Search results for: structural equation model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20751

Search results for: structural equation model

4131 Shear Behavior of Ultra High Strength Concrete Beams

Authors: Ghada Diaa, Enas A. Khattab

Abstract:

Ultra High Strength Concrete (UHSC) is a new advanced concrete that is being transferred from laboratory researches to practicable applications. In addition to its excellent durability properties, UHSC has high compressive and tensile strengths, and high modulus of elasticity. Despite of this low degree of hydration, ultra high strength values can be achieved by controlling the mixture proportions. In this research, an experimental program was carried out to investigate the shear behavior of ultra high strength concrete beams. A total of nine beams were tested to determine the effect of different parameters on the shear behavior of UHSC beams. The parameters include concrete strength, steel fiber volume, shear span to depth ratio, and web reinforcement ratio. The results demonstrated that nominal shear stress at cracking load and at ultimate load increased with the increase of concrete strength or the decrease in shear span-depth ratio. Using steel fibers or shear reinforcement increases the ultimate shear strength and makes the shear behavior more ductile. In this study, a simplified analytical model to calculate the shear strength of UHSC beams is introduced. Shear strength estimated according to the proposed method in this research is in good agreement with the experimental results.

Keywords: ultra high strength, shear strength, diagonal, cracking, steel fibers

Procedia PDF Downloads 619
4130 Predictive Analytics of Student Performance Determinants

Authors: Mahtab Davari, Charles Edward Okon, Somayeh Aghanavesi

Abstract:

Every institute of learning is usually interested in the performance of enrolled students. The level of these performances determines the approach an institute of study may adopt in rendering academic services. The focus of this paper is to evaluate students' academic performance in given courses of study using machine learning methods. This study evaluated various supervised machine learning classification algorithms such as Logistic Regression (LR), Support Vector Machine, Random Forest, Decision Tree, K-Nearest Neighbors, Linear Discriminant Analysis, and Quadratic Discriminant Analysis, using selected features to predict study performance. The accuracy, precision, recall, and F1 score obtained from a 5-Fold Cross-Validation were used to determine the best classification algorithm to predict students’ performances. SVM (using a linear kernel), LDA, and LR were identified as the best-performing machine learning methods. Also, using the LR model, this study identified students' educational habits such as reading and paying attention in class as strong determinants for a student to have an above-average performance. Other important features include the academic history of the student and work. Demographic factors such as age, gender, high school graduation, etc., had no significant effect on a student's performance.

Keywords: student performance, supervised machine learning, classification, cross-validation, prediction

Procedia PDF Downloads 126
4129 Optimisation of a Dragonfly-Inspired Flapping Wing-Actuation System

Authors: Jia-Ming Kok, Javaan Chahl

Abstract:

An optimisation method using both global and local optimisation is implemented to determine the flapping profile which will produce the most lift for an experimental wing-actuation system. The optimisation method is tested using a numerical quasi-steady analysis. Results of an optimised flapping profile show a 20% increase in lift generated as compared to flapping profiles obtained by high speed cinematography of a Sympetrum frequens dragonfly. Initial optimisation procedures showed 3166 objective function evaluations. The global optimisation parameters - initial sample size and stage one sample size, were altered to reduce the number of function evaluations. Altering the stage one sample size had no significant effect. It was found that reducing the initial sample size to 400 would allow a reduction in computational effort to approximately 1500 function evaluations without compromising the global solvers ability to locate potential minima. To further reduce the optimisation effort required, we increase the local solver’s convergence tolerance criterion. An increase in the tolerance from 0.02N to 0.05N decreased the number of function evaluations by another 20%. However, this potentially reduces the maximum obtainable lift by up to 0.025N.

Keywords: flapping wing, optimisation, quasi-steady model, dragonfly

Procedia PDF Downloads 357
4128 Developing Digital Twins of Steel Hull Processes

Authors: V. Ložar, N. Hadžić, T. Opetuk, R. Keser

Abstract:

The development of digital twins strongly depends on efficient algorithms and their capability to mirror real-life processes. Nowadays, such efforts are required to establish factories of the future faced with new demands of custom-made production. The ship hull processes face these challenges too. Therefore, it is important to implement design and evaluation approaches based on production system engineering. In this study, the recently developed finite state method is employed to describe the stell hull process as a platform for the implementation of digital twinning technology. The application is justified by comparing the finite state method with the analytical approach. This method is employed to rebuild a model of a real shipyard ship hull process using a combination of serial and splitting lines. The key performance indicators such as the production rate, work in process, probability of starvation, and blockade are calculated and compared to the corresponding results obtained through a simulation approach using the software tool Enterprise dynamics. This study confirms that the finite state method is a suitable tool for digital twinning applications. The conclusion highlights the advantages and disadvantages of methods employed in this context.

Keywords: digital twin, finite state method, production system engineering, shipyard

Procedia PDF Downloads 99
4127 Capacity Loss at Midblock Sections of Urban Arterials Due to Pedestrian Crossings

Authors: Ashish Dhamaniya, Satish Chandra

Abstract:

Pedestrian crossings at grade in India are very common and pedestrian cross the carriageway at undesignated locations where they found the path to access the residential and commercial areas. Present paper aims to determine capacity loss on 4-lane urban arterials due to such crossings. Base capacity which is defined as the capacity without any influencing factor is determined on 4-lane roads by collecting speed-flow data in the field. It is observed that base capacity is varying from 1636 pcu/hr/lane to 2043 pcu/hr/lane which is attributed to the different operating conditions at different sections. The variation in base capacity is related with the operating speed on the road sections. Free flow speed of standard car is measured in the field and 85th percentile of this speed is reported as operating speed. Capacity of the 4-lane road sections with different pedestrian cross-flow is also determined and compared with the capacity of base section. The difference in capacity values is reported as capacity loss due to the average number of pedestrian crossings in one hour. It has been observed that capacity of 4-lane road section reduces from 18 to 30 percent with pedestrian cross-flow of 800 to 1550 peds/hr. A model is proposed between capacity loss and pedestrian cross-flow from the observed data.

Keywords: capacity, free flow speed, pedestrian, urban arterial, transport

Procedia PDF Downloads 449
4126 Transportation Mode Classification Using GPS Coordinates and Recurrent Neural Networks

Authors: Taylor Kolody, Farkhund Iqbal, Rabia Batool, Benjamin Fung, Mohammed Hussaeni, Saiqa Aleem

Abstract:

The rising threat of climate change has led to an increase in public awareness and care about our collective and individual environmental impact. A key component of this impact is our use of cars and other polluting forms of transportation, but it is often difficult for an individual to know how severe this impact is. While there are applications that offer this feedback, they require manual entry of what transportation mode was used for a given trip, which can be burdensome. In order to alleviate this shortcoming, a data from the 2016 TRIPlab datasets has been used to train a variety of machine learning models to automatically recognize the mode of transportation. The accuracy of 89.6% is achieved using single deep neural network model with Gated Recurrent Unit (GRU) architecture applied directly to trip data points over 4 primary classes, namely walking, public transit, car, and bike. These results are comparable in accuracy to results achieved by others using ensemble methods and require far less computation when classifying new trips. The lack of trip context data, e.g., bus routes, bike paths, etc., and the need for only a single set of weights make this an appropriate methodology for applications hoping to reach a broad demographic and have responsive feedback.

Keywords: classification, gated recurrent unit, recurrent neural network, transportation

Procedia PDF Downloads 137
4125 A Method of Representing Knowledge of Toolkits in a Pervasive Toolroom Maintenance System

Authors: A. Mohamed Mydeen, Pallapa Venkataram

Abstract:

The learning process needs to be so pervasive to impart the quality in acquiring the knowledge about a subject by making use of the advancement in the field of information and communication systems. However, pervasive learning paradigms designed so far are system automation types and they lack in factual pervasive realm. Providing factual pervasive realm requires subtle ways of teaching and learning with system intelligence. Augmentation of intelligence with pervasive learning necessitates the most efficient way of representing knowledge for the system in order to give the right learning material to the learner. This paper presents a method of representing knowledge for Pervasive Toolroom Maintenance System (PTMS) in which a learner acquires sublime knowledge about the various kinds of tools kept in the toolroom and also helps for effective maintenance of the toolroom. First, we explicate the generic model of knowledge representation for PTMS. Second, we expound the knowledge representation for specific cases of toolkits in PTMS. We have also presented the conceptual view of knowledge representation using ontology for both generic and specific cases. Third, we have devised the relations for pervasive knowledge in PTMS. Finally, events are identified in PTMS which are then linked with pervasive data of toolkits based on relation formulated. The experimental environment and case studies show the accuracy and efficient knowledge representation of toolkits in PTMS.

Keywords: knowledge representation, pervasive computing, agent technology, ECA rules

Procedia PDF Downloads 338
4124 Family Homicide: A Comparison of Rural and Urban Communities in California

Authors: Bohsiu Wu

Abstract:

This study compares the differences in social dynamics between rural and urban areas in California to explain homicides involving family members. It is hypothesized that rural homicides are better explained by social isolation and lack of intervention resources, whereas urban homicides are attributed to social disadvantage factors. Several critical social dynamics including social isolation, social disadvantages, acculturation, and intervention resources were entered in a hierarchical linear model (HLM) to examine whether county-level factors affect how each specific dynamic performs at the ZIP code level, a proxy measure for communities. Homicide data are from the Supplementary Homicide Report for all 58 counties in California from 1997 to 1999. Predictors at both the county and ZIP code levels are derived from the 2000 US census. Preliminary results from a HLM analysis show that social isolation is a significant but moderate predictor to explain rural family homicide and various social disadvantage factors are significant factors accounting for urban family homicide. Acculturation has little impact. Rurality and urbanity appear to interact with various social dynamics in explaining family homicide. The implications for prevention at both the county and community level as well as directions for future study on the differences between rural and urban locales are explored in the paper.

Keywords: communities, family, HLM, homicide, rural, urban

Procedia PDF Downloads 326
4123 Brain Tumor Detection and Classification Using Pre-Trained Deep Learning Models

Authors: Aditya Karade, Sharada Falane, Dhananjay Deshmukh, Vijaykumar Mantri

Abstract:

Brain tumors pose a significant challenge in healthcare due to their complex nature and impact on patient outcomes. The application of deep learning (DL) algorithms in medical imaging have shown promise in accurate and efficient brain tumour detection. This paper explores the performance of various pre-trained DL models ResNet50, Xception, InceptionV3, EfficientNetB0, DenseNet121, NASNetMobile, VGG19, VGG16, and MobileNet on a brain tumour dataset sourced from Figshare. The dataset consists of MRI scans categorizing different types of brain tumours, including meningioma, pituitary, glioma, and no tumour. The study involves a comprehensive evaluation of these models’ accuracy and effectiveness in classifying brain tumour images. Data preprocessing, augmentation, and finetuning techniques are employed to optimize model performance. Among the evaluated deep learning models for brain tumour detection, ResNet50 emerges as the top performer with an accuracy of 98.86%. Following closely is Xception, exhibiting a strong accuracy of 97.33%. These models showcase robust capabilities in accurately classifying brain tumour images. On the other end of the spectrum, VGG16 trails with the lowest accuracy at 89.02%.

Keywords: brain tumour, MRI image, detecting and classifying tumour, pre-trained models, transfer learning, image segmentation, data augmentation

Procedia PDF Downloads 74
4122 Process Integration of Natural Gas Hydrate Production by CH₄-CO₂/H₂ Replacement Coupling Steam Methane Reforming

Authors: Mengying Wang, Xiaohui Wang, Chun Deng, Bei Liu, Changyu Sun, Guangjin Chen, Mahmoud El-Halwagi

Abstract:

Significant amounts of natural gas hydrates (NGHs) are considered potential new sustainable energy resources in the future. However, common used methods for methane gas recovery from hydrate sediments require high investment but with low gas production efficiency, and may cause potential environment and security problems. Therefore, there is a need for effective gas production from hydrates. The natural gas hydrate production method by CO₂/H₂ replacement coupling steam methane reforming can improve the replacement effect and reduce the cost of gas separation. This paper develops a simulation model of the gas production process integrated with steam reforming and membrane separation. The process parameters (i.e., reactor temperature, pressure, H₂O/CH₄ ratio) and the composition of CO₂ and H₂ in the feed gas are analyzed. Energy analysis is also conducted. Two design scenarios with different composition of CO₂ and H₂ in the feed gas are proposed and evaluated to assess the energy efficiency of the novel system. Results show that when the composition of CO₂ in the feed gas is between 43 % and 72 %, there is a certain composition that can meet the requirement that the flow rate of recycled gas is equal to that of feed gas, so as to ensure that the subsequent production process does not need to add feed gas or discharge recycled gas. The energy efficiency of the CO₂ in feed gas at 43 % and 72 % is greater than 1, and the energy efficiency is relatively higher when the CO₂ mole fraction in feed gas is 72 %.

Keywords: Gas production, hydrate, process integration, steam reforming

Procedia PDF Downloads 183
4121 Effect of Fluidized Granular Activated Carbon for the Mitigation of Membrane Fouling in Wastewater Treatment

Authors: Jingwei Wang, Anthony G. Fane, Jia Wei Chew

Abstract:

The use of fluidized Granular Activated Carbon (GAC) as a means of mitigation membrane fouling in membrane bioreactors (MBRs) has received much attention in recent years, especially in anaerobic fluidized bed membrane bioreactors (AFMBRs). It has been affirmed that the unsteady-state tangential shear conferred by GAC fluidization on membrane surface suppressed the extent of membrane fouling with energy consumption much lower than that of bubbling (i.e., air sparging). In a previous work, the hydrodynamics of the fluidized GAC particles were correlated with membrane fouling mitigation effectiveness. Results verified that the momentum transfer from particle to membrane held a key in fouling mitigation. The goal of the current work is to understand the effect of fluidized GAC on membrane critical flux. Membrane critical flux values were measured by a vertical Direct Observation Through the Membrane (DOTM) setup. The polystyrene particles (known as latex particles) with the particle size of 5 µm were used as model foulant thus to give the number of the foulant on the membrane surface. Our results shed light on the positive effect of fluidized GAC enhancing the critical membrane flux by an order-of-magnitude as compared to that of liquid shear alone. Membrane fouling mitigation was benefitted by the increasing of power input.

Keywords: membrane fouling mitigation, liquid-solid fluidization, critical flux, energy input

Procedia PDF Downloads 407
4120 TQM Framework Using Notable Authors Comparative

Authors: Redha M. Elhuni

Abstract:

This paper presents an analysis of the essential characteristics of the TQM philosophy by comparing the work of five notable authors in the field. A framework is produced which gather the identified TQM enablers under the well-known operations management dimensions of process, business and people. These enablers are linked with sustainable development via balance scorecard type economic and non-economic measures. In order to capture a picture of Libyan Company’s efforts to implement the TQM, a questionnaire survey is designed and implemented. Results of the survey are presented showing the main differentiating factors between the sample companies, and a way of assessing the difference between the theoretical underpinning and the practitioners’ undertakings. Survey results indicate that companies are experiencing much difficulty in translating TQM theory into practice. Only a few companies have successfully adopted a holistic approach to TQM philosophy, and most of these put relatively high emphasis on hard elements compared with soft issues of TQM. However, where companies can realize the economic outputs, non- economic benefits such as workflow management, skills development and team learning are not realized. In addition, overall, non-economic measures have secured low weightings compared with the economic measures. We believe that the framework presented in this paper can help a company to concentrate its TQM implementation efforts in terms of process, system and people management dimensions.

Keywords: TQM, balance scorecard, EFQM excellence model, oil sector, Libya

Procedia PDF Downloads 405
4119 A New Intelligent, Dynamic and Real Time Management System of Sewerage

Authors: R. Tlili Yaakoubi, H.Nakouri, O. Blanpain, S. Lallahem

Abstract:

The current tools for real time management of sewer systems are based on two software tools: the software of weather forecast and the software of hydraulic simulation. The use of the first ones is an important cause of imprecision and uncertainty, the use of the second requires temporal important steps of decision because of their need in times of calculation. This way of proceeding fact that the obtained results are generally different from those waited. The major idea of this project is to change the basic paradigm by approaching the problem by the "automatic" face rather than by that "hydrology". The objective is to make possible the realization of a large number of simulations at very short times (a few seconds) allowing to take place weather forecasts by using directly the real time meditative pluviometric data. The aim is to reach a system where the decision-making is realized from reliable data and where the correction of the error is permanent. A first model of control laws was realized and tested with different return-period rainfalls. The gains obtained in rejecting volume vary from 19 to 100 %. The development of a new algorithm was then used to optimize calculation time and thus to overcome the subsequent combinatorial problem in our first approach. Finally, this new algorithm was tested with 16- year-rainfall series. The obtained gains are 40 % of total volume rejected to the natural environment and of 65 % in the number of discharges.

Keywords: automation, optimization, paradigm, RTC

Procedia PDF Downloads 299
4118 Development of a Vacuum System for Orthopedic Drilling Processes and Determination of Optimal Processing Parameters for Temperature Control

Authors: Kadir Gök

Abstract:

In this study, a vacuum system was developed for orthopedic drilling processes, and the most efficient processing parameters were determined using statistical analysis of temperature rise. A reverse engineering technique was used to obtain a 3D model of the chip vacuum system, and the obtained point cloud data was transferred to Solidworks software in STL format. An experimental design method was performed by selecting different parameters and their levels, such as RPM, feed rate, and drill bit diameter, to determine the most efficient processing parameters in temperature rise using ANOVA. Additionally, the bone chip-vacuum device was developed and performed successfully to collect the whole chips and fragments in the bone drilling experimental tests, and the chip-collecting device was found to be useful in removing overheating from the drilling zone. The effects of processing parameters on the temperature levels during the chip-vacuuming were determined, and it was found that bone chips and fractures can be used as autograft and allograft for tissue engineering. Overall, this study provides significant insights into the development of a vacuum system for orthopedic drilling processes and the use of bone chips and fractures in tissue engineering applications.

Keywords: vacuum system, orthopedic drilling, temperature rise, bone chips

Procedia PDF Downloads 98
4117 Conceptualizing the Cyber Insecurity Risk in the Ethics of Automated Warfare

Authors: Otto Kakhidze, Hoda Alkhzaimi, Adam Ramey, Nasir Memon

Abstract:

This paper provides an alternative, cyber security based a conceptual framework for the ethics of automated warfare. The large body of work produced on fully or partially autonomous warfare systems tends to overlook malicious security factors as in the possibility of technical attacks on these systems when it comes to the moral and legal decision-making. The argument provides a risk-oriented justification to why technical malicious risks cannot be dismissed in legal, ethical and policy considerations when warfare models are being implemented and deployed. The assumptions of the paper are supported by providing a broader model that contains the perspective of technological vulnerabilities through the lenses of the Game Theory, Just War Theory as well as standard and non-standard defense ethics. The paper argues that a conventional risk-benefit analysis without considering ethical factors is insufficient for making legal and policy decisions on automated warfare. This approach will provide the substructure for security and defense experts as well as legal scholars, ethicists and decision theorists to work towards common justificatory grounds that will accommodate the technical security concerns that have been overlooked in the current legal and policy models.

Keywords: automated warfare, ethics of automation, inherent hijacking, security vulnerabilities, risk, uncertainty

Procedia PDF Downloads 357
4116 Smart Textiles Integration for Monitoring Real-time Air Pollution

Authors: Akshay Dirisala

Abstract:

Humans had developed a highly organized and efficient civilization to live in by improving the basic needs of humans like housing, transportation, and utilities. These developments have made a huge impact on major environmental factors. Air pollution is one prominent environmental factor that needs to be addressed to maintain a sustainable and healthier lifestyle. Textiles have always been at the forefront of helping humans shield from environmental conditions. With the growth in the field of electronic textiles, we now have the capability of monitoring the atmosphere in real time to understand and analyze the environment that a particular person is mostly spending their time at. Integrating textiles with the particulate matter sensors that measure air quality and pollutants that have a direct impact on human health will help to understand what type of air we are breathing. This research idea aims to develop a textile product and a process of collecting the pollutants through particulate matter sensors, which are equipped inside a smart textile product and store the data to develop a machine learning model to analyze the health conditions of the person wearing the garment and periodically notifying them not only will help to be cautious of airborne diseases but will help to regulate the diseases and could also help to take care of skin conditions.

Keywords: air pollution, e-textiles, particulate matter sensors, environment, machine learning models

Procedia PDF Downloads 114
4115 A Data Driven Approach for the Degradation of a Lithium-Ion Battery Based on Accelerated Life Test

Authors: Alyaa M. Younes, Nermine Harraz, Mohammad H. Elwany

Abstract:

Lithium ion batteries are currently used for many applications including satellites, electric vehicles and mobile electronics. Their ability to store relatively large amount of energy in a limited space make them most appropriate for critical applications. Evaluation of the life of these batteries and their reliability becomes crucial to the systems they support. Reliability of Li-Ion batteries has been mainly considered based on its lifetime. However, another important factor that can be considered critical in many applications such as in electric vehicles is the cycle duration. The present work presents the results of an experimental investigation on the degradation behavior of a Laptop Li-ion battery (type TKV2V) and the effect of applied load on the battery cycle time. The reliability was evaluated using an accelerated life test. Least squares linear regression with median rank estimation was used to estimate the Weibull distribution parameters needed for the reliability functions estimation. The probability density function, failure rate and reliability function under each of the applied loads were evaluated and compared. An inverse power model is introduced that can predict cycle time at any stress level given.

Keywords: accelerated life test, inverse power law, lithium-ion battery, reliability evaluation, Weibull distribution

Procedia PDF Downloads 168
4114 MhAGCN: Multi-Head Attention Graph Convolutional Network for Web Services Classification

Authors: Bing Li, Zhi Li, Yilong Yang

Abstract:

Web classification can promote the quality of service discovery and management in the service repository. It is widely used to locate developers desired services. Although traditional classification methods based on supervised learning models can achieve classification tasks, developers need to manually mark web services, and the quality of these tags may not be enough to establish an accurate classifier for service classification. With the doubling of the number of web services, the manual tagging method has become unrealistic. In recent years, the attention mechanism has made remarkable progress in the field of deep learning, and its huge potential has been fully demonstrated in various fields. This paper designs a multi-head attention graph convolutional network (MHAGCN) service classification method, which can assign different weights to the neighborhood nodes without complicated matrix operations or relying on understanding the entire graph structure. The framework combines the advantages of the attention mechanism and graph convolutional neural network. It can classify web services through automatic feature extraction. The comprehensive experimental results on a real dataset not only show the superior performance of the proposed model over the existing models but also demonstrate its potentially good interpretability for graph analysis.

Keywords: attention mechanism, graph convolutional network, interpretability, service classification, service discovery

Procedia PDF Downloads 136
4113 Challenges and Opportunities for Implementing Integrated Project Delivery Method in Public Sector Construction

Authors: Ahsan Ahmed, Ming Lu, Syed Zaidi, Farhan Khan

Abstract:

The Integrated Project Delivery (IPD) method has been proposed as the solution to tackle complexity and fragmentation in the real world while addressing the construction industry’s growing needs for productivity and sustainability. Although the private sector has taken the initiative in implementing IPD and taken advantage of new technology such as building information modeling (BIM) in delivering projects, IPD remains less known and rarely used in public sector construction. The focus of this paper is set on the use of IPD in projects in public sector, which is potentially complemented by the use of analytical functionalities for workface planning and construction oriented design enabled by recent research advances in BIM. Experiences and lessons learned from implementing IPD in the private sector and in BIM-based construction automation research would play a vital role in reducing barriers and eliminating issues in connection with project delivery in the public sector. The paper elaborates issues challenges, contractual relationships and the interactions throughout the planning, design and construction phases in the context of implementing IPD on construction projects in the public sector. A slab construction case is used as a ‘sandbox’ model to elaborate (1) the ideal way of communication, integration, and collaboration among all the parties involved in project delivery in planning and (2) the execution of projects by using IDP principles and optimization, simulation analyses.

Keywords: integrated project delivery, IPD, building information modeling, BIM

Procedia PDF Downloads 202
4112 Finite Difference Based Probabilistic Analysis to Evaluate the Impact of Correlation Length on Long-Term Settlement of Soft Soils

Authors: Mehrnaz Alibeikloo, Hadi Khabbaz, Behzad Fatahi

Abstract:

Probabilistic analysis has become one of the most popular methods to quantify and manage geotechnical risks due to the spatial variability of soil input parameters. The correlation length is one of the key factors of quantifying spatial variability of soil parameters which is defined as a distance within which the random variables are correlated strongly. This paper aims to assess the impact of correlation length on the long-term settlement of soft soils improved with preloading. The concept of 'worst-case' spatial correlation length was evaluated by determining the probability of failure of a real case study of Vasby test fill. For this purpose, a finite difference code was developed based on axisymmetric consolidation equations incorporating the non-linear elastic visco-plastic model and the Karhunen-Loeve expansion method. The results show that correlation length has a significant impact on the post-construction settlement of soft soils in a way that by increasing correlation length, probability of failure increases and the approach to asymptote.

Keywords: Karhunen-Loeve expansion, probability of failure, soft soil settlement, 'worst case' spatial correlation length

Procedia PDF Downloads 168
4111 Developing Critical-Process Skills Integrated Assessment Instrument as Alternative Assessment on Electrolyte Solution Matter in Senior High School

Authors: Sri Rejeki Dwi Astuti, Suyanta

Abstract:

The demanding of the asessment in learning process was impact by policy changes. Nowadays, the assessment not only emphasizes knowledge, but also skills and attitude. However, in reality there are many obstacles in measuring them. This paper aimed to describe how to develop instrument of integrated assessment as alternative assessment to measure critical thinking skills and science process skills in electrolyte solution and to describe instrument’s characteristic such as logic validity and construct validity. This instrument development used test development model by McIntire. Development process data was acquired based on development test step and was analyzed by qualitative analysis. Initial product was observed by three peer reviewer and six expert judgment (two subject matter expert, two evaluation expert and two chemistry teacher) to acquire logic validity test. Logic validity test was analyzed using Aiken’s formula. The estimation of construct validity was analyzed by exploratory factor analysis. Result showed that integrated assessment instrument has 0,90 of Aiken’s Value and all item in integrated assessment asserted valid according to construct validity.

Keywords: construct validity, critical thinking skills, integrated assessment instrument, logic validity, science process skills

Procedia PDF Downloads 263
4110 Pilot Induced Oscillations Adaptive Suppression in Fly-By-Wire Systems

Authors: Herlandson C. Moura, Jorge H. Bidinotto, Eduardo M. Belo

Abstract:

The present work proposes the development of an adaptive control system which enables the suppression of Pilot Induced Oscillations (PIO) in Digital Fly-By-Wire (DFBW) aircrafts. The proposed system consists of a Modified Model Reference Adaptive Control (M-MRAC) integrated with the Gain Scheduling technique. The PIO oscillations are detected using a Real Time Oscillation Verifier (ROVER) algorithm, which then enables the system to switch between two reference models; one in PIO condition, with low proneness to the phenomenon and another one in normal condition, with high (or medium) proneness. The reference models are defined in a closed loop condition using the Linear Quadratic Regulator (LQR) control methodology for Multiple-Input-Multiple-Output (MIMO) systems. The implemented algorithms are simulated in software implementations with state space models and commercial flight simulators as the controlled elements and with pilot dynamics models. A sequence of pitch angles is considered as the reference signal, named as Synthetic Task (Syntask), which must be tracked by the pilot models. The initial outcomes show that the proposed system can detect and suppress (or mitigate) the PIO oscillations in real time before it reaches high amplitudes.

Keywords: adaptive control, digital Fly-By-Wire, oscillations suppression, PIO

Procedia PDF Downloads 134
4109 Optimization of Double-Layered Microchannel Heat Sinks

Authors: Tu-Chieh Hung, Wei-Mon Yan, Xiao-Dong Wang, Yu-Xian Huang

Abstract:

This work employs a combined optimization procedure including a simplified conjugate-gradient method and a three-dimensional fluid flow and heat transfer model to study the optimal geometric parameter design of double-layered microchannel heat sinks. The overall thermal resistance RT is the objective function to be minimized with number of channels, N, the channel width ratio, β, the bottom channel aspect ratio, αb, and upper channel aspect ratio, αu, as the search variables. It is shown that, for the given bottom area (10 mm×10 mm) and heat flux (100 W cm-2), the optimal (minimum) thermal resistance of double-layered microchannel heat sinks is about RT=0.12 ℃/m2W with the corresponding optimal geometric parameters N=73, β=0.50, αb=3.52, and, αu= 7.21 under a constant pumping power of 0.05 W. The optimization process produces a maximum reduction by 52.8% in the overall thermal resistance compared with an initial guess (N=112, β=0.37, αb=10.32 and, αu=10.93). The results also show that the optimal thermal resistance decreases rapidly with the pumping power and tends to be a saturated value afterward. The corresponding optimal values of parameters N, αb, and αu increase while that of β decrease as the pumping power increases. However, further increasing pumping power is not always cost-effective for the application of heat sink designs.

Keywords: optimization, double-layered microchannel heat sink, simplified conjugate-gradient method, thermal resistance

Procedia PDF Downloads 490
4108 Effect of Acute Dose of Mobile Phone Radiation on Life Cycle ‎of the Mosquito, Culex univittatus

Authors: Fatma H. Galal, Alaaeddeen M. Seufi

Abstract:

Due to the increasing usage of mobile phone, experiments were designed to investigate ‎the effect of acute dose exposure on the mosquito life cycle. 50 tubes (5 ml size) ‎containing 3 ml water and a first instar larva of the mosquito, Culex univittatus were put ‎between two mobile cell phones switched on talking mode for 4 continuous hours. A ‎control group of tubes (unexposed to radiation) were used. Larval and pupal durations ‎were calculated. Furthermore, adult emergence and sex ratio were observed for both ‎treated and control larvae. Results indicated that the employed dose of radiation reduced ‎total larval duration to about half the value of control. 1st, 2nd, 3rd and 4th larval ‎durations were reduced significantly by mobile radiation when compared to controls. ‎Meanwhile pupal duration was elongated significantly by mobile radiation when ‎compared to control. Sex ratio was significantly shifted in favor of females in the case of ‎radiated mosquitoes. Successful adult emergence was decreased significantly in the case ‎of radiated insects when compared to controls. Molecular studies to investigate the ‎effects of mobile radiation on insects and other model organisms are going on.‎

Keywords: mosquito, mobilr radiation, larval and pupal durations, sex ratio

Procedia PDF Downloads 185
4107 Assessment of the Frontline Services of the National Museum of the Philippines: Basis for an Improved Client-Oriented Service Package

Authors: Geneva Oaferina

Abstract:

The Philippines is striving to deliver professional and improved public services. The country is committed to making more effective use of its resources to fulfill its sectoral and development goals. Within the heritage field, the museum needs to have a strong focus on seeking excellence in its services to its many publics. The National Museum of the Philippines is mandated as an educational, scientific, and cultural institution. It is important that the museum is more accessible, understandable, and relevant to the public, and at the same time, it provides a quality experience for an improved client-oriented service package. This study assessed the service delivery of the National Museum using the modified HISTOQUAL model. The HISTOQUAL dimensions (Responsiveness, Tangibles, Communications, Consumables, and Empathy) were adapted that identify the service quality features in the museum sector from the poorest to the most outstanding factor that will be subject to improvement, as well as those factors that represent strong points of the museum’s services and which are important to the museum visitors. This also identified the gaps encountered by the respondents that caused such inconvenience and default on achieving the sectoral and organizational goals of the museum. As an output of the study, the researcher formulated the service package and adapted the HISTOQUAL dimensions and statements from the assessment through documentary analysis and data analysis/interpretation.

Keywords: museum, frontline, inclusivity, HISTOQUAL

Procedia PDF Downloads 100
4106 Robust Quantum Image Encryption Algorithm Leveraging 3D-BNM Chaotic Maps and Controlled Qubit-Level Operations

Authors: Vivek Verma, Sanjeev Kumar

Abstract:

This study presents a novel quantum image encryption algorithm, using a 3D chaotic map and controlled qubit-level scrambling operations. The newly proposed 3D-BNM chaotic map effectively reduces the degradation of chaotic dynamics resulting from the finite word length effect. It facilitates the generation of highly unpredictable random sequences and enhances chaotic performance. The system’s efficacy is additionally enhanced by the inclusion of a SHA-256 hash function. Initially, classical plain images are converted into their quantum equivalents using the Novel Enhanced Quantum Representation (NEQR) model. The Generalized Quantum Arnold Transformation (GQAT) is then applied to disrupt the coordinate information of the quantum image. Subsequently, to diffuse the pixel values of the scrambled image, XOR operations are performed using pseudorandom sequences generated by the 3D-BNM chaotic map. Furthermore, to enhance the randomness and reduce the correlation among the pixels in the resulting cipher image, a controlled qubit-level scrambling operation is employed. The encryption process utilizes fundamental quantum gates such as C-NOT and CCNOT. Both theoretical and numerical simulations validate the effectiveness of the proposed algorithm against various statistical and differential attacks. Moreover, the proposed encryption algorithm operates with low computational complexity.

Keywords: 3D Chaotic map, SHA-256, quantum image encryption, Qubit level scrambling, NEQR

Procedia PDF Downloads 11
4105 Patients' Perceptions of Receiving a Diagnosis of a Haematological Malignancy, following the SPIKES Protocol

Authors: Lauren Dixon, David Galvani

Abstract:

Objective: Sharing devastating news with patients is often considered the most difficult task of doctors. This study aimed to explore patients’ perceptions of receiving bad news including which features improve the experience and which areas need refining. Methods: A questionnaire was written based on the steps of the SPIKES model for breaking bad news. 20 patients receiving treatment for a haematological malignancy completed the questionnaire. Results: Overall, the results are promising as most patients praised their consultation. ‘Poor’ was more commonly rated by women and participants aged 45-64. The main differences between the ‘excellent’ and ‘poor’ consultations include the doctor’s sensitivity and checking the patients’ understanding. Only 35% of patients were asked their existing knowledge and 85% of consultations failed to discuss the impact of the diagnosis on daily life. Conclusion: This study agreed with the consensus of existing literature. The commended aspects include consultation set-up and information given. Areas patients felt needed improvement include doctors determining the patient’s existing knowledge and exploring how the diagnosis will affect the patient’s life. With a poorer prognosis, doctors should work on conveying appropriate hope. The study was limited by a small sample size and potential recall bias.

Keywords: cancer, diagnosis, haematology, patients

Procedia PDF Downloads 313
4104 Early Cell Cultures Derived from Human Prostate Cancer Tissue Express Tissue-Specific Epithelial and Cancer Markers

Authors: Vladimir Ryabov, Mikhail Baryshevs, Mikhail Voskresenskey, Boris Popov

Abstract:

The human prostate gland (PG) samples were obtained from patients who had undergone radical prostatectomy for prostate cancer (PC) and used to extract total RNA and prepare the prostate stromal cell cultures (PSCC) and patients-derived organoids (PDO). Growth of the cell cultures was accessed under microscopic evaluation in transmitted light and the marker expression by reverse polymerase chain reaction (RT-PCR), immunofluorescence, and immunoblotting. Some PCR products from prostate tissue, PSCC, and PDO were cloned and sequenced. We found that the cells of early and late passages of PSCC and corresponding PDO expressed luminal (androgen receptor, AR; cytokeratin 18, CK18) and basal (CK5, p63) epithelial markers, the production of which decreased or disappeared in late PSCC and PDO. The PSCC and PDO of early passages from cancer tissue additionally produced cancer markers AMACR, TMPRSS2-ERG, and Ezh2. The expression of TMPRSS2-ERG fusion transcripts was verified by cloning and sequencing the PCR products. The results obtained suggest that early passages of PSCC might be used as a pre-clinical model for the evaluation of early markers of prostate cancer.

Keywords: localized prostate cancer, prostate epithelial markers, prostate cancer markers, AMACR, TMPRSS2-ERG, prostate stromal cell cultures, PDO

Procedia PDF Downloads 108
4103 Ultrasound Enhanced Release of Active Targeting Liposomes Used for Cancer Treatment

Authors: Najla M. Salkho, Vinod Paul, Pierre Kawak, Rute F. Vitor, Ana M. Martin, Nahid Awad, Mohammad Al Sayah, Ghaleb A. Husseini

Abstract:

Liposomes are popular lipid bilayer nanoparticles that are highly efficient in encapsulating both hydrophilic and hydrophobic therapeutic drugs. Liposomes promote a low risk controlled release of the drug avoiding the side effects of the conventional chemotherapy. One of the great potentials of liposomes is the ability to attach a wide range of ligands to their surface producing ligand-mediated active targeting of cancer tumour with limited adverse off-target effects. Ultrasound can also aid in the controlled and specified release of the drug from the liposomes by breaking it apart and releasing the drug in the specific location where the ultrasound is applied. Our research focuses on the synthesis of PEGylated liposomes (contain poly-ethylene glycol) encapsulated with the model drug calcein and studying the effect of low frequency ultrasound applied at different power densities on calcein release. In addition, moieties are attached to the surface of the liposomes for specific targeting of the cancerous cells which over-express the receptors of these moieties, ultrasound is then applied and the release results are compared with the moiety free liposomes. The results showed that attaching these moieties to the surface of the PEGylated liposomes not only enhance their active targeting but also stimulate calcein release from these liposomes.

Keywords: active targeting, liposomes, moieties, ultrasound

Procedia PDF Downloads 602
4102 Strategic Fit between Higher Education Funding and the National Development Goals in Kazakhstan

Authors: Ali Ait Si Mhamed, Rita Kasa, Hans Vossensteyn

Abstract:

Kazakhstan is the eight largest country on the globe, in terms of the territory, it is rich in natural resources and is developing dynamically. Kazakhstan strives to become one of the top 30 global economies by 2050. This goal preconditions intensive reforms in all sectors of economy, including higher education. This paper focuses on the higher education funding reforms that take place in Kazakhstan and their alignment with the strategic goals of national development. Currently, the government funds higher education costs for only a limited number of students while the majority of students pay full cost covering tuition fees. Only students with high examination scores at the end of the secondary education are eligible to be admitted to publically funded study places in higher education. While this merit-based higher education funding model is overall well-received in the country, there is also a discourse calling to change the existing approach of higher education funding. This paper draws on interviews with national policy makers and leadership at institutions of higher education in Kazakhstan collected during 2016. It seeks to answer a question about how well the current higher education funding mechanism is aligned with the strategic development goals in higher education. The paper discusses how stakeholders see the fit between the current higher education funding mechanism and the ability of higher education institutions to achieve the aims of national strategic development.

Keywords: higher education reform, higher education funding, higher education policy, Kazakhstan

Procedia PDF Downloads 288