Search results for: drone images
841 Image Segmentation Using Active Contours Based on Anisotropic Diffusion
Authors: Shafiullah Soomro
Abstract:
Active contour is one of the image segmentation techniques and its goal is to capture required object boundaries within an image. In this paper, we propose a novel image segmentation method by using an active contour method based on anisotropic diffusion feature enhancement technique. The traditional active contour methods use only pixel information to perform segmentation, which produces inaccurate results when an image has some noise or complex background. We use Perona and Malik diffusion scheme for feature enhancement, which sharpens the object boundaries and blurs the background variations. Our main contribution is the formulation of a new SPF (signed pressure force) function, which uses global intensity information across the regions. By minimizing an energy function using partial differential framework the proposed method captures semantically meaningful boundaries instead of catching uninterested regions. Finally, we use a Gaussian kernel which eliminates the problem of reinitialization in level set function. We use several synthetic and real images from different modalities to validate the performance of the proposed method. In the experimental section, we have found the proposed method performance is better qualitatively and quantitatively and yield results with higher accuracy compared to other state-of-the-art methods.Keywords: active contours, anisotropic diffusion, level-set, partial differential equations
Procedia PDF Downloads 161840 Speed Breaker/Pothole Detection Using Hidden Markov Models: A Deep Learning Approach
Authors: Surajit Chakrabarty, Piyush Chauhan, Subhasis Panda, Sujoy Bhattacharya
Abstract:
A large proportion of roads in India are not well maintained as per the laid down public safety guidelines leading to loss of direction control and fatal accidents. We propose a technique to detect speed breakers and potholes using mobile sensor data captured from multiple vehicles and provide a profile of the road. This would, in turn, help in monitoring roads and revolutionize digital maps. Incorporating randomness in the model formulation for detection of speed breakers and potholes is crucial due to substantial heterogeneity observed in data obtained using a mobile application from multiple vehicles driven by different drivers. This is accomplished with Hidden Markov Models, whose hidden state sequence is found for each time step given the observables sequence, and are then fed as input to LSTM network with peephole connections. A precision score of 0.96 and 0.63 is obtained for classifying bumps and potholes, respectively, a significant improvement from the machine learning based models. Further visualization of bumps/potholes is done by converting time series to images using Markov Transition Fields where a significant demarcation among bump/potholes is observed.Keywords: deep learning, hidden Markov model, pothole, speed breaker
Procedia PDF Downloads 144839 Place Branding and the Sense of Place in the Italian UNESCO World Heritage Site of Vicenza
Authors: A. Chtourou, K. Ben Youssef, M. Friel, T. Leicht
Abstract:
These Place attributes and destination images associated with tourism destinations are often crucial important for tourist travel decisions and choice behavior. Understanding the interactions between them is fundamental for developing sustainable place brands. Despite their extensive use on an empirical ground, little research has been done in terms of analyzing the constructs that determine the sense of place in the marketing of cultural heritage sites and on how tourist experiences at such places influence tourist motivations to revisit destinations. By referring to the Italian city of Vicenza, internationally renowned for its gold jewelry production and for the Palladian architectures and buildings which have been recognized World Heritage by the UNESCO, the paper aims to identify how destination image, place familiarity and travel satisfaction influence tourists’ motivations to revisit Vicenza. After an introduction and literature review, the paper investigates the importance of the core constructs that determine the sense of place in the tourist practice. In accordance with previous research, the results provide evidence that favorable travel experiences influence revisit intentions positively. The managerial implications and recommendations for the city of Vicenza are discussed.Keywords: consumer behavior, heritage tourism, sense of place, place branding, territorial marketing
Procedia PDF Downloads 408838 Comparative Study of Dose Calculation Accuracy in Bone Marrow Using Monte Carlo Method
Authors: Marzieh Jafarzadeh, Fatemeh Rezaee
Abstract:
Introduction: The effect of ionizing radiation on human health can be effective for genomic integrity and cell viability. It also increases the risk of cancer and malignancy. Therefore, X-ray behavior and absorption dose calculation are considered. One of the applicable tools for calculating and evaluating the absorption dose in human tissues is Monte Carlo simulation. Monte Carlo offers a straightforward way to simulate and integrate, and because it is simple and straightforward, Monte Carlo is easy to use. The Monte Carlo BEAMnrc code is one of the most common diagnostic X-ray simulation codes used in this study. Method: In one of the understudy hospitals, a certain number of CT scan images of patients who had previously been imaged were extracted from the hospital database. BEAMnrc software was used for simulation. The simulation of the head of the device with the energy of 0.09 MeV with 500 million particles was performed, and the output data obtained from the simulation was applied for phantom construction using CT CREATE software. The percentage of depth dose (PDD) was calculated using STATE DOSE was then compared with international standard values. Results and Discussion: The ratio of surface dose to depth dose (D/Ds) in the measured energy was estimated to be about 4% to 8% for bone and 3% to 7% for bone marrow. Conclusion: MC simulation is an efficient and accurate method for simulating bone marrow and calculating the absorbed dose.Keywords: Monte Carlo, absorption dose, BEAMnrc, bone marrow
Procedia PDF Downloads 213837 Decellularized Brain-Chitosan Scaffold for Neural Tissue Engineering
Authors: Yun-An Chen, Hung-Jun Lin, Tai-Horng Young, Der-Zen Liu
Abstract:
Decellularized brain extracellular matrix had been shown that it has the ability to influence on cell proliferation, differentiation and associated cell phenotype. However, this scaffold is thought to have poor mechanical properties and rapid degradation, it is hard for cell recellularization. In this study, we used decellularized brain extracellular matrix combined with chitosan, which is naturally occurring polysaccharide and non-cytotoxic polymer, forming a 3-D scaffold for neural stem/precursor cells (NSPCs) regeneration. HE staining and DAPI fluorescence staining confirmed decellularized process could effectively vanish the cellular components from the brain. GAGs and collagen I, collagen IV were be showed a great preservation by Alcain staining and immunofluorescence staining respectively. Decellularized brain extracellular matrix was well mixed in chitosan to form a 3-D scaffold (DB-C scaffold). The pore size was approximately 50±10 μm examined by SEM images. Alamar blue results demonstrated NSPCs had great proliferation ability in DB-C scaffold. NSPCs that were cultured in this complex scaffold differentiated into neurons and astrocytes, as reveled by NSPCs expression of microtubule-associated protein 2 (MAP2) and glial fibrillary acidic protein (GFAP). In conclusion, DB-C scaffold may provide bioinformatics cues for NSPCs generation and aid for CNS injury functional recovery applications.Keywords: brain, decellularization, chitosan, scaffold, neural stem/precursor cells
Procedia PDF Downloads 320836 Exploring the Influence of Wind on Wildfire Behavior in China: A Data-Driven Study Using Machine Learning and Remote Sensing
Authors: Rida Kanwal, Wang Yuhui, Song Weiguo
Abstract:
Wildfires are one of the most prominent threats to ecosystems, human health, and economic activities, with wind acting as a critical driving factor. This study combines machine learning (ML) and remote sensing (RS) to assess the effects of wind on wildfires in Chongqing Province from August 16-23, 2022. Landsat 8 satellite images were used to estimate the difference normalized burn ratio (dNBR), representing prefire and postfire vegetation conditions. Wind data was analyzed through geographic information system (GIS) mapping. Correlation analysis between wind speed and fire radiative power (FRP) revealed a significant relationship. An autoregressive integrated moving average (ARIMA) model was developed for wind forecasting, and linear regression was applied to determine the effect of wind speed on FRP. The results identified high wind speed as a key factor contributing to the surge in FRP. Wind-rose plots showed winds blowing to the northwest (NW), aligning with the wildfire spread. This model was further validated with data from other provinces across China. This study integrated ML, RS, and GIS to analyze wildfire behavior, providing effective strategies for prediction and management.Keywords: wildfires, machine learning, remote sensing, wind speed, GIS, wildfire behavior
Procedia PDF Downloads 20835 Relevance Feedback within CBIR Systems
Authors: Mawloud Mosbah, Bachir Boucheham
Abstract:
We present here the results for a comparative study of some techniques, available in the literature, related to the relevance feedback mechanism in the case of a short-term learning. Only one method among those considered here is belonging to the data mining field which is the K-Nearest Neighbours Algorithm (KNN) while the rest of the methods is related purely to the information retrieval field and they fall under the purview of the following three major axes: Shifting query, Feature Weighting and the optimization of the parameters of similarity metric. As a contribution, and in addition to the comparative purpose, we propose a new version of the KNN algorithm referred to as an incremental KNN which is distinct from the original version in the sense that besides the influence of the seeds, the rate of the actual target image is influenced also by the images already rated. The results presented here have been obtained after experiments conducted on the Wang database for one iteration and utilizing colour moments on the RGB space. This compact descriptor, Colour Moments, is adequate for the efficiency purposes needed in the case of interactive systems. The results obtained allow us to claim that the proposed algorithm proves good results; it even outperforms a wide range of techniques available in the literature.Keywords: CBIR, category search, relevance feedback, query point movement, standard Rocchio’s formula, adaptive shifting query, feature weighting, original KNN, incremental KNN
Procedia PDF Downloads 280834 Visualization of Corrosion at Plate-Like Structures Based on Ultrasonic Wave Propagation Images
Authors: Aoqi Zhang, Changgil Lee Lee, Seunghee Park
Abstract:
A non-contact nondestructive technique using laser-induced ultrasonic wave generation method was applied to visualize corrosion damage at aluminum alloy plate structures. The ultrasonic waves were generated by a Nd:YAG pulse laser, and a galvanometer-based laser scanner was used to scan specific area at a target structure. At the same time, wave responses were measured at a piezoelectric sensor which was attached on the target structure. The visualization of structural damage was achieved by calculating logarithmic values of root mean square (RMS). Damage-sensitive feature was defined as the scattering characteristics of the waves that encounter corrosion damage. The corroded damage was artificially formed by hydrochloric acid. To observe the effect of the location where the corrosion was formed, the both sides of the plate were scanned with same scanning area. Also, the effect on the depth of the corrosion was considered as well as the effect on the size of the corrosion. The results indicated that the damages were successfully visualized for almost cases, whether the damages were formed at the front or back side. However, the damage could not be clearly detected because the depth of the corrosion was shallow. In the future works, it needs to develop signal processing algorithm to more clearly visualize the damage by improving signal-to-noise ratio.Keywords: non-destructive testing, corrosion, pulsed laser scanning, ultrasonic waves, plate structure
Procedia PDF Downloads 300833 Green Catalytic Conversion of Some Aromatic Alcohols to Acids by NiO₂ Nanoparticles (NPNPs) in Water
Authors: Abdel Ghany F. Shoair, Mai M. A. H. Shanab
Abstract:
The basic aqueous systems NiSO4.6H₂O / K₂S₂O₈ (PH= 14) or NiSO₄.6H₂O / KBrO₃ (PH = 11.5) were investigated for the catalytic conversion benzyl alcohol and some para-substituted benzyl alcohols to their corresponding acids in 75-97 % yield at room temperature. The active species was isolated and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction, EDX and FT-IR techniques and identified as NiO₂ nanoparticles (NPNPs). The SEM and TEM images of nickel peroxide samples show a fine spherical-like aggregation of NiO₂ molecules with a nearly homogeneous partial size and confirm the aggregation's size to be in the range of 2-3 nm. The yields, turnover (TO) and turn over frequencies (TOF) were calculated. It was noticed that the aromatic alcohols containing para-substituted electron donation groups gave better yields than those having electron-withdrawing groups. The optimum conditions for this catalytic reaction were studied using benzyl alcohol as a model. The mechanism of the catalytic conversion reaction was suggested, in which the produced (NPNPs) convert alcohols to acids in two steps through the formation of the corresponding aldehyde. The produced NiO, because of this conversion, is converted again to (NPNPs) by an excess of K₂S₂O₈ or KBrO₃. This catalytic cycle continues until all the substrate is oxidized.Keywords: Nickel, oxidation, catalysts, benzyl alcohol
Procedia PDF Downloads 77832 Modification of a Natural Zeolite with a Short-Chain Quaternary Ammonium Salt in an Ultrasonication Process and Investigation of Its Ability to Eliminate Nitrate Ions: Characterization and Mechanism Study
Authors: Nona Mirzamohammadi, Bahram Nasernejad
Abstract:
This work mainly focuses on studying the mechanism governing the adsorption of tetraethylammonium bromide, a short-chain quaternary ammonium salt, on the surface of natural zeolite and to characterize modified and raw zeolites in order to study the removal of nitrate anions from water. Natural clinoptilolite, as the most common zeolite, was chosen and modified in an ultrasonication process using tetraethylammonium bromide, subsequent to being contacted with NaCl solutions. FT-IR studies indicated a peak attributed to the stretching vibrations of the –CH₂ group in the molecule of tetraethylammonium bromide in the spectrum of the modified sample. Moreover, the SEM images showed some obvious changes in the surface morphology and crystallinity of clinoptilolite after being modified. Batch adsorption experiments show that the modified zeolite is capable of removing nitrate anions, and the predominant removal mechanism is suggested to be a combination of electrostatic attraction and ion exchange since the results from the zeta potential analysis showed a decrease in the net negative charge of clinoptilolite after modification, while bromide ions were detected in the modified sample in the µXRF analysis.Keywords: adsorption, clinoptilolite, short-chain quaternary ammonium salt, tetraethylammoniumbromide, ultrasonication
Procedia PDF Downloads 109831 The Potential for Cyclotron and Generator-produced Positron Emission Tomography Radiopharmaceuticals: An Overview
Authors: Ng Yen, Shafii Khamis, Rehir Bin Dahalan
Abstract:
Cyclotrons in the energy range 10-30 MeV are widely used for the production of clincally relevant radiosiotopes used in positron emission tomography (PET) nuclear imaging. Positron emmision tomography is a powerful nuclear imaging tool that produces high quality 3-dimentional images of functional processes of body. The advantage of PET among all other imaging devices is that it allows the study of an impressive array of discrete biochemical and physiologic processes, within a single imaging session. The number of PET scanner increases every year globally due to high clinical demand. However, not all PET centers can afford a cyclotron, due to the expense associated with operation of an in-house cyclotron. Therefore, current research has also focused on the development of parent/daughter generators that can reliably provide PET nuclides. These generators (68Ge/68Ga generator, 62Zn/62Cu, 82Sr/82Rb, etc) can provide even short-lived radionuclides at any time on demand, without the need of an ‘in-house cyclotron’. The parent isotope is produced at a cyclotron/reactor facility, and can be shipped to remote clinical sites (regionally/overseas), where the daughter isotope is eluted, a model similar to the 99Mo/99mTc generator system. The specific aim for this presentation is to talk about the potential for both of the cyclotron and generator-produced PET radiopharmaceuticals used in clinical imaging.Keywords: positron emission tomography, radiopharmaceutical, cyclotron, generator
Procedia PDF Downloads 482830 From De Soto’s Solution to Urban Disaster: The Effects of Land Titling Policies on the Development of Cities of the Global South in the Case of Lima Peru
Authors: Jitka Molnarova
Abstract:
Based on De Soto’s idea that a formal land title can provide a secure home and access to credit to poor urban families, a large number of developing countries accepted the formalization of informal settlements as the ultimate solution for their housing crises and struggles with poverty. After two decades of implementation, very little is known about the effects this policy has on the quality of the neighborhoods it produces and on the development of cities in general. Using the capital of Peru -where the solution originated- as a case study, this paper illustrates the negative outcomes this policy has on urban development arguing that land titling encourages 1) expansion of the city often to areas of high physical risk, 2) production of precarious housing on unserviced land, and 3) practices of illegal land trafficking. The evidence is based on interviews with community leaders and officials working at the Cooperation for Formalization of Informal Property (COFOPRI), comparison of satellite images documenting the expansion of Lima in the past twenty years, and a technical evaluation of dozens of houses that have been or are in the process of being granted a land title.Keywords: COFOPRI, De Soto, housing policies, land titling, land trafficking, Lima, Peru, precarious housing, urban expansion
Procedia PDF Downloads 187829 Fused Structure and Texture (FST) Features for Improved Pedestrian Detection
Authors: Hussin K. Ragb, Vijayan K. Asari
Abstract:
In this paper, we present a pedestrian detection descriptor called Fused Structure and Texture (FST) features based on the combination of the local phase information with the texture features. Since the phase of the signal conveys more structural information than the magnitude, the phase congruency concept is used to capture the structural features. On the other hand, the Center-Symmetric Local Binary Pattern (CSLBP) approach is used to capture the texture information of the image. The dimension less quantity of the phase congruency and the robustness of the CSLBP operator on the flat images, as well as the blur and illumination changes, lead the proposed descriptor to be more robust and less sensitive to the light variations. The proposed descriptor can be formed by extracting the phase congruency and the CSLBP values of each pixel of the image with respect to its neighborhood. The histogram of the oriented phase and the histogram of the CSLBP values for the local regions in the image are computed and concatenated to construct the FST descriptor. Several experiments were conducted on INRIA and the low resolution DaimlerChrysler datasets to evaluate the detection performance of the pedestrian detection system that is based on the FST descriptor. A linear Support Vector Machine (SVM) is used to train the pedestrian classifier. These experiments showed that the proposed FST descriptor has better detection performance over a set of state of the art feature extraction methodologies.Keywords: pedestrian detection, phase congruency, local phase, LBP features, CSLBP features, FST descriptor
Procedia PDF Downloads 488828 Co-Seismic Surface Deformation Induced By 24 September 2019 Mirpur, Pakistan Earthquake Along an Active Blind Fault Estimated Using Sentinel-1 TOPS Interferometry
Authors: Muhammad Ali, Zeeshan Afzal, Giampaolo Ferraioli, Gilda Schirinzi, Muhammad Saleem Mughal, Vito Pascazio
Abstract:
On 24 September 2019, an earthquake with 5.6 Mw and 10 km depth stroke in Mirpur. The Mirpur area was highly affected by this earthquake, with the death of 34 people. This study aims to estimate the surface deformation associated with this earthquake. The interferometric synthetic aperture radar (InSAR) technique is applied to study earthquake induced surface motion. InSAR data using 9 Sentinel-1A SAR images from 11 August 2019 to 22 October 2019 is used to investigate the pre, co-, and post-seismic deformation trends. Time series investigation reveals that there was not such deformation in pre-seismic time period. In the co-seismic time period, strong displacement was observed, and in post-seismic results, small displacement is seen due to aftershocks. Our results show the existence of a previously unpublished blind fault in Mirpur and help to locate the fault line. Previous this fault line was triggered during the 2005 earthquake, and now it’s activated on 24 September 2019. Study area is already facing many problems due to natural hazards where additional surface deformations, particularly because of an earthquake with an activated blind fault, have increased its vulnerability.Keywords: surface deformation, InSAR, earthquake, sentinel-1, mirpur
Procedia PDF Downloads 128827 Wildfires Assessed By Remote Sensed Images And Burned Land Monitoring
Authors: Maria da Conceição Proença
Abstract:
This case study implements the evaluation of burned areas that suffered successive wildfires in Portugal mainland during the summer of 2017, killing more than 60 people. It’s intended to show that this evaluation can be done with remote sensing data free of charges in a simple laptop, with open-source software, describing the not-so-simple methodology step by step, to make it available for county workers in city halls of the areas attained, where the availability of information is essential for the immediate planning of mitigation measures, such as restoring road access, allocate funds for the recovery of human dwellings and assess further restoration of the ecological system. Wildfires also devastate forest ecosystems having a direct impact on vegetation cover and killing or driving away from the animal population. The economic interest is also attained, as the pinewood burned becomes useless for the noblest applications, so its value decreases, and resin extraction ends for several years. The tools described in this paper enable the location of the areas where took place the annihilation of natural habitats and establish a baseline for major changes in forest ecosystems recovery. Moreover, the result allows the follow up of the surface fuel loading, enabling the targeting and evaluation of restoration measures in a time basis planning.Keywords: image processing, remote sensing, wildfires, burned areas evaluation, sentinel-2
Procedia PDF Downloads 212826 Optoelectronic Hardware Architecture for Recurrent Learning Algorithm in Image Processing
Authors: Abdullah Bal, Sevdenur Bal
Abstract:
This paper purposes a new type of hardware application for training of cellular neural networks (CNN) using optical joint transform correlation (JTC) architecture for image feature extraction. CNNs require much more computation during the training stage compare to test process. Since optoelectronic hardware applications offer possibility of parallel high speed processing capability for 2D data processing applications, CNN training algorithm can be realized using Fourier optics technique. JTC employs lens and CCD cameras with laser beam that realize 2D matrix multiplication and summation in the light speed. Therefore, in the each iteration of training, JTC carries more computation burden inherently and the rest of mathematical computation realized digitally. The bipolar data is encoded by phase and summation of correlation operations is realized using multi-object input joint images. Overlapping properties of JTC are then utilized for summation of two cross-correlations which provide less computation possibility for training stage. Phase-only JTC does not require data rearrangement, electronic pre-calculation and strict system alignment. The proposed system can be incorporated simultaneously with various optical image processing or optical pattern recognition techniques just in the same optical system.Keywords: CNN training, image processing, joint transform correlation, optoelectronic hardware
Procedia PDF Downloads 506825 Medical Image Watermark and Tamper Detection Using Constant Correlation Spread Spectrum Watermarking
Authors: Peter U. Eze, P. Udaya, Robin J. Evans
Abstract:
Data hiding can be achieved by Steganography or invisible digital watermarking. For digital watermarking, both accurate retrieval of the embedded watermark and the integrity of the cover image are important. Medical image security in Teleradiology is one of the applications where the embedded patient record needs to be extracted with accuracy as well as the medical image integrity verified. In this research paper, the Constant Correlation Spread Spectrum digital watermarking for medical image tamper detection and accurate embedded watermark retrieval is introduced. In the proposed method, a watermark bit from a patient record is spread in a medical image sub-block such that the correlation of all watermarked sub-blocks with a spreading code, W, would have a constant value, p. The constant correlation p, spreading code, W and the size of the sub-blocks constitute the secret key. Tamper detection is achieved by flagging any sub-block whose correlation value deviates by more than a small value, ℇ, from p. The major features of our new scheme include: (1) Improving watermark detection accuracy for high-pixel depth medical images by reducing the Bit Error Rate (BER) to Zero and (2) block-level tamper detection in a single computational process with simultaneous watermark detection, thereby increasing utility with the same computational cost.Keywords: Constant Correlation, Medical Image, Spread Spectrum, Tamper Detection, Watermarking
Procedia PDF Downloads 194824 Competitive Adsorption of Al, Ga and In by Gamma Irradiation Induced Pectin-Acrylamide-(Vinyl Phosphonic Acid) Hydrogel
Authors: Md Murshed Bhuyan, Hirotaka Okabe, Yoshiki Hidaka, Kazuhiro Hara
Abstract:
Pectin-Acrylamide- (Vinyl Phosphonic Acid) Hydrogels were prepared from their blend by using gamma radiation of various doses. It was found that the gel fraction of hydrogel increases with increasing the radiation dose reaches a maximum and then started decreasing with increasing the dose. The optimum radiation dose and the composition of raw materials were determined on the basis of equilibrium swelling which resulted in 20 kGy absorbed dose and 1:2:4 (Pectin:AAm:VPA) composition. Differential scanning calorimetry reveals the gel strength for using them as the adsorbent. The FTIR-spectrum confirmed the grafting/ crosslinking of the monomer on the backbone of pectin chain. The hydrogels were applied in adsorption of Al, Ga, and In from multielement solution where the adsorption capacity order for those three elements was found as – In>Ga>Al. SEM images of hydrogels and metal adsorbed hydrogels indicate the gel network and adherence of the metal ions in the interpenetrating network of the hydrogel which were supported by EDS spectra. The adsorption isotherm models were studied and found that the Langmuir adsorption isotherm model was well fitted with the data. Adsorption data were also fitted to different adsorption kinetic and diffusion models. Desorption of metal adsorbed hydrogels was performed in 5% nitric acid where desorption efficiency was found around 90%.Keywords: hydrogel, gamma radiation, vinyl phosphonic acid, metal adsorption
Procedia PDF Downloads 153823 Vision-Based Collision Avoidance for Unmanned Aerial Vehicles by Recurrent Neural Networks
Authors: Yao-Hong Tsai
Abstract:
Due to the sensor technology, video surveillance has become the main way for security control in every big city in the world. Surveillance is usually used by governments for intelligence gathering, the prevention of crime, the protection of a process, person, group or object, or the investigation of crime. Many surveillance systems based on computer vision technology have been developed in recent years. Moving target tracking is the most common task for Unmanned Aerial Vehicle (UAV) to find and track objects of interest in mobile aerial surveillance for civilian applications. The paper is focused on vision-based collision avoidance for UAVs by recurrent neural networks. First, images from cameras on UAV were fused based on deep convolutional neural network. Then, a recurrent neural network was constructed to obtain high-level image features for object tracking and extracting low-level image features for noise reducing. The system distributed the calculation of the whole system to local and cloud platform to efficiently perform object detection, tracking and collision avoidance based on multiple UAVs. The experiments on several challenging datasets showed that the proposed algorithm outperforms the state-of-the-art methods.Keywords: unmanned aerial vehicle, object tracking, deep learning, collision avoidance
Procedia PDF Downloads 160822 Synthesis, Characterization and Photocatalytic Performance of Visible Light Induced Materials
Authors: M. Muneer, Waseem Raza
Abstract:
Nano-crystalline materials of pure and metal-doped semiconducting materials have been successfully synthesized using sol gel and hydrothermal methods. The prepared materials were characterized by standard analytical techniques, i.e., XRD, SEM, EDX, UV–vis Spectroscopy and FTIR. The (XRD) analysis showed that the obtained particles are present in partial crystalline nature and exhibit no other impurity phase. The EDX and (SEM) images depicted that metals have been successfully loaded on the surface of the semiconductor. FTIR showed an additional absorption band at 910 cm−1, characteristic of absorption band indicating the incorporation of dopant into the lattice in addition to a broad and strong absorption band in the region of 410–580 cm−1 due to metal–O stretching. The UV–vis absorption spectra of synthesized particles indicate that the doping of metals into the lattice shift the absorption band towards the visible region. Thermal analysis, measurement of the synthesized sample showed that the thermal stability of pure semiconducting material is decreased due to increase in dopant concentration. The photocatalytic activity of the synthesized particles was studied by measuring the change in concentration of three different chromophoric dyes as a function of irradiation time. The photocatalytic activity of doped materials were found to increase with increase in dopant concentration.Keywords: photocatalysis, metal doped semicondcutors, dye degradation, visible light active materials
Procedia PDF Downloads 434821 Fluorescence in situ Hybridization (FISH) Detection of Bacteria and Archaea in Fecal Samples
Authors: Maria Nejjari, Michel Cloutier, Guylaine Talbot, Martin Lanthier
Abstract:
The fluorescence in situ hybridization (FISH) is a staining technique that allows the identification, detection and quantification of microorganisms without prior cultivation by means of epifluorescence and confocal laser scanning microscopy (CLSM). Oligonucleotide probes have been used to detect bacteria and archaea that colonize the cattle and swine digestive systems. These bacterial strains have been obtained from fecal samples issued from cattle manure and swine slurry. The collection of these samples has been done at 3 different pit’s levels A, B and C with same height. Two collection depth levels have been taken in consideration, one collection level just under the pit’s surface and the second one at the bottom of the pit. Cells were fixed and FISH was performed using oligonucleotides of 15 to 25 nucleotides of length associated with a fluorescent molecule Cy3 or Cy5. The double hybridization using Cy3 probe targeting bacteria (Cy3-EUB338-I) along with a Cy5 probe targeting Archaea (Gy5-ARCH915) gave a better signal. The CLSM images show that there are more bacteria than archaea in swine slurry. However, the choice of fluorescent probes is critical for getting the double hybridization and a unique signature for each microorganism. FISH technique is an easy way to detect pathogens like E. coli O157, Listeria, Salmonella that easily contaminate water streams, agricultural soils and, consequently, food products and endanger human health.Keywords: archaea, bacteria, detection, FISH, fluorescence
Procedia PDF Downloads 388820 Autonomous Vehicle Detection and Classification in High Resolution Satellite Imagery
Authors: Ali J. Ghandour, Houssam A. Krayem, Abedelkarim A. Jezzini
Abstract:
High-resolution satellite images and remote sensing can provide global information in a fast way compared to traditional methods of data collection. Under such high resolution, a road is not a thin line anymore. Objects such as cars and trees are easily identifiable. Automatic vehicles enumeration can be considered one of the most important applications in traffic management. In this paper, autonomous vehicle detection and classification approach in highway environment is proposed. This approach consists mainly of three stages: (i) first, a set of preprocessing operations are applied including soil, vegetation, water suppression. (ii) Then, road networks detection and delineation is implemented using built-up area index, followed by several morphological operations. This step plays an important role in increasing the overall detection accuracy since vehicles candidates are objects contained within the road networks only. (iii) Multi-level Otsu segmentation is implemented in the last stage, resulting in vehicle detection and classification, where detected vehicles are classified into cars and trucks. Accuracy assessment analysis is conducted over different study areas to show the great efficiency of the proposed method, especially in highway environment.Keywords: remote sensing, object identification, vehicle and road extraction, vehicle and road features-based classification
Procedia PDF Downloads 232819 Dynamics of India's Nuclear Identity
Authors: Smita Singh
Abstract:
Through the constructivist perspective, this paper explores the transformation of India’s nuclear identity from an irresponsible nuclear weapon power to a ‘de-facto nuclear power’ in the emerging international nuclear order From a nuclear abstainer to a bystander and finally as a ‘de facto nuclear weapon state’, India has put forth its case as a unique and exceptional nuclear power as opposed to Iran, Iraq and North Korea with similar nuclear ambitions, who have been snubbed as ‘rogue states’ by the international community. This paper investigates the reasons behind international community’s gradual acceptance of India’s nuclear weapons capabilities and nuclear identity after the Indo-U.S. Nuclear Deal. In this paper, the central concept of analysis is the inter-subjective nature of identity in the nuclear arena. India’s nuclear behaviour has been discursively constituted by India through evolving images of the ‘self’ and the ‘other.’ India’s sudden heightened global status is not solely the consequence of its 1998 nuclear tests but a calibrated projection as a responsible stakeholder in other spheres such as economic potential, market prospects, democratic credentials and so on. By examining India’s nuclear discourse this paper contends that India has used its material and discursive power in presenting a n striking image as a responsible nuclear weapon power (though not yet a legal nuclear weapon state as per the NPT). By historicising India’s nuclear trajectory through an inter-subjective analysis of identities, this paper moves a step ahead in providing a theoretical interpretation of state actions and nuclear identity construction.Keywords: nuclear identity, India, constructivism, international stakeholder
Procedia PDF Downloads 439818 Application of Electrochemically Prepared PPy/MWCNT:MnO2 Nano-Composite Film in Microbial Fuel Cells for Sustainable Power Generation
Authors: Rajeev jain, D. C. Tiwari, Praveena Mishra
Abstract:
Nano-composite of polypyrrole/multiwalled carbon nanotubes:mangenese oxide (PPy/MWCNT:MnO2) was electrochemically deposited on the surface of carbon cloth (CC). The nano-composite was structurally characterized by FTIR, SEM, TEM and UV-Vis studies. Nano-composite was also characterized by cyclic voltammetry (CV), current voltage measurements (I-V) and the optical band gaps of film were evaluated from UV-Vis absorption studies. The PPy/MWCNT:MnO2 nano-composite was used as anode in microbial fuel cell (MFC) for sewage waste water treatment, power and coulombic efficiency measurement. The prepared electrode showed good electrical conductivity (0.1185 S m-1). This was also supported by band gap measurements (direct 0.8 eV, indirect 1.3 eV). The obtained maximum power density was 1125.4 mW m-2, highest chemical oxygen demand (COD) removal efficiency was 93% and the maximum coulombic efficiency was 59%. For the first time PPy/MWCNT:MnO2 nano-composite for MFC prepared from nano-composite electrode having the potential for the use in MFC with good stability and better adhesion of microbes is being reported. The SEM images confirm the growth and development of microbe’s colony.Keywords: carbon cloth, electro-polymerization, functionalization, microbial fuel cells, multi walled carbon nanotubes, polypyrrole
Procedia PDF Downloads 271817 An Enhanced SAR-Based Tsunami Detection System
Authors: Jean-Pierre Dubois, Jihad S. Daba, H. Karam, J. Abdallah
Abstract:
Tsunami early detection and warning systems have proved to be of ultimate importance, especially after the destructive tsunami that hit Japan in March 2012. Such systems are crucial to inform the authorities of any risk of a tsunami and of the degree of its danger in order to make the right decision and notify the public of the actions they need to take to save their lives. The purpose of this research is to enhance existing tsunami detection and warning systems. We first propose an automated and miniaturized model of an early tsunami detection and warning system. The model for the operation of a tsunami warning system is simulated using the data acquisition toolbox of Matlab and measurements acquired from specified internet pages due to the lack of the required real-life sensors, both seismic and hydrologic, and building a graphical user interface for the system. In the second phase of this work, we implement various satellite image filtering schemes to enhance the acquired synthetic aperture radar images of the tsunami affected region that are masked by speckle noise. This enables us to conduct a post-tsunami damage extent study and calculate the percentage damage. We conclude by proposing improvements to the existing telecommunication infrastructure of existing warning tsunami systems using a migration to IP-based networks and fiber optics links.Keywords: detection, GIS, GSN, GTS, GPS, speckle noise, synthetic aperture radar, tsunami, wiener filter
Procedia PDF Downloads 392816 Population Stereotype Production, User Factors, and Icon Design for Underserved Communities of Rural India
Authors: Avijit Sengupta, Klarissa Ting Ting Cheng, Maffee Peng-Hui Wan
Abstract:
This study investigates the influence of user factors and referent characteristics on representation types generated using the stereotype production method for designing icons. Sixty-eight participants of farming communities were asked to draw images based on sixteen feature referents. Significant statistical differences were found between the types of representations generated for contextual and context-independent referents. Strong correlations were observed between years of formal education and total number of abstract representations produced for both contextual and context-independent referents. However, representation characteristics were not influenced by other user factors such as participants’ experience with mobile phone and years of farming experience. A statistically significant tendency of making concrete representations was observed for both contextual and context-independent referents. These findings provide insights on community members’ involvement in icon design and suggest a consolidated icon design strategy based on population stereotype, particularly for under-served rural communities of India.Keywords: abstract representation, concrete representation, participatory design, population stereotype
Procedia PDF Downloads 375815 Delineation of Oil – Polluted Sites in Ibeno LGA, Nigeria, Using Geophysical Techniques
Authors: Ime R. Udotong, Justina I. R. Udotong, Ofonime U. M. John
Abstract:
Ibeno, Nigeria hosts the operational base of Mobil Producing Nigeria Unlimited (MPNU), a subsidiary of ExxonMobil and the current highest oil and condensate producer in Nigeria. Besides MPNU, other oil companies operate onshore, on the continental shelf and deep offshore of the Atlantic Ocean in Ibeno, Nigeria. This study was designed to delineate oil polluted sites in Ibeno, Nigeria using geophysical methods of electrical resistivity (ER) and ground penetrating radar (GPR). Results obtained revealed that there have been hydrocarbon contaminations of this environment by past crude oil spills as observed from high resistivity values and GPR profiles which clearly show the distribution, thickness and lateral extent of hydrocarbon contamination as represented on the radargram reflector tones. Contaminations were of varying degrees, ranging from slight to high, indicating levels of substantial attenuation of crude oil contamination over time. Moreover, the display of relatively lower resistivities of locations outside the impacted areas compared to resistivity values within the impacted areas and the 3-D Cartesian images of oil contaminant plume depicted by red, light brown and magenta for high, low and very low oil impacted areas, respectively confirmed significant recent pollution of the study area with crude oil.Keywords: electrical resistivity, geophysical investigations, ground penetrating radar, oil-polluted sites
Procedia PDF Downloads 418814 Traffic Analysis and Prediction Using Closed-Circuit Television Systems
Authors: Aragorn Joaquin Pineda Dela Cruz
Abstract:
Road traffic congestion is continually deteriorating in Hong Kong. The largest contributing factor is the increase in vehicle fleet size, resulting in higher competition over the utilisation of road space. This study proposes a project that can process closed-circuit television images and videos to provide real-time traffic detection and prediction capabilities. Specifically, a deep-learning model involving computer vision techniques for video and image-based vehicle counting, then a separate model to detect and predict traffic congestion levels based on said data. State-of-the-art object detection models such as You Only Look Once and Faster Region-based Convolutional Neural Networks are tested and compared on closed-circuit television data from various major roads in Hong Kong. It is then used for training in long short-term memory networks to be able to predict traffic conditions in the near future, in an effort to provide more precise and quicker overviews of current and future traffic conditions relative to current solutions such as navigation apps.Keywords: intelligent transportation system, vehicle detection, traffic analysis, deep learning, machine learning, computer vision, traffic prediction
Procedia PDF Downloads 102813 Embedded Digital Image System
Authors: Dawei Li, Cheng Liu, Yiteng Liu
Abstract:
This paper introduces an embedded digital image system for Chinese space environment vertical exploration sounding rocket. In order to record the flight status of the sounding rocket as well as the payloads, an onboard embedded image processing system based on ADV212, a JPEG2000 compression chip, is designed in this paper. Since the sounding rocket is not designed to be recovered, all image data should be transmitted to the ground station before the re-entry while the downlink band used for the image transmission is only about 600 kbps. Under the same condition of compression ratio compared with other algorithm, JPEG2000 standard algorithm can achieve better image quality. So JPEG2000 image compression is applied under this condition with a limited downlink data band. This embedded image system supports lossless to 200:1 real time compression, with two cameras to monitor nose ejection and motor separation, and two cameras to monitor boom deployment. The encoder, ADV7182, receives PAL signal from the camera, then output the ITU-R BT.656 signal to ADV212. ADV7182 switches between four input video channels as the program sequence. Two SRAMs are used for Ping-pong operation and one 512 Mb SDRAM for buffering high frame-rate images. The whole image system has the characteristics of low power dissipation, low cost, small size and high reliability, which is rather suitable for this sounding rocket application.Keywords: ADV212, image system, JPEG2000, sounding rocket
Procedia PDF Downloads 421812 Image Processing techniques for Surveillance in Outdoor Environment
Authors: Jayanth C., Anirudh Sai Yetikuri, Kavitha S. N.
Abstract:
This paper explores the development and application of computer vision and machine learning techniques for real-time pose detection, facial recognition, and number plate extraction. Utilizing MediaPipe for pose estimation, the research presents methods for detecting hand raises and ducking postures through real-time video analysis. Complementarily, facial recognition is employed to compare and verify individual identities using the face recognition library. Additionally, the paper demonstrates a robust approach for extracting and storing vehicle number plates from images, integrating Optical Character Recognition (OCR) with a database management system. The study highlights the effectiveness and versatility of these technologies in practical scenarios, including security and surveillance applications. The findings underscore the potential of combining computer vision techniques to address diverse challenges and enhance automated systems for both individual and vehicular identification. This research contributes to the fields of computer vision and machine learning by providing scalable solutions and demonstrating their applicability in real-world contexts.Keywords: computer vision, pose detection, facial recognition, number plate extraction, machine learning, real-time analysis, OCR, database management
Procedia PDF Downloads 26