Search results for: acid hydrolysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3506

Search results for: acid hydrolysis

1856 Effect of Chemical Modification of Functional Groups on Copper(II) Biosorption by Brown Marine Macroalgae Ascophyllum nodosum

Authors: Luciana P. Mazur, Tatiana A. Pozdniakova, Rui A. R. Boaventura, Vitor J. P. Vilar

Abstract:

The principal mechanism of metal ions sequestration by brown algae involves the formation of complexes between the metal ion and functional groups present on the cell wall of the biological material. To understand the role of functional groups on copper(II) uptake by Ascophyllum nodosum, some functional groups were chemically modified. The esterification of carboxylic groups was carried out by suspending the biomass in a methanol/HCl solution under stirring for 48 h and the blocking of the sulfonic groups was performed by repeating the same procedure for 4 cycles of 48 h. The methylation of amines was conducted by suspending the biomass in a formaldehyde/formic acid solution under shaking for 6 h and the chemical modification of sulfhydryl groups on the biomass surface was achieved using dithiodipyridine for 1 h. Equilibrium sorption studies for Cu2+ using the raw and esterified algae were performed at pH 2.0 and 4.0. The experiments were performed using an initial copper concentration of 300 mg/L and algae dose of 1.0 g/L. After reaching the equilibrium, the metal in solution was quantified by atomic absorption spectrometry. The biological material was analyzed by Fourier Transform Infrared Spectroscopy and Potentiometric Titration techniques for functional groups identification and quantification, respectively. The results using unmodified algae showed that the maximum copper uptake capacity at pH 4.0 and 2.0 was 1.17 and 0.52 mmol/g, respectively. At acidic pH values most carboxyl groups are protonated and copper sorption suffered a significant reduction of 56%. Blocking the carboxylic, sulfonic, amines and sulfhydryl functional groups, copper uptake decreased by 24/26%, 69/81%, 1/23% and 40/27% at pH 2.0/4.0, respectively, when compared to the unmodified biomass. It was possible to conclude that the carboxylic and sulfonic groups are the main functional groups responsible for copper binding (>80%). This result is supported by the fact that the adsorption capacity is directly related to the presence of carboxylic groups of the alginate polymer, and the second most abundant acidic functional group in brown algae is the sulfonic acid of fucoidan that contributes, to a lower extent, to heavy metal binding, particularly at low pH.

Keywords: biosorption, brown marine macroalgae, copper, ion-exchange

Procedia PDF Downloads 326
1855 Interfacial Adhesion and Properties Improvement of Polyethylene/Thermoplastic Starch Blend Compatibilized by Stearic Acid-Grafted-Starch

Authors: Nattaporn Khanoonkon, Rangrong Yoksan, Amod A. Ogale

Abstract:

Polyethylene (PE) is one of the most petroleum-based thermoplastic materials used in many applications including packaging due to its cheap, light-weight, chemically inert and capable to be converted into various shapes and sizes of products. Although PE is a commercially potential material, its non-biodegradability caused environmental problems. At present, bio-based polymers become more interesting owing to its bio-degradability, non-toxicity, and renewability as well as being eco-friendly. Thermoplastic starch (TPS) is a bio-based and biodegradable plastic produced from the plasticization of starch under applying heat and shear force. In many researches, TPS was blended with petroleum-based polymers including PE in order to reduce the cost and the use of those polymers. However, the phase separation between hydrophobic PE and hydrophilic TPS limited the amount of TPS incorporated. The immiscibility of two different polarity polymers can be diminished by adding compatibilizer. PE-based compatibilizers, e.g. polyethylene-grafted-maleic anhydride, polyethylene-co-vinyl alcohol, etc. have been applied for the PE/TPS blend system in order to improve their miscibility. Until now, there is no report about the utilization of starch-based compatibilizer for PE/TPS blend system. The aims of the present research were therefore to synthesize a new starch-based compatibilizer, i.e. stearic acid-grafted starch (SA-g-starch) and to study the effect of SA-g-starch on chemical interaction, morphological properties, tensile properties and water vapor as well as oxygen barrier properties of the PE/TPS blend films. PE/TPS blends without and with incorporating SA-g-starch with a content of 1, 3 and 5 part(s) per hundred parts of starch (phr) were prepared using a twin screw extruder and then blown into films using a film blowing machine. Incorporating 1 phr and 3 phr of SA-g-starch could improve miscibility of the two polymers as confirmed from the reduction of TPS phase size and the good dispersion of TPS phase in PE matrix. In addition, the blend containing SA-g-starch with contents of 1 phr and 3 phr exhibited higher tensile strength and extensibility, as well as lower water vapor and oxygen permeabilities than the naked blend. The above results suggested that SA-g-starch could be potentially applied as a compatibilizer for the PE/TPS blend system.

Keywords: blend, compatibilizer, polyethylene, thermoplastic starch

Procedia PDF Downloads 440
1854 Studies on Virulence Factors Analysis in Streptococcus agalactiae from the Clinical Isolates

Authors: Natesan Balasubramanian, Palpandi Pounpandi, Venkatraman Thamil Priya, Vellasamy Shanmugaiah, Karubbiah Balakrishnan, Mandayam Anandam Thirunarayan

Abstract:

Streptococcus agalactiae is commonly known as Group B Streptococcus (GBS) and it is the most common cause of life-threatening bacterial infection. GBS first considered as a veterinary pathogen causing mastitis in cattle later becomes a human pathogen for severe neonatal infections. In this present study, a total of 20 new clinical isolates of S. agalactiae were collected from male (6) and female patient (14) with different age group. The isolates were from Urinary tract infection (UTI), blood, pus and eye ulcer. All the 20 S. agalactiae isolates has clear hemolysis properties on blood agar medium and were identified by serogrouping and MALTI-TOF-MS analysis. Antibiotic susceptibility/resistance test was performed for 20 S. agalactiae isolates, further phenotypic resistance pattern was observed for tetracycline, vancomycin, ampicillin and penicillin. Genotypically we found two antibiotic resistance genes such as Betalactem antibiotic resistance gene (Tem) (70%) and tetracycline resistance gene Tet(O) 15% in our isolates. Six virulence factors encoding genes were performed by PCR in twenty GBS isolates, cfb gene (100%), followed by, cylE(90.47%), lmp(85.7%), bca(71.42%), rib (38%) and low frequency in bac gene (4.76%) were determined. Most of the S. agalactiae isolates produced strong biofilm in the polystyrene surface (hydrophobic), and low-level biofilm formation was found in glass tube (hydrophilic) surface. lytR is secreted protein and localized in bacterial cell wall, extra cellular membrane, and cytoplasm. In silico docking studies were performed for lytR protein with four antibiofilm compounds, including a peptide (PR39) with the docking study showed peptide has strong interaction followed by ellagic acid and interaction length is 2.95, 2.97 and 2.95 A°. In ligand EGCGO10 and O11 two atoms intract with lytR (Leu271), with binding bond affinity length is 3.24 and 3.14. The aminoacid Leu 271 is act as an impartant aminoacid, since ellagic acid and EGCG interact with same aminoacid.

Keywords: antibiotics, biofilms, clinical isolates, S. agalactiae, virulence

Procedia PDF Downloads 108
1853 Antioxidant Activity and Total Phenolic Content within the Aerial Parts of Artemisia absinthium

Authors: Hallal Nouria, Kharoubi Omar

Abstract:

Wormwood (Artemisia absinthium L.) is a medicinal and aromatic bitter herb, which has been used as a medicine from ancient times. It has traditionally been used as anthelmintic, choleretic, antiseptic, balsamic, depurative, digestive, diuretic, emmenagogue and in treating leukemia and sclerosis. The species was cited to be used externally as cataplasm of crushed leaves for snake and scorpion bites or decoction for wounds and sores applied locally as antiseptic and antifungal. Wormwood extract have high contents of total phenolic compounds and total flavonoids indicating that these compounds contribute to antiradical and antioxidative activity. Most of the degenerative diseases are caused by free radicals. Antioxidants are the agents responsible for scavenging free radicals. The aim of present study was to evaluate the phytochemical and in vitro antioxidant properties of Wormwood extract. DPPH assay and reducing power assay were the method adopted to study antioxidant potentials of extracts. Standard methods were used to screen preliminary phytochemistry and quantitative analysis of tannin, phenolics and flavanoids. Aqueous and alcoholic extracts were showed good antioxidant effect with IC50 ranges from 62 μg/ml for aqueous and 116μg/ml for alcoholic extracts. Phenolic compounds, tannins and flavonoids were the major phytochemicals present in both the extracts. Percentage of inhibition increased with the increased concentration of extracts. The aqueous and alcoholic extract yielded 20, 15& 3, 59 mg/g gallic acid equivalent phenolic content 2, 78 & 1,83 mg/g quercetin equivalent flavonoid and 2, 34 & 6, 40 g tannic acid equivalent tannins respectively. The aqueous and methanol extracts of the aerial parts showed a positive correlation between the total phenolic content and the antioxidant activity measured in the plant samples. The present study provides evidence that both extracts of Artemisia absinthium is a potential source of natural antioxidant.

Keywords: pharmaceutical industries, medicinal and aromatic plant, antioxidants, phenolic compounds, Artemisia absinthium

Procedia PDF Downloads 431
1852 Formulation of the N-Acylethanolamine, Linoleoylethanolamide into Cubosomes for Delivery across the Blood-Brain Barrier

Authors: Younus Mohammad, Anita B. Fallah, Ben J. Boyd, Shakila B. Rizwan

Abstract:

N-acylethanolamines (NAEs) are endogenous lipids, which have neuromodulatory properties. NAEs have shown neuroprotective properties in various neurodegenerative diseases including Alzheimer's disease, Parkinson's disease and ischemic stroke. However, NAEs are eliminated rapidly in vivo by enzymatic hydrolysis. We propose to encapsulate NAEs in liquid crystalline nanoparticles (cubosomes) to increase their biological half-life and explore their therapeutic potential. Recently, we have reported the co-formulation and nanostructural characterization of cubosomes containing the NAE, oleoylethanolamide and a synthetic cubosome forming lipid phytantriol. Here, we report on the formulation of cubosomes with the NAE, linoleoylethanolamide (LEA) as the core cubosome forming lipid. LEA-cubosomes were formulated in the presence of three different steric stabilisers: two brain targeting ligands, Tween 80 and Pluronic P188 and a control, Pluronic F127. Size, morphology and internal structure of formulations were characterized by dynamic light scattering (DLS), cryogenic transmission electron microscopy (Cryo–TEM) and small angle X–ray scattering (SAXS), respectively. Chemical stability of LEA in formulations was investigated using high-performance liquid chromatography (HPLC). Cytotoxicity of formulations towards human cerebral microvascular endothelial cell line (hCMEC/D3) was also investigated using an MTT (3-[4, 5- dimethylthiazol-2-yl]-2, 5-diphenyl tetrazolium bromide) assay. All cubosome formulations had mean particle size of less than 250 nm and were uniformly distributed with polydispersity indices less than 0.2. Cubosomes produced had a bicontinuous cubic internal structure with an Im3m space group but different lattice parameters, indicating the different modes of interaction between the stabilisers and LEA. LEA in formulations was found to be chemically stable. At concentrations of up to 20 µg/mL LEA in the presence of all the stabilisers, greater than 80% cell viability was observed.

Keywords: blood-brain barrier, cubosomes, linoleoyl ethanolamide, N-acylethanolamines (NAEs)

Procedia PDF Downloads 203
1851 Characterization of Defense-Related Genes and Metabolite Profiling in Oil Palm Elaeis guineensis during Interaction with Ganoderma boninense

Authors: Mohammad Nazri Abdul Bahari, Nurshafika Mohd Sakeh, Siti Nor Akmar Abdullah

Abstract:

Basal stem rot (BSR) is the most devastating disease in oil palm. Among the oil palm pathogenic fungi, the most prevalent and virulent species associated with BSR is Ganoderma boninense. Early detection of G. boninense attack in oil palm wherein physical symptoms has not yet appeared can offer opportunities to prevent the spread of the necrotrophic fungus. However, poor understanding of molecular defense responses and roles of antifungal metabolites in oil palm against G. boninense has complicated the resolving measures. Hence, characterization of defense-related molecular responses and production of antifungal compounds during early interaction with G. boninense is of utmost important. Four month-old oil palm (Elaeis guineensis) seedlings were artificially infected with G. boninense-inoculated rubber wood block via sitting technique. RNA of samples were extracted from roots and leaves tissues at 0, 3, 7 and 11 days post inoculation (d.p.i) followed with sequencing using RNA-Seq method. Differentially-expressed genes (DEGs) of oil palm-G. boninense interaction were identified, while changes in metabolite profile will be scrutinized related to the DEGs. The RNA-Seq data generated a total of 113,829,376 and 313,293,229 paired-end clean reads from untreated (0 d.p.i) and treated (3, 7, 11 d.p.i) samples respectively, each with two biological replicates. The paired-end reads were mapped to Elaeis guineensis reference genome to screen out non-oil palm genes and subsequently generated 74,794 coding sequences. DEG analysis of phytohormone biosynthetic genes in oil palm roots revealed that at p-value ≤ 0.01, ethylene and jasmonic acid may act in antagonistic manner with salicylic acid to coordinate defense response at early interaction with G. boninense. Findings on metabolite profiling of G. boninense-infected oil palm roots and leaves are hoped to explain the defense-related compounds elicited by Elaeis guineensis in response to G. boninense colonization. The study aims to shed light on molecular defense response of oil palm at early interaction with G. boninense and promote prevention measures against Ganoderma infection.

Keywords: Ganoderma boninense, metabolites, phytohormones, RNA-Seq

Procedia PDF Downloads 264
1850 Synthesis and Characterization of PH Sensitive Hydrogel and Its Application in Controlled Drug Release of Tramadol

Authors: Naima Bouslah, Leila Bounabi, Farid Ouazib, Nabila Haddadine

Abstract:

Conventional release dosage forms are known to provide an immediate release of the drug. Controlling the rate of drug release from polymeric matrices is very important for a number of applications, particularly in the pharmaceutical area. Hydrogels are polymers in three-dimensional network arrangement, which can absorb and retain large amounts of water without dissolution. They have been frequently used to develop controlled released formulations for oral administration because they can extend the duration of drug release and thus reduce dose to be administrated improving patient compliance. Tramadol is an opioid pain medication used to treat moderate to moderately severe pain. When taken as an immediate-release oral formulation, the onset of pain relief usually occurs within about an hour. In the present work, we synthesized pH-responsive hydrogels of (hydroxyl ethyl methacrylate-co-acrylic acid), (HEMA-AA) for control drug delivery of tramadol in the gastro-intestinal tractus. The hydrogels with different acrylic acid content, were synthesized by free radical polymerization and characterized by FTIR spectroscopy, X ray diffraction analysis (XRD), differential scanning calorimetry (DSC) and thermo gravimetric analysis (TGA). FTIR spectroscopy has shown specific hydrogen bonding interactions between the carbonyl groups of the hydrogels and hydroxyl groups of tramadol. Both the XRD and DSC studies revealed that the introduction of tramadol in the hydrogel network induced the amorphization of the drug. The swelling behaviour, absorptive kinetics and the release kinetics of tramadol in simulated gastric fluid (pH 1.2) and in simulated intestinal fluid (pH 7.4) were also investigated. The hydrogels exhibited pH-responsive behavior in the swelling study. The (HEMA-AA) hydrogel swelling was much higher in pH =7.4 medium. The tramadol release was significantly increased when pH of the medium was changed from simulated gastric fluid (pH 1.2) to simulated intestinal fluid (pH 7.4). Using suitable mathematical models, the apparent diffusional coefficients and the corresponding kinetic parameters have been calculated.

Keywords: biopolymres, drug delivery, hydrogels, tramadol

Procedia PDF Downloads 358
1849 Direct Fed Microbes: A Better Approach to Maximize Utilization of Roughages in Tropical Ruminants

Authors: Muhammad Adeel Arshad, Shaukat Ali Bhatti, Faiz-ul Hassan

Abstract:

Manipulating microbial ecosystem in the rumen is considered as an important strategy to optimize production efficiency in ruminants. In the past, antibiotics and synthetic chemical compounds have been used for the manipulation of rumen fermentation. However, since the non-therapeutic use of antibiotics has been banned, efforts are being focused to search out safe alternative products. In tropics, crop residues and forage grazing are major dietary sources for ruminants. Poor digestibility and utilization of these feedstuffs by animals is a limiting factor to exploit the full potential of ruminants in this area. Hence, there is a need to enhance the utilization of these available feeding resources. One of the potential strategies in this regard is the use of direct-fed microbes. Bacteria and fungi are mostly used as direct-fed microbes to improve animal health and productivity. Commonly used bacterial species include lactic acid-producing and utilizing bacteria (Lactobacillus, Streptococcus, Enterococcus, Bifidobacterium, and Bacillus) and fungal species of yeast are Saccharomyces and Aspergillus. Direct-fed microbes modulate microbial balance in the gastrointestinal tract through the competitive exclusion of pathogenic species and favoring beneficial microbes. Improvement in weight gain and feed efficiency has been observed as a result of feeding direct-fed bacteria. The use of fungi as a direct-fed microbe may prevent excessive production of lactate and harmful oxygen in the rumen leading to better feed digestibility. However, the mechanistic mode of action for bacterial or fungal direct-fed microbes has not been established yet. Various reports have confirmed an increase in dry matter intake, milk yield, and milk contents in response to the administration of direct-fed microbes. However, the application of a direct-fed microbe has shown variable responses mainly attributed to dosages and strains of microbes. Nonetheless, it is concluded that the inclusion of direct-fed microbes may mediate the rumen ecosystem to manage lactic acid production and utilization in both clinical and sub-acute rumen acidosis.

Keywords: microbes, roughages, rumen, feed efficiency, production, fermentation

Procedia PDF Downloads 138
1848 Influence of the Use of Fruits Byproducts on the Lipid Profile of Hermetia illucens, Tenebrio molitor and Zophoba morio Larvae

Authors: Rebeca P Ramos-Bueno, Maria Jose Gonzalez-Fernandez, Rosa M. Moreno-Zamora, Antonia Barros Heras, Yolanda Serrano Alonso, Carolina Sanchez Barranco

Abstract:

Insects are a new source of fatty acids (FA), so they are considered a sustainable and environmentally friendly alternative for both animal feed and the human diet, and furthermore, their harvesting/rearing require a low-tech and low capital investment. For that reason, lipids obtained by insect breeding open interesting possibilities with alimentary and industrial purposes, i.e., the production of biodiesel. Particularly, certain insect species, especially during the larval stage, contain high proportions of fat which is highly dependent on their feed and stage of development. Among them, Hermetia illucens larvae can be bred on food wastes to produce fat- and protein-rich raw materials for food by-product management. So, insects can act as excellent bioconverters of organic waste to nutrient-rich materials. In this regard, the aim of the study was to evaluate the effects of fruit byproducts on the FA compositions of Tenebrio molitor, Zophoba morio, and H. illucens larvae. Firstly, oil was extracted with the green solvent ethyl acetate, and FA methyl ester was obtained and analyzed by GC to show the FA profile. In addition, the triacylglycerol (TAG) profile was obtained by HPLC. Dehydrated watermelon, tomato, and papaya by-products, as well as wheat-based control feed, were assayed. High FA content was reached by Z. morio larvae fed with all fruits; however, no differences were shown in lipid profile with any change. It is worth highlighting that both Z. morio and H. illucens could be selected as the best candidates for biodiesel production due to their high content of saturated FA. On the other hand, T. molitor larvae showed a higher content of monounsaturated FA than control larvae, whereas the n-6 polyunsaturated FA content decreased in larvae fed with fruits. This result indicates that the improvement of the FA profile of Tenebrio can depend on both the type of feeding and the intended use. The lipid profile of H. illucens larvae fed with papaya and tomato showed a slight increase in the content of α-linoleic acid (ALA, 18:3n3). This FA is the precursor of docosahexaenoic acid (DHA, 22:6n3), which plays an important role as a component of structural lipids in cell membranes as well as in the synthesis of eicosanoids, protecting and resolving. Also, it was evaluated the TAG profile of Z. morio larvae due to their highest oil content. The results showed a high oleic acid (OA, 18:1n9) content, which displays modulatory effects in a wide range of physiological functions, having anti-inflammatory and anti-atherogenic properties. In conclusion, this study clearly shows that Z. morio and H. illucens larvae constitute an alternative source of OA- and ALA-rich oils, respectively, which can be devoted for food use, as well as for using in the food and pharmaceutical industries, with agronomic implications. Finally, although the profile of Z. morio was not improved with fruit feeding, this kind of feeding could be used due to its low environmental impact.

Keywords: fatty acids, fruit byproducts, Hermetia illucens, Zophoba morio, Tenebrio molitor, insect rearing

Procedia PDF Downloads 147
1847 Therapeutic Drug Monitoring by Dried Blood Spot and LC-MS/MS: Novel Application to Carbamazepine and Its Metabolite in Paediatric Population

Authors: Giancarlo La Marca, Engy Shokry, Fabio Villanelli

Abstract:

Epilepsy is one of the most common neurological disorders, with an estimated prevalence of 50 million people worldwide. Twenty five percent of the epilepsy population is represented in children under the age of 15 years. For antiepileptic drugs (AED), there is a poor correlation between plasma concentration and dose especially in children. This was attributed to greater pharmacokinetic variability than adults. Hence, therapeutic drug monitoring (TDM) is recommended in controlling toxicity while drug exposure is maintained. Carbamazepine (CBZ) is a first-line AED and the drug of first choice in trigeminal neuralgia. CBZ is metabolised in the liver into carbamazepine-10,11-epoxide (CBZE), its major metabolite which is equipotent. This develops the need for an assay able to monitor the levels of both CBZ and CBZE. The aim of the present study was to develop and validate a LC-MS/MS method for simultaneous quantification of CBZ and CBZE in dried blood spots (DBS). DBS technique overcomes many logistical problems, ethical issues and technical challenges faced by classical plasma sampling. LC-MS/MS has been regarded as superior technique over immunoassays and HPLC/UV methods owing to its better specificity and sensitivity, lack of interference or matrix effects. Our method combines advantages of DBS technique and LC-MS/MS in clinical practice. The extraction process was done using methanol-water-formic acid (80:20:0.1, v/v/v). The chromatographic elution was achieved by using a linear gradient with a mobile phase consisting of acetonitrile-water-0.1% formic acid at a flow rate of 0.50 mL/min. The method was linear over the range 1-40 mg/L and 0.25-20 mg/L for CBZ and CBZE respectively. The limit of quantification was 1.00 mg/L and 0.25 mg/L for CBZ and CBZE, respectively. Intra-day and inter-day assay precisions were found to be less than 6.5% and 11.8%. An evaluation of DBS technique was performed, including effect of extraction solvent, spot homogeneity and stability in DBS. Results from a comparison with the plasma assay are also presented. The novelty of the present work lies in being the first to quantify CBZ and its metabolite from only one 3.2 mm DBS disc finger-prick sample (3.3-3.4 µl blood) by LC-MS/MS in a 10 min. chromatographic run.

Keywords: carbamazepine, carbamazepine-10, 11-epoxide, dried blood spots, LC-MS/MS, therapeutic drug monitoring

Procedia PDF Downloads 417
1846 Valorization of Argan Residuals for the Treatment of Industrial Effluents

Authors: Salim Ahmed

Abstract:

The aim of this study was to recover a natural residue in the form of activated carbon prepared from Moroccan "argan pits and date pits" plant waste. After preparing the raw material for manufacture, the carbon was carbonised at 300°C and chemically activated with phosphoric acid of purity 85. The various characterisation results (moisture and ash content, specific surface area, pore volume, etc.) showed that the carbons obtained are comparable to those manufactured industrially and could therefore be tested, for example, in water treatment processes and especially for the depollution of effluents used in the agri-food and textile industries.

Keywords: activated carbon, water treatment, adsorption, argan

Procedia PDF Downloads 65
1845 Beneficial Effects of Curcumin against Stress Oxidative and Mitochondrial Dysfunction Induced by Trinitrobenzene Sulphonic Acid in Colon

Authors: Souad Mouzaoui, Bahia Djerdjouri

Abstract:

Oxidative stress is one of the main factors involved in the onset and chronicity of inflammatory bowel disease (IBD). In this study, we investigated the beneficial effects of a potent natural antioxidant, curcumin (Cur) on colitis and mitochondrial dysfunction in trinitrobenzene sulfonic acid (TNBS)-induced colitis in mice. Rectal instillation of the chemical irritant TNBS (30 mg kg-1) induced the disruption of distal colonic architecture and a massive inflammatory cells influx to the mucosa and submucosa layers. Under these conditions, daily administration of Cur (25 mg kg-1) efficiently decreased colitis scores in the inflamed distal colon by reducing leukocyte infiltrate as attested by reduced myeloperoxidase (MPO) activity. Moreover, the levels of nitrite, an end product of inducible NO synthase activity (iNOS) and malonyl dialdehyde (MDA), a marker of lipid peroxidation increased in a time depending manner in response to TNBS challenge. Conversely, the markers of the antioxidant pool, reduced glutathione (GSH) and catalase activity (CAT) were drastically reduced. Cur attenuated oxidative stress markers and partially restored CAT and GSH levels. Moreover, our results expanded the effect of Cur on TNBS-induced colonic mitochondrial dysfunction. In fact, TNBS induced mitochondrial swelling and lipids peroxidation. These events reflected in the opening of mitochondrial transition pore and could be an initial indication in the cascade process leading to cell death. TNBS inhibited also mitochondrial respiratory activity, caused overproduction of mitochondrial superoxide anion (O2-.) and reduced level of mitochondrial GSH. Nevertheless, Cur reduced the extent of mitochondrial oxidative stress induced by TNBS and restored colonic mitochondrial function. In conclusion, our results showed the critical role of oxidative stress in TNBS-induced colitis. They highlight the role of colonic mitochondrial dysfunction induced by TNBS, as a potential source of oxidative damages. Due to its potent antioxidant properties, Cur opens a promising therapeutic approach against oxidative inflammation in IBD.

Keywords: colitis, curcumin, mitochondria, oxidative stress, TNBS

Procedia PDF Downloads 253
1844 Cellulose Extraction from Pomelo Peel: Synthesis of Carboxymethyl Cellulose

Authors: Jitlada Chumee, Drenpen Seeburin

Abstract:

The cellulose was extracted from pomelo peel and an etherification reaction used for converting cellulose to carboxymethyl cellulose (CMC). The pomelo peel was refluxed with 0.5 M HCl and 1 M NaOH solution at 90°C for 1 h and 2 h, respectively. The cellulose was bleached with calcium hypochlorite and used as precursor. The precursor was soaked in mixed solution between isopropyl alcohol and 40%w/v NaOH for 12 h. After that, chloroacetic acid was added and reacted at 55°C for 6 h. The optimum condition was 5 g of cellulose: 0.25 mole of NaOH : 0.07 mole of ClCH2COOH with 78.00% of yield. Moreover, the product had 0.54 of degree of substitution (DS).

Keywords: pomelo peel, carboxymethyl cellulose, bioplastic, extraction

Procedia PDF Downloads 317
1843 Effect of Mistranslating tRNA Alanine on Polyglutamine Aggregation

Authors: Sunidhi Syal, Rasangi Tennakoon, Patrick O'Donoghue

Abstract:

Polyglutamine (polyQ) diseases are a group of diseases related to neurodegeneration caused by repeats of the amino acid glutamine (Q) in the DNA, which translates into an elongated polyQ tract in the protein. The pathological explanation is that the polyQ tract forms cytotoxic aggregates in the neurons, leading to their degeneration. There are no cures or preventative efforts established for these diseases as of today, although the symptoms of these diseases can be relieved. This study specifically focuses on Huntington's disease, which is a type of polyQ disease in which aggregation is caused by the extended cytosine, adenine, guanine (CUG) codon repeats in the huntingtin (HTT) gene, which encodes for the huntingtin protein. Using this principle, we attempted to create six models, which included mutating wildtype tRNA alanine variant tRNA-AGC-8-1 to have glutamine anticodons CUG and UUG so serine is incorporated at glutamine sites in poly Q tracts. In the process, we were successful in obtaining tAla-8-1 CUG mutant clones in the HTTexon1 plasmids with a polyQ tract of 23Q (non-pathogenic model) and 74Q (disease model). These plasmids were transfected into mouse neuroblastoma cells to characterize protein synthesis and aggregation in normal and mistranslating cells and to investigate the effects of glutamines replaced with alanines on the disease phenotype. Notably, we observed no noteworthy differences in mean fluorescence between the CUG mutants for 23Q or 74Q; however, the Triton X-100 assay revealed a significant reduction in insoluble 74Q aggregates. We were unable to create a tAla-8-1 UUG mutant clone, and determining the difference in the effects of the two glutamine anticodons may enrich our understanding of the disease phenotype. In conclusion, by generating structural disruption with the amino acid alanine, it may be possible to find ways to minimize the toxicity of Huntington's disease caused by these polyQ aggregates. Further research is needed to advance knowledge in this field by identifying the cellular and biochemical impact of specific tRNA variants found naturally in human genomes.

Keywords: Huntington's disease, polyQ, tRNA, anticodon, clone, overlap PCR

Procedia PDF Downloads 43
1842 Method for Identification of Through Defects of Polymer Films Applied onto Metal Parts

Authors: Yu A. Pluttsova , O. V. Vakhnina , K. B. Zhogova

Abstract:

Nowadays, many devices operate under conditions of enhanced humidity, temperature drops, fog, and vibration. To ensure long-term and uninterruptable equipment operation under adverse conditions, one applies moisture-proof films on products and electronics components, which helps to prevent corrosion, short circuit, allowing a significant increase in device lifecycle. The reliability of such moisture-proof films is mainly determined by their coating uniformity without gaps and cracks. Unprotected product edges, as well as pores in films, can cause device failure during operation. The work objective was to develop an effective, affordable, and profit-proved method for determining the presence of through defects of protective polymer films on the surface of parts made of iron and its alloys. As a diagnostic reagent, one proposed water solution of potassium ferricyanide (III) in hydrochloric acid, this changes the color from yellow to blue according to the reactions; Feº → Fe²⁺ and 4Fe²⁺ + 3[Fe³⁺(CN)₆]³⁻ → Fe ³⁺4[Fe²⁺(CN)₆]₃. There was developed the principle scheme of technological process for determining the presence of polymer films through defects on the surface of parts made of iron and its alloys. There were studied solutions with different diagnostic reagent compositions in water: from 0,1 to 25 mass fractions, %, of potassium ferricyanide (III), and from 5 to 25 mass fractions, %, of hydrochloride acid. The optimal component ratio was chosen. The developed method consists in submerging a part covered with a film into a vessel with a diagnostic reagent. In the polymer film through defect zone, the part material (ferrum) interacts with potassium ferricyanide (III), the color changes to blue. Pilot samples were tested by the developed method for the presence of through defects in the moisture-proof coating. It was revealed that all the studied parts had through defects of the polymer film coating. Thus, the claimed method efficiently reveals polymer film coating through defects on parts made of iron or its alloys, being affordable and profit-proved.

Keywords: diagnostic reagent, metal parts, polimer films, through defects

Procedia PDF Downloads 150
1841 Chemical Aging of High-Density Polyethylene (HDPE-100) in Interaction with Aggressive Environment

Authors: Berkas Khaoula, Chaoui Kamel

Abstract:

Polyethylene (PE) pipes are one of the best options for water and gas transmission networks. The main reason for such a choice is its high-quality performance in service conditions over long periods of time. PE pipes are installed in contact with different soils having various chemical compositions with confirmed aggressiveness. As a result, PE pipe surfaces undergo unwanted oxidation reactions. Usually, the polymer mixture is designed to include some additives, such as anti-oxidants, to inhibit or reduce the degradation effects. Some other additives are intended to increase resistance to the ESC phenomenon associated with polymers (ESC: Environmental Stress Cracking). This situation occurs in contact with aggressive external environments following different contaminations of soil, groundwater and transported fluids. In addition, bacterial activity and other physical or chemical media, such as temperature and humidity, can play an enhancing role. These conditions contribute to modifying the PE pipe structure and degrade its properties during exposure. In this work, the effect of distilled water, sodium hypochlorite (bleach), diluted sulfuric acid (H2SO4) and toluene-methanol (TM) mixture are studied when extruded PE samples are exposed to those environments for given periods. The chosen exposure periods are 7, 14 and 28 days at room temperature and in sealed glass containers. Post-exposure observations and ISO impact tests are presented as a function of time and chemical medium. Water effects are observed to be limited in explaining such use in real applications, whereas the changes in TM and acidic media are very significant. For the TM medium, the polymer toughness increased drastically (from 15.95 kJ/m² up to 32.01 kJ/m²), while sulfuric acid showed a steady augmentation over time. This situation may correspond to a hardening phenomenon of PE increasing its brittleness and its ability for structural degradation because of localized oxidation reactions and changes in crystallinity.

Keywords: polyethylene, toluene-methanol mixture, environmental stress cracking, degradation, impact resistance

Procedia PDF Downloads 75
1840 Greening the Blue: Enzymatic Degradation of Commercially Important Biopolymer Dextran Using Dextranase from Bacillus Licheniformis KIBGE-IB25

Authors: Rashida Rahmat Zohra, Afsheen Aman, Shah Ali Ul Qader

Abstract:

Commercially important biopolymer, dextran, is enzymatically degraded into lower molecular weight fractions of vast industrial potential. Various organisms are associated with dextranase production, among which fungal, yeast and bacterial origins are used for commercial production. Dextranases are used to remove contaminating dextran in sugar processing industry and also used in oral care products for efficient removal of dental plaque. Among the hydrolytic products of dextran, isomaltooligosaccharides have prebiotic effect in humans and reduces the cariogenic effect of sucrose in oral cavity. Dextran derivatives produced by hydrolysis of high molecular polymer are also conjugated with other chemical and metallic compounds for usage in pharmaceutical, fine chemical industry, cosmetics, and food industry. Owing to the vast application of dextran and dextranases, current study focused on purification and analysis of kinetic parameters of dextranase from a newly isolated strain of Bacillus licheniformis KIBGE-IB25. Dextranase was purified up to 35.75 folds with specific activity of 1405 U/mg and molecular weight of 158 kDa. Analysis of kinetic parameters revealed that dextranase performs optimum cleavage of low molecular weight dextran (5000 Da, 0.5%) at 35ºC in 15 min at pH 4.5 with a Km and Vmax of 0.3738 mg/ml and 182.0 µmol/min, respectively. Thermal stability profiling of dextranase showed that it retained 80% activity up to 6 hours at 30-35ºC and remains 90% active at pH 4.5. In short, the dextranase reported here performs rapid cleavage of substrate at mild operational conditions which makes it an ideal candidate for dextran removal in sugar processing industry and for commercial production of low molecular weight oligosaccharides.

Keywords: Bacillus licheniformis, dextranase, gel permeation chromatograpy, enzyme purification, enzyme kinetics

Procedia PDF Downloads 440
1839 Characterisation of Extracellular Polymeric Substances from Bacteria Isolated from Acid Mine Decant in Gauteng, South Africa

Authors: Nonhlanhla Nkosi, Kulsum Kondiah

Abstract:

The toxicological manifestation of heavy metals motivates interest towards the development of a reliable, eco-friendly biosorption process. With that being said, the aim of the current study was to characterise the EPS from heavy-metal resistant bacteria isolated from acid mine decant on the West Rand, Gauteng, South Africa. To achieve this, six exopolysaccharide (EPS) producing, metal resistant strains (Pb101, Pb102, Pb103, Pb204, Co101, and Ni101) were identified as Bacillus safensis strain NBRC 100820, Bacillus proteolyticus, Micrococcus luteus, Enterobacter sp. Pb204, Bacillus wiedmannii and Bacillus zhangzhouensis, respectively with 16S rRNA sequencing. Thereafter, EPS was extracted using chemical (formaldehyde/NaOH) and physical (ultrasonification) methods followed by physicochemical characterisation of carbohydrate, DNA, and protein contents using chemical assays and spectroscopy (FTIR- Fourier transformed infrared and 3DEEM- three-dimensional excitation-emission matrix fluorescence spectroscopy). EPS treated with formaldehyde/NaOH showed better recovery of macromolecules than ultrasonification. The results of the present study showed that carbohydrates were more abundant than proteins, with carbohydrate and protein concentrations of 8.00 mg/ml and 0.22 mg/ml using chemical method in contrast to 5.00 mg/ml and 0.77 mg/ml using physical method, respectively. The FTIR spectroscopy results revealed that the extracted EPS contained hydroxyl, amide, acyl, and carboxyl groups that corresponded to the aforementioned chemical analysis results, thus asserting the presence of carbohydrates, DNA, polysaccharides, and proteins in the EPS. These findings suggest that identified functional groups of EPS form surface charges, which serve as the binding sites for suspended particles, thus possibly mediating adsorption of divalent cations and heavy metals. Using the extracted EPS in the development of a cost-effective biosorption solution for industrial wastewater treatment is attainable.

Keywords: biosorbent, exopolysaccharides, heavy metals, wastewater treatment

Procedia PDF Downloads 149
1838 Catalytic Cracking of Butene to Propylene over Modified HZSM-5 Zeolites

Authors: Jianwen Li, Hongfang Ma, Haitao Zhang, Qiwen Sun, Weiyong Ying

Abstract:

Catalytic cracking of butene to propylene was carried out in a continuous-flow fixed-bed reactor over HZSM-5 catalysts modified by nickel and phosphorus. The structure and acidity of catalysts were measured by N2 adsorption, NH3-TPD and XPS. The results revealed that surface area and strong acid sites both decreased with increasing phosphorus loadings. The increment of phosphorus loadings reduced the butene conversion but enhanced the propylene selectivity and catalyst stability.

Keywords: butene, catalytic cracking, HZSM-5, modification

Procedia PDF Downloads 395
1837 Case Study on Innovative Aquatic-Based Bioeconomy for Chlorella sorokiniana

Authors: Iryna Atamaniuk, Hannah Boysen, Nils Wieczorek, Natalia Politaeva, Iuliia Bazarnova, Kerstin Kuchta

Abstract:

Over the last decade due to climate change and a strategy of natural resources preservation, the interest for the aquatic biomass has dramatically increased. Along with mitigation of the environmental pressure and connection of waste streams (including CO2 and heat emissions), microalgae bioeconomy can supply food, feed, as well as the pharmaceutical and power industry with number of value-added products. Furthermore, in comparison to conventional biomass, microalgae can be cultivated in wide range of conditions without compromising food and feed production, thus addressing issues associated with negative social and the environmental impacts. This paper presents the state-of-the art technology for microalgae bioeconomy from cultivation process to production of valuable components and by-streams. Microalgae Chlorella sorokiniana were cultivated in the pilot-scale innovation concept in Hamburg (Germany) using different systems such as race way pond (5000 L) and flat panel reactors (8 x 180 L). In order to achieve the optimum growth conditions along with suitable cellular composition for the further extraction of the value-added components, process parameters such as light intensity, temperature and pH are continuously being monitored. On the other hand, metabolic needs in nutrients were provided by addition of micro- and macro-nutrients into a medium to ensure autotrophic growth conditions of microalgae. The cultivation was further followed by downstream process and extraction of lipids, proteins and saccharides. Lipids extraction is conducted in repeated-batch semi-automatic mode using hot extraction method according to Randall. As solvents hexane and ethanol are used at different ratio of 9:1 and 1:9, respectively. Depending on cell disruption method along with solvents ratio, the total lipids content showed significant variations between 8.1% and 13.9 %. The highest percentage of extracted biomass was reached with a sample pretreated with microwave digestion using 90% of hexane and 10% of ethanol as solvents. Proteins content in microalgae was determined by two different methods, namely: Total Kejadahl Nitrogen (TKN), which further was converted to protein content, as well as Bradford method using Brilliant Blue G-250 dye. Obtained results, showed a good correlation between both methods with protein content being in the range of 39.8–47.1%. Characterization of neutral and acid saccharides from microalgae was conducted by phenol-sulfuric acid method at two wavelengths of 480 nm and 490 nm. The average concentration of neutral and acid saccharides under the optimal cultivation conditions was 19.5% and 26.1%, respectively. Subsequently, biomass residues are used as substrate for anaerobic digestion on the laboratory-scale. The methane concentration, which was measured on the daily bases, showed some variations for different samples after extraction steps but was in the range between 48% and 55%. CO2 which is formed during the fermentation process and after the combustion in the Combined Heat and Power unit can potentially be used within the cultivation process as a carbon source for the photoautotrophic synthesis of biomass.

Keywords: bioeconomy, lipids, microalgae, proteins, saccharides

Procedia PDF Downloads 245
1836 Process Evaluation for a Trienzymatic System

Authors: C. Müller, T. Ortmann, S. Scholl, H. J. Jördening

Abstract:

Multienzymatic catalysis can be used as an alternative to chemical synthesis or hydrolysis of polysaccharides for the production of high value oligosaccharides from cheap resources such as sucrose. However, development of multienzymatic processes is complex, especially with respect to suitable conditions for enzymes originating from different organisms. Furthermore, an optimal configuration of the catalysts in a reaction cascade has to be found. These challenges can be approached by design of experiments. The system investigated in this study is a trienzymatic catalyzed reaction which results in laminaribiose production from sucrose and comprises covalently immobilized sucrose phosphorylase (SP), glucose isomerase (GI) and laminaribiose phosphorylase (LP). Operational windows determined with design of experiments and kinetic data of the enzymes were used to optimize the enzyme ratio for maximum product formation and minimal production of byproducts. After adjustment of the enzyme activity ratio to 1: 1.74: 2.23 (SP: LP: GI), different process options were investigated in silico. The considered options included substrate dependency, the use of glucose as co-substrate and substitution of glucose isomerase by glucose addition. Modeling of batch operation in a stirred tank reactor led to yields of 44.4% whereas operation in a continuous stirred tank reactor resulted in product yields of 22.5%. The maximum yield in a bienzymatic system comprised of sucrose phosphorylase and laminaribiose phosphorylase was 67.7% with sucrose and different amounts of glucose as substrate. The experimental data was in good compliance with the process model for batch operation. The continuous operation will be investigated in further studies. Simulation of operational process possibilities enabled us to compare various operational modes regarding different aspects such as cost efficiency, with the minimum amount of expensive and time-consuming practical experiments. This gives us more flexibility in process implementation and allows us, for example, to change the production goal from laminaribiose to higher oligosaccharides.

Keywords: design of experiments, enzyme kinetics, multi-enzymatic system, in silico process development

Procedia PDF Downloads 338
1835 Investigation of Different Surface Oxidation Methods on Pyrolytic Carbon

Authors: Lucija Pustahija, Christine Bandl, Wolfgang Kern, Christian Mitterer

Abstract:

Concerning today´s ecological demands, producing reliable materials from sustainable resources is a continuously developing topic. Such an example is the production of carbon materials via pyrolysis of natural gases or biomass. The amazing properties of pyrolytic carbon are utilized in various fields, where in particular the application in building industry is a promising way towards the utilization of pyrolytic carbon and composites based on pyrolytic carbon. For many applications, surface modification of carbon is an important step in tailoring its properties. Therefore, in this paper, an investigation of different oxidation methods was performed to prepare the carbon surface before functionalizing it with organosilanes, which act as coupling agents for epoxy and polyurethane resins. Made in such a way, a building material based on carbon composites could be used as a lightweight, durable material that can be applied where water or air filtration / purification is needed. In this work, both wet and dry oxidation were investigated. Wet oxidation was first performed in solutions of nitric acid (at 120 °C and 150 °C) followed by oxidation in hydrogen peroxide (80 °C) for 3 and 6 h. Moreover, a hydrothermal method (under oxygen gas) in autoclaves was investigated. Dry oxidation was performed under plasma and corona discharges, using different power values to elaborate optimum conditions. Selected samples were then (in preliminary experiments) subjected to a silanization of the surface with amino and glycidoxy organosilanes. The functionalized surfaces were examined by X-ray photon spectroscopy and Fourier transform infrared spectroscopy spectroscopy, and by scanning electron microscopy. The results of wet and dry oxidation methods indicated that the creation of functionalities was influenced by temperature, the concentration of the reagents (and gases) and the duration of the treatment. Sequential oxidation in aq. HNO₃ and H₂O₂ results in a higher content of oxygen functionalities at lower concentrations of oxidizing agents, when compared to oxidizing the carbon with concentrated nitric acid. Plasma oxidation results in non-permanent functionalization on the carbon surface, by which it´s necessary to find adequate parameters of oxidation treatments that could enable longer stability of functionalities. Results of the functionalization of the carbon surfaces with organosilanes will be presented as well.

Keywords: building materials, dry oxidation, organosilanes, pyrolytic carbon, resins, surface functionalization, wet oxidation

Procedia PDF Downloads 100
1834 Characterization and Optimization of Culture Conditions for Sulphur Oxidizing Bacteria after Isolation from Rhizospheric Mustard Soil, Decomposing Sites and Pit House

Authors: Suman Chaudhary, Rinku Dhanker, Tanvi, Sneh Goyal

Abstract:

Sulphur oxidizing bacteria (SOB) have marked their significant role in perspectives of maintaining healthy environment as researchers from all over the world tested and apply these in waste water treatment plants, bioleaching of heavy metals, deterioration of bridge structures, concrete and for bioremediation purposes, etc. Also, these SOB are well adapted in all kinds of environment ranging from normal soil, water habitats to extreme natural sources like geothermal areas, volcanic eruptions, black shale and acid rock drainage (ARD). SOB have been isolated from low pH environment of anthropogenic origin like acid mine drainage (AMD) and bioleaching heaps, hence these can work efficiently in different environmental conditions. Besides having many applications in field of environment science, they may be proven to be very beneficial in area of agriculture as sulphur is the fourth major macronutrients required for the growth of plants. More amount of sulphur is needed by pulses and oilseed crops with respect to the cereal grains. Due to continuous use of land for overproduction of more demanding sulphur utilizing crops and without application of sulphur fertilizers, its concentration is decreasing day by day, and thus, sulphur deficiency is becoming a great problem as it affects the crop productivity and quality. Sulphur is generally found in soils in many forms which are unavailable for plants (cannot be use by plants) like elemental sulphur, thiosulphate which can be taken up by bacteria and converted into simpler forms usable by plants by undergoing a series of transformations. So, keeping the importance of sulphur in view for various soil types, oilseed crops and role of microorganisms in making them available to plants, we made an effort to isolate, optimize, and characterize SOB. Three potential strains of bacteria were isolated, namely SSF7, SSA21, and SSS6, showing sulphate production of concentration, i.e. 2.268, 3.102, and 2.785 mM, respectively. Also, these were optimized for various culture conditions like carbon, nitrogen source, pH, temperature, and incubation time, and characterization was also done.

Keywords: sulphur oxidizing bacteria, isolation, optimization, characterization, sulphate production

Procedia PDF Downloads 337
1833 Modelling of Recovery and Application of Low-Grade Thermal Resources in the Mining and Mineral Processing Industry

Authors: S. McLean, J. A. Scott

Abstract:

The research topic is focusing on improving sustainable operation through recovery and reuse of waste heat in process water streams, an area in the mining industry that is often overlooked. There are significant advantages to the application of this topic, including economic and environmental benefits. The smelting process in the mining industry presents an opportunity to recover waste heat and apply it to alternative uses, thereby enhancing the overall process. This applied research has been conducted at the Sudbury Integrated Nickel Operations smelter site, in particular on the water cooling towers. The aim was to determine and optimize methods for appropriate recovery and subsequent upgrading of thermally low-grade heat lost from the water cooling towers in a manner that makes it useful for repurposing in applications, such as within an acid plant. This would be valuable to mining companies as it would be an opportunity to reduce the cost of the process, as well as decrease environmental impact and primary fuel usage. The waste heat from the cooling towers needs to be upgraded before it can be beneficially applied, as lower temperatures result in a decrease of the number of potential applications. Temperature and flow rate data were collected from the water cooling towers at an acid plant over two years. The research includes process control strategies and the development of a model capable of determining if the proposed heat recovery technique is economically viable, as well as assessing any environmental impact with the reduction in net energy consumption by the process. Therefore, comprehensive cost and impact analyses are carried out to determine the best area of application for the recovered waste heat. This method will allow engineers to easily identify the value of thermal resources available to them and determine if a full feasibility study should be carried out. The rapid scoping model developed will be applicable to any site that generates large amounts of waste heat. Results show that heat pumps are an economically viable solution for this application, allowing for reduced cost and CO₂ emissions.

Keywords: environment, heat recovery, mining engineering, sustainability

Procedia PDF Downloads 111
1832 Influence of Sodium Acetate on Electroless Ni-P Deposits and Effect of Heat Treatment on Corrosion Behavior

Authors: Y. El Kaissi, M. Allam, A. Koulou, M. Galai, M. Ebn Touhami

Abstract:

The aim of our work is to develop an industrial bath of nickel alloy deposit on mild steel. The optimization of the operating parameters made it possible to obtain a stable Ni-P alloy deposition formulation. To understand the reaction mechanism of the deposition process, a kinetic study was performed by cyclic voltammetry and by electrochemical impedance spectroscopy (EIS). The coatings obtained have a very high corrosion resistance in a very aggressive acid medium which increases with the heat treatment.

Keywords: cyclic voltammetry, EIS, electroless Ni–P coating, heat treatment, potentiodynamic polarization

Procedia PDF Downloads 302
1831 Zinc Oxide Nanoparticle-Doped Poly (8-Anilino-1-Napthalene Sulphonic Acid/Nat Nanobiosensors for TB Drugs

Authors: Rachel Fanelwa Ajayi, Anovuyo Jonnas, Emmanuel I. Iwuoha

Abstract:

Tuberculosis (TB) is an infectious disease caused by the bacterium (Mycobacterium tuberculosis) which has a predilection for lung tissue due to its rich oxygen supply. The mycobacterial cell has a unique innate characteristic which allows it to resist human immune systems and drug treatments; hence, it is one of the most difficult of all bacterial infections to treat, let alone to cure. At the same time, multi-drug resistance TB (MDR-TB) caused by poorly managed TB treatment, is a growing problem and requires the administration of expensive and less effective second line drugs which take much longer treatment duration than fist line drugs. Therefore, to acknowledge the issues of patients falling ill as a result of inappropriate dosing of treatment and inadequate treatment administration, a device with a fast response time coupled with enhanced performance and increased sensitivity is essential. This study involved the synthesis of electroactive platforms for application in the development of nano-biosensors suitable for the appropriate dosing of clinically diagnosed patients by promptly quantifying the levels of the TB drug; Isonaizid. These nano-biosensors systems were developed on gold surfaces using the enzyme N-acetyletransferase 2 coupled to the cysteamine modified poly(8-anilino-1-napthalene sulphonic acid)/zinc oxide nanocomposites. The morphology of ZnO nanoparticles, PANSA/ZnO nano-composite and nano-biosensors platforms were characterized using High-Resolution Transmission Electron Microscopy (HRTEM) and High-Resolution Scanning Electron Microscopy (HRSEM). On the other hand, the elemental composition of the developed nanocomposites and nano-biosensors were studied using Fourier Transform Infra-Red Spectroscopy (FTIR) and Energy Dispersive X-Ray (EDX). The electrochemical studies showed an increase in electron conductivity for the PANSA/ZnO nanocomposite which was an indication that it was suitable as a platform towards biosensor development.

Keywords: N-acetyletransferase 2, isonaizid, tuberculosis, zinc oxide

Procedia PDF Downloads 373
1830 Synthesis and Characterization of Sulfonated Aromatic Hydrocarbon Polymers Containing Trifluoromethylphenyl Side Chain for Proton Exchange Membrane Fuel Cell

Authors: Yi-Chiang Huang, Hsu-Feng Lee, Yu-Chao Tseng, Wen-Yao Huang

Abstract:

Proton exchange membranes as a key component in fuel cells have been widely studying over the past few decades. As proton exchange, membranes should have some main characteristics, such as good mechanical properties, low oxidative stability and high proton conductivity. In this work, trifluoromethyl groups had been introduced on polymer backbone and phenyl side chain which can provide densely located sulfonic acid group substitution and also promotes solubility, thermal and oxidative stability. Herein, a series of novel sulfonated aromatic hydrocarbon polyelectrolytes was synthesized by polycondensation of 4,4''''-difluoro-3,3''''- bis(trifluoromethyl)-2'',3''-bis(3-(trifluoromethyl)phenyl)-1,1':4',1'':4'',1''':4''',1''''-quinquephenyl with 2'',3''',5'',6''-tetraphenyl-[1,1':4',1'': 4'',1''':4''',1''''-quinquephenyl]-4,4''''-diol and post-sulfonated was through chlorosulfonic acid to given sulfonated polymers (SFC3-X) possessing ion exchange capacities ranging from 1.93, 1.91 and 2.53 mmol/g. ¹H NMR and FT-IR spectroscopy were applied to confirm the structure and composition of sulfonated polymers. The membranes exhibited considerably dimension stability (10-27.8% in length change; 24-56.5% in thickness change) and excellent oxidative stability (weight remain higher than 97%). The mechanical properties of membranes demonstrated good tensile strength on account of the high rigidity multi-phenylated backbone. Young's modulus were ranged 0.65-0.77GPa which is much larger than that of Nafion 211 (0.10GPa). Proton conductivities of membranes ranged from 130 to 240 mS/cm at 80 °C under fully humidified which were comparable or higher than that of Nafion 211 (150 mS/cm). The morphology of membranes was investigated by transmission electron microscopy which demonstrated a clear hydrophilic/hydrophobic phase separation with spherical ionic clusters in the size range of 5-20 nm. The SFC3-1.97 single fuel cell performance demonstrates the maximum power density at 1.08W/cm², and Nafion 211 was 1.24W/cm² as a reference in this work. The result indicated that SFC3-X are good candidates for proton exchange membranes in fuel cell applications. Fuel cell of other membranes is under testing.

Keywords: fuel cells, polyelectrolyte, proton exchange membrane, sulfonated polymers

Procedia PDF Downloads 453
1829 One-Step Synthesis and Characterization of Biodegradable ‘Click-Able’ Polyester Polymer for Biomedical Applications

Authors: Wadha Alqahtani

Abstract:

In recent times, polymers have seen a great surge in interest in the field of medicine, particularly chemotherapeutics. One recent innovation is the conversion of polymeric materials into “polymeric nanoparticles”. These nanoparticles can be designed and modified to encapsulate and transport drugs selectively to cancer cells, minimizing collateral damage to surrounding healthy tissues, and improve patient quality of life. In this study, we have synthesized pseudo-branched polyester polymers from bio-based small molecules, including sorbitol, glutaric acid and a propargylic acid derivative to further modify the polymer to make it “click-able" with an azide-modified target ligand. Melt polymerization technique was used for this polymerization reaction, using lipase enzyme catalyst NOVO 435. This reaction was conducted between 90- 95 °C for 72 hours. The polymer samples were collected in 24-hour increments for characterization and to monitor reaction progress. The resulting polymer was purified with the help of methanol dissolving and filtering with filter paper then characterized via NMR, GPC, FTIR, DSC, TGA and MALDI-TOF. Following characterization, these polymers were converted to a polymeric nanoparticle drug delivery system using solvent diffusion method, wherein DiI optical dye and chemotherapeutic drug Taxol can be encapsulated simultaneously. The efficacy of the nanoparticle’s apoptotic effects were analyzed in-vitro by incubation with prostate cancer (LNCaP) and healthy (CHO) cells. MTT assays and fluorescence microscopy were used to assess the cellular uptake and viability of the cells after 24 hours at 37 °C and 5% CO2 atmosphere. Results of the assays and fluorescence imaging confirmed that the nanoparticles were successful in both selectively targeting and inducing apoptosis in 80% of the LNCaP cells within 24 hours without affecting the viability of the CHO cells. These results show the potential of using biodegradable polymers as a vehicle for receptor-specific drug delivery and a potential alternative for traditional systemic chemotherapy. Detailed experimental results will be discussed in the e-poster.

Keywords: chemotherapeutic drug, click chemistry, nanoparticle, prostat cancer

Procedia PDF Downloads 115
1828 Efficiently Degradation of Perfluorooctanoic Acid, an Emerging Contaminant, by a Hybrid Process of Membrane Distillation Process and Electro-Fenton

Authors: Afrouz Yousefi, Mohtada Sadrzadeh

Abstract:

The widespread presence of poly- and perfluoroalkyl substances (PFAS) poses a significant concern due to their ability to accumulate in living organisms and their persistence in the environment, thanks to their robust carbon-fluorine (C-F) bonds, which require substantial energy to break (485 kJ/mol). The prevalence of toxic PFAS compounds can be highly detrimental to ecosystems, wildlife, and human health. Ongoing efforts are dedicated to investigating methods for fully breaking down and eliminating PFAS from the environment. Among the various techniques employed, advanced oxidation processes have shown promise in completely breaking down emerging contaminants in wastewater. However, the drawback lies in the relatively slow reaction rates of these processes and the substantial energy input required, which currently impedes their widespread commercial adoption. We developed a hybrid process, comprising electro-Fenton as an advanced oxidation process and membrane distillation, to simultaneously degrade organic PFAS pollutants and extract pure water from the mixture. In this study, environmentally persistent perfluorooctanoic acid (PFOA), as an emerging contaminant, was used to study the effectiveness of the electro-Fenton/membrane distillation hybrid system. The PFOA degradation studies were conducted in two modes: electro-Fenton and electro-Fenton coupled with membrane distillation. High-performance liquid chromatography with ultraviolet detection (HPLC-UV), ion-chromatography (measuring fluoride ion concentration), total organic carbon (TOC) decay, mineralization current efficiency (MCE), and specific energy consumption (SEC) were evaluated for a single EF and hybrid EF-MD processes. In contrast to a single EF reaction, TOC decay improved significantly in the EF-MD process. Overall, the MCE of hybrid processes surpassed 100% while it remained under 50% for a single EF reaction. Calculations of specific energy consumption (SEC) demonstrated a substantial decrease of nearly one-third in energy usage when integrating the EF reaction with the MD process.

Keywords: water treatment, PFAS, membrane distillation, electro-Fenton, advanced oxidation

Procedia PDF Downloads 63
1827 Study on Preparation and Storage of Composite Vegetable Squash of Tomato, Pumpkin and Ginger

Authors: K. Premakumar, R. G. Lakmali, S. M. A. C. U. Senarathna

Abstract:

In the present world, production and consumption of fruit and vegetable beverages have increased owing to the healthy life style of the people. Therefore, a study was conducted to develop composite vegetable squash by incorporating nutritional, medicinal and organoleptic properties of tomato, pumpkin and ginger. Considering the finding of several preliminary studies, five formulations in different combinations tomato pumpkin were taken and their physico-chemical parameters such as pH, TSS, titrable acidity, ascorbic acid content and total sugar and organoleptic parameters such as colour, aroma, taste, nature, overall acceptability were analyzed. Then the best sample was improved by using 1 % ginger (50% tomato+ 50% pumpkin+ 1% ginger). Best three formulations were selected for storage studied. The formulations were stored at 30 °C room temperature and 70-75% of RH for 12 weeks. Physicochemical parameters , organoleptic and microbial activity (total plate count, yeast and mold, E-coil) were analyzed during storage periods and protein content, fat content, ash were also analysed%.The study on the comparison of physico-chemical and sensory qualities of stored Squashes was done up to 12 weeks storage periods. The nutritional analysis of freshly prepared tomato pumpkin vegetable squash formulations showed increasing trend in titratable acidity, pH, total sugar, non -reducing sugar, total soluble solids and decreasing trend in ascorbic acid and reducing sugar with storage periods. The results of chemical analysis showed that, there were the significant different difference (p < 0.05) between tested formulations. Also, sensory analysis also showed that there were significant differences (p < 0.05) for organoleptic character characters between squash formulations. The highest overall acceptability was observed in formulation with 50% tomato+ 50% pumpkin+1% ginger and all the all the formulations were microbiologically safe for consumption. Based on the result of physico-chemical characteristics, sensory attributes and microbial test, the Composite Vegetable squash with 50% tomato+50% pumpkin+1% ginger was selected as best formulation and could be stored for 12 weeks without any significant changes in quality characteristics.

Keywords: nutritional analysis, formulations, sensory attributes, squash

Procedia PDF Downloads 199