified by instrumental studies. Results of the study. The results demonstrated that the dust emissions of different technical processes are heterogeneous and fractional structure is complicated. The percentage of particle sizes up to 2.5 micrometres inclusive was ranged from 0.00 to 56.70%; particle sizes less than 10 microns inclusive – 0.00 - 85.60%; particle sizes greater than 10 microns - 14.40% -100.00%. During microscopy, the presence of nanoscale size particles has been detected. Studied dust particles are round, irregular, cubic and integral shapes. The composition of the dust includes magnesium, sodium, potassium, calcium, iron, chlorine. On the base of obtained results, it was performed the model calculations of dust emissions dispersion and establishment of the areas of fine dust РМ 10 and РМ 2.5 distribution. It was found that the dust emissions of fine powder fractions PM10 and PM2.5 are dispersed over large distances and beyond the border of the industrial site of the enterprise. The population living near the enterprise is exposed to the risk of diseases associated with dust exposure. Data are transferred to the economic entity to make decisions on the measures to minimize the risks. Exposure and risks indicators on the health are used to provide named patient health and preventive care to the citizens living in the area of negative impact of the facility.Keywords: dust emissions, еxposure assessment, PM 10, PM 2.5
Procedia PDF Downloads 26119267 Evaluation of Best-Fit Probability Distribution for Prediction of Extreme Hydrologic Phenomena
Authors: Karim Hamidi Machekposhti, Hossein Sedghi
Abstract:
The probability distributions are the best method for forecasting of extreme hydrologic phenomena such as rainfall and flood flows. In this research, in order to determine suitable probability distribution for estimating of annual extreme rainfall and flood flows (discharge) series with different return periods, precipitation with 40 and discharge with 58 years time period had been collected from Karkheh River at Iran. After homogeneity and adequacy tests, data have been analyzed by Stormwater Management and Design Aid (SMADA) software and residual sum of squares (R.S.S). The best probability distribution was Log Pearson Type III with R.S.S value (145.91) and value (13.67) for peak discharge and Log Pearson Type III with R.S.S values (141.08) and (8.95) for maximum discharge in Jelogir Majin and Pole Zal stations, respectively. The best distribution for maximum precipitation in Jelogir Majin and Pole Zal stations was Log Pearson Type III distribution with R.S.S values (1.74&1.90) and then Pearson Type III distribution with R.S.S values (1.53&1.69). Overall, the Log Pearson Type III distributions are acceptable distribution types for representing statistics of extreme hydrologic phenomena in Karkheh River at Iran with the Pearson Type III distribution as a potential alternative.Keywords: Karkheh River, Log Pearson Type III, probability distribution, residual sum of squares
Procedia PDF Downloads 197