Search results for: sales process ARIMA models
19157 Analytical Description of Disordered Structures in Continuum Models of Pattern Formation
Authors: Gyula I. Tóth, Shaho Abdalla
Abstract:
Even though numerical simulations indeed have a significant precursory/supportive role in exploring the disordered phase displaying no long-range order in pattern formation models, studying the stability properties of this phase and determining the order of the ordered-disordered phase transition in these models necessitate an analytical description of the disordered phase. First, we will present the results of a comprehensive statistical analysis of a large number (1,000-10,000) of numerical simulations in the Swift-Hohenberg model, where the bulk disordered (or amorphous) phase is stable. We will show that the average free energy density (over configurations) converges, while the variance of the energy density vanishes with increasing system size in numerical simulations, which suggest that the disordered phase is a thermodynamic phase (i.e., its properties are independent of the configuration in the macroscopic limit). Furthermore, the structural analysis of this phase in the Fourier space suggests that the phase can be modeled by a colored isotropic Gaussian noise, where any instant of the noise describes a possible configuration. Based on these results, we developed the general mathematical framework of finding a pool of solutions to partial differential equations in the sense of continuous probability measure, which we will present briefly. Applying the general idea to the Swift-Hohenberg model we show, that the amorphous phase can be found, and its properties can be determined analytically. As the general mathematical framework is not restricted to continuum theories, we hope that the proposed methodology will open a new chapter in studying disordered phases.Keywords: fundamental theory, mathematical physics, continuum models, analytical description
Procedia PDF Downloads 13419156 Continuous Professional Development of Teachers: Implementation Mechanisms in the Republic of Kazakhstan Based on the Professional Standard 'Teacher'
Authors: Yelena Agranovich, Larissa Ageyeva, Aigul Syzdykbayeva, Violetta Tyan
Abstract:
The modernization of the education system in the Republic of Kazakhstan is aimed at improving the quality of teacher training and enhancing key competencies among teachers. The current professional standard ‘Teacher’ defines the general characteristics of teachers’ activities, key competencies, and criteria according to relevant qualification categories structured on the principle of progression, thereby enabling Continuous Professional Development (CPD). The essence of CPD lies in the constant integration of new knowledge and skills that help teachers adapt to changes in the education system, in technologies, and teaching methods. This developmental process enables teachers to stay updated on recent scientific achievements, innovations, and modern pedagogical practices. Continuous learning helps teachers remain flexible and open to new developments, creating conditions for improving educational quality and fostering students' personal growth. This study aims to address the following objectives: analysis of international CPD practices, identification of conceptual foundations, and investigation of CPD implementation mechanisms in Kazakhstan. The core principles of CPD are identified as longitudinality, systematicity, and fragmentation. CPD implementation is based on various theoretical approaches: axiological, systemic, competency-based, activity-based, and learner-centered. The study analyzes leading models of teacher CPD, with a target sample that includes countries such as Australia, Japan, South Korea, England, Singapore, Sweden, Finland, and Kazakhstan. The research methods include analysis (comparative, historical, content analysis, systematic), case studies of CPD models, and synthesis and systematization of scientific data. As research results, the mechanisms for CPD implementation in Kazakhstan will be identified, along with further perspectives on transforming resources within the teacher professional development system. In comparing CPD models from various countries, it is noted that teacher CPD in the Republic of Kazakhstan: (1) is implemented through educational programs, professional development courses, teacher certification, professional networks, in-school professional development, self-education, and self-assessment; (2) includes the development of pedagogical values and competencies (tolerance, inclusivity, communication, critical thinking, creativity, reflection, etc.); (3) is carried out based on traditional forms (professional development courses, retraining) and informal forms (self-learning, self-development, experience sharing and exchange). Further research will focus on creating a digital ecosystem for teacher CPD, based on an educational platform that facilitates individualized professional development pathways for teachers (competency diagnostics, course selection, and a methodological system of course and post-course support for teachers).Keywords: continuous professional development, CPD models, professional development, professional upgrading, teacher, teacher training
Procedia PDF Downloads 1419155 Impact of Risk Management Practices on Company Performance
Authors: Syed Atif Ali, Farzan Yahya
Abstract:
This research paper covers the issue of risk management impact on the company performance. Degree of financial leverage (DFL), degree of operating leverage (DOL) and the working capital ratio (WCR) are taken as independent variables which are the representative of risk and the earning price per share (EPS), return on assets (ROA), return on equity (ROE), Sales and Net profits which are the representative of performance. Last 10 years (2004-2013) of Cement sector of Pakistan data is chosen as sample for analyze their relations by multiple regression technique. Through analyses, it is found that WCR impact adequately on the company performance because if company has enough liquidity than it perform its operations smoothly and enhance its performance very well. DFL should be control moderately because enough DFL leads performance of company downward. On the other hand, the DOL should be less because it causes the less profitability for a company from its operations.Keywords: degree of financial leverage (DFL), degree of operating leverage (DOL), working capital ratio (WCR), earning per share (EPS), return on equity (ROE), return on assets (ROA)
Procedia PDF Downloads 45519154 Sustainable Milling Process for Tensile Specimens
Authors: Shilpa Kumari, Ramakumar Jayachandran
Abstract:
Machining of aluminium extrusion profiles in the automotive industry has gained much interest in the last decade, particularly due to the higher utilization of aluminum profiles and the weight reduction benefits it brings. Milling is the most common material removal process, where the rotary milling cutter is moved against a workpiece. The physical contact of the milling cutter to the workpiece increases the friction between them, thereby affecting the longevity of the milling tool and also the surface finish of the workpiece. To minimise this issue, the milling process uses cutting fluids or emulsions; however, the use of emulsion in the process has a negative impact on the environment ( such as consumption of water, oils and the used emulsion needs to be treated before disposal) and also on the personal ( may cause respiratory problems, exposure to microbial toxins generated by bacteria in the emulsions on prolonged use) working close to the process. Furthermore, the workpiece also needs to be cleaned after the milling process, which is not adding value to the process, and the cleaning also disperses mist of emulsion in the working environment. Hydro Extrusion is committed to improving the performance of sustainability from its operations, and with the negative impact of using emulsion in the milling process, a new innovative process- Dry Milling was developed to minimise the impact the cutting fluid brings. In this paper, the authors present one application of dry milling in the machining of tensile specimens in the laboratory. Dry milling is an innovative milling process without the use of any cooling/lubrication and has several advantages. Several million tensile tests are carried out in extrusion laboratories worldwide with the wet milling process. The machining of tensile specimens has a significant impact on the reliability of test results. The paper presents the results for different 6xxx alloys with different wall thicknesses of the specimens, which were machined by both dry and wet milling processes. For both different 6xxx alloys and different wall thicknesses, mechanical properties were similar for samples milled using dry and wet milling. Several tensile specimens were prepared using both dry and wet milling to compare the results, and the outcome showed the dry milling process does not affect the reliability of tensile test results.Keywords: dry milling, tensile testing, wet milling, 6xxx alloy
Procedia PDF Downloads 19819153 Numerical Investigation of the Jacketing Method of Reinforced Concrete Column
Authors: S. Boukais, A. Nekmouche, N. Khelil, A. Kezmane
Abstract:
The first intent of this study is to develop a finite element model that can predict correctly the behavior of the reinforced concrete column. Second aim is to use the finite element model to investigate and evaluate the effect of the strengthening method by jacketing of the reinforced concrete column, by considering different interface contact between the old and the new concrete. Four models were evaluated, one by considering perfect contact, the other three models by using friction coefficient of 0.1, 0.3 and 0.5. The simulation was carried out by using Abaqus software. The obtained results show that the jacketing reinforcement led to significant increase of the global performance of the behavior of the simulated reinforced concrete column.Keywords: strengthening, jacketing, rienforced concrete column, Abaqus, simulation
Procedia PDF Downloads 14619152 Exploration of Building Information Modelling Software to Develop Modular Coordination Design Tool for Architects
Authors: Muhammad Khairi bin Sulaiman
Abstract:
The utilization of Building Information Modelling (BIM) in the construction industry has provided an opportunity for designers in the Architecture, Engineering and Construction (AEC) industry to proceed from the conventional method of using manual drafting to a way that creates alternative designs quickly, produces more accurate, reliable and consistent outputs. By using BIM Software, designers can create digital content that manipulates the use of data using the parametric model of BIM. With BIM software, more alternative designs can be created quickly and design problems can be explored further to produce a better design faster than conventional design methods. Generally, BIM is used as a documentation mechanism and has not been fully explored and utilised its capabilities as a design tool. Relative to the current issue, Modular Coordination (MC) design as a sustainable design practice is encouraged since MC design will reduce material wastage through standard dimensioning, pre-fabrication, repetitive, modular construction and components. However, MC design involves a complex process of rules and dimensions. Therefore, a tool is needed to make this process easier. Since the parameters in BIM can easily be manipulated to follow MC rules and dimensioning, thus, the integration of BIM software with MC design is proposed for architects during the design stage. With this tool, there will be an improvement in acceptance and practice in the application of MC design effectively. Consequently, this study will analyse and explore the function and customization of BIM objects and the capability of BIM software to expedite the application of MC design during the design stage for architects. With this application, architects will be able to create building models and locate objects within reference modular grids that adhere to MC rules and dimensions. The parametric modeling capabilities of BIM will also act as a visual tool that will further enhance the automation of the 3-Dimensional space planning modeling process. (Method) The study will first analyze and explore the parametric modeling capabilities of rule-based BIM objects, which eventually customize a reference grid within the rules and dimensioning of MC. Eventually, the approach will further enhance the architect's overall design process and enable architects to automate complex modeling, which was nearly impossible before. A prototype using a residential quarter will be modeled. A set of reference grids guided by specific MC rules and dimensions will be used to develop a variety of space planning and configuration. With the use of the design, the tool will expedite the design process and encourage the use of MC Design in the construction industry.Keywords: building information modeling, modular coordination, space planning, customization, BIM application, MC space planning
Procedia PDF Downloads 8419151 Seismic Hazard Assessment of Offshore Platforms
Authors: F. D. Konstandakopoulou, G. A. Papagiannopoulos, N. G. Pnevmatikos, G. D. Hatzigeorgiou
Abstract:
This paper examines the effects of pile-soil-structure interaction on the dynamic response of offshore platforms under the action of near-fault earthquakes. Two offshore platforms models are investigated, one with completely fixed supports and one with piles which are clamped into deformable layered soil. The soil deformability for the second model is simulated using non-linear springs. These platform models are subjected to near-fault seismic ground motions. The role of fault mechanism on platforms’ response is additionally investigated, while the study also examines the effects of different angles of incidence of seismic records on the maximum response of each platform.Keywords: hazard analysis, offshore platforms, earthquakes, safety
Procedia PDF Downloads 14819150 A Biometric Template Security Approach to Fingerprints Based on Polynomial Transformations
Authors: Ramon Santana
Abstract:
The use of biometric identifiers in the field of information security, access control to resources, authentication in ATMs and banking among others, are of great concern because of the safety of biometric data. In the general architecture of a biometric system have been detected eight vulnerabilities, six of them allow obtaining minutiae template in plain text. The main consequence of obtaining minutia templates is the loss of biometric identifier for life. To mitigate these vulnerabilities several models to protect minutiae templates have been proposed. Several vulnerabilities in the cryptographic security of these models allow to obtain biometric data in plain text. In order to increase the cryptographic security and ease of reversibility, a minutiae templates protection model is proposed. The model aims to make the cryptographic protection and facilitate the reversibility of data using two levels of security. The first level of security is the data transformation level. In this level generates invariant data to rotation and translation, further transformation is irreversible. The second level of security is the evaluation level, where the encryption key is generated and data is evaluated using a defined evaluation function. The model is aimed at mitigating known vulnerabilities of the proposed models, basing its security on the impossibility of the polynomial reconstruction.Keywords: fingerprint, template protection, bio-cryptography, minutiae protection
Procedia PDF Downloads 17019149 Software Quality Promotion and Improvement through Usage of a PSP Oriented Information System
Authors: Gaoussou Doukoure Abdel Kader, Mnkandla Ernest
Abstract:
This research aims to investigate the usage of a personal software process oriented information system in order to facilitate the promotion of software quality and its improvement in organizations. In this light, at the term of a literature review on software quality and related concepts, the personal software process is discussed, more particularly in terms of software quality. Semi-structured interviews will be conducted with a team of software engineers on the first hand to establish a baseline on their understanding of what quality entails for them. The PSP methodology will then be presented to the engineers in its most basic aspects. The research will then proceed to practical case study where a PSP oriented information system is submitted to engineers for usage throughout their development process. Reports from the PSP information system as well as feedback from the engineers will be used in conjunction with the theoretical foundation to establish a PSP inspired framework for software quality promotion and improvement.Keywords: information communication technology, personal software process, software quality, process quality, software engineering
Procedia PDF Downloads 49419148 Corrosion Monitoring of Weathering Steel in a Simulated Coastal-Industrial Environment
Authors: Thee Chowwanonthapunya, Junhua Dong, Wei Ke
Abstract:
The atmospheres in many cities along the coastal lines in the world have been rapidly changed to coastal-industrial atmosphere. Hence, it is vital to investigate the corrosion behavior of steel exposed to this kind of environment. In this present study, Electrochemical Impedance Spectrography (EIS) and film thickness measurements were applied to monitor the corrosion behavior of weathering steel covered with a thin layer of the electrolyte in a wet-dry cyclic condition, simulating a coastal-industrial environment at 25 oC and 60 % RH. The results indicate that in all cycles, the corrosion rate increases during the drying process due to an increase in anion concentration and an acceleration of oxygen diffusion enhanced by the effect of the thinning out of the electrolyte. During the wet-dry cyclic corrosion test, the long-term corrosion behavior of this steel depends on the periods of exposure. Corrosion process is first accelerated and then decelerated. The decelerating corrosion process is contributed to the formation of the protective rust, favored by the wet-dry cycle and the acid regeneration process during the rusting process.Keywords: atmospheric corrosion, EIS, low alloy, rust
Procedia PDF Downloads 44919147 Segregation Patterns of Trees and Grass Based on a Modified Age-Structured Continuous-Space Forest Model
Authors: Jian Yang, Atsushi Yagi
Abstract:
Tree-grass coexistence system is of great importance for forest ecology. Mathematical models are being proposed to study the dynamics of tree-grass coexistence and the stability of the systems. However, few of the models concentrates on spatial dynamics of the tree-grass coexistence. In this study, we modified an age-structured continuous-space population model for forests, obtaining an age-structured continuous-space population model for the tree-grass competition model. In the model, for thermal competitions, adult trees can out-compete grass, and grass can out-compete seedlings. We mathematically studied the model to make sure tree-grass coexistence solutions exist. Numerical experiments demonstrated that a fraction of area that trees or grass occupies can affect whether the coexistence is stable or not. We also tried regulating the mortality of adult trees with other parameters and the fraction of area trees and grass occupies were fixed; results show that the mortality of adult trees is also a factor affecting the stability of the tree-grass coexistence in this model.Keywords: population-structured models, stabilities of ecosystems, thermal competitions, tree-grass coexistence systems
Procedia PDF Downloads 16019146 Investigation of a Hybrid Process: Multipoint Incremental Forming
Authors: Safa Boudhaouia, Mohamed Amen Gahbiche, Eliane Giraud, Wacef Ben Salem, Philippe Dal Santo
Abstract:
Multi-point forming (MPF) and asymmetric incremental forming (ISF) are two flexible processes for sheet metal manufacturing. To take advantages of these two techniques, a hybrid process has been developed: The Multipoint Incremental Forming (MPIF). This process accumulates at once the advantages of each of these last mentioned forming techniques, which makes it a very interesting and particularly an efficient process for single, small, and medium series production. In this paper, an experimental and a numerical investigation of this technique are presented. To highlight the flexibility of this process and its capacity to manufacture standard and complex shapes, several pieces were produced by using MPIF. The forming experiments are performed on a 3-axis CNC machine. Moreover, a numerical model of the MPIF process has been implemented in ABAQUS and the analysis showed a good agreement with experimental results in terms of deformed shape. Furthermore, the use of an elastomeric interpolator allows avoiding classical local defaults like dimples, which are generally caused by the asymmetric contact and also improves the distribution of residual strain. Future works will apply this approach to other alloys used in aeronautic or automotive applications.Keywords: incremental forming, numerical simulation, MPIF, multipoint forming
Procedia PDF Downloads 35619145 Comparison of Applicability of Time Series Forecasting Models VAR, ARCH and ARMA in Management Science: Study Based on Empirical Analysis of Time Series Techniques
Authors: Muhammad Tariq, Hammad Tahir, Fawwad Mahmood Butt
Abstract:
Purpose: This study attempts to examine the best forecasting methodologies in the time series. The time series forecasting models such as VAR, ARCH and the ARMA are considered for the analysis. Methodology: The Bench Marks or the parameters such as Adjusted R square, F-stats, Durban Watson, and Direction of the roots have been critically and empirically analyzed. The empirical analysis consists of time series data of Consumer Price Index and Closing Stock Price. Findings: The results show that the VAR model performed better in comparison to other models. Both the reliability and significance of VAR model is highly appreciable. In contrary to it, the ARCH model showed very poor results for forecasting. However, the results of ARMA model appeared double standards i.e. the AR roots showed that model is stationary and that of MA roots showed that the model is invertible. Therefore, the forecasting would remain doubtful if it made on the bases of ARMA model. It has been concluded that VAR model provides best forecasting results. Practical Implications: This paper provides empirical evidences for the application of time series forecasting model. This paper therefore provides the base for the application of best time series forecasting model.Keywords: forecasting, time series, auto regression, ARCH, ARMA
Procedia PDF Downloads 34819144 Development of Partial Discharge Defect Recognition and Status Diagnosis System with Adaptive Deep Learning
Authors: Chien-kuo Chang, Bo-wei Wu, Yi-yun Tang, Min-chiu Wu
Abstract:
This paper proposes a power equipment diagnosis system based on partial discharge (PD), which is characterized by increasing the readability of experimental data and the convenience of operation. This system integrates a variety of analysis programs of different data formats and different programming languages and then establishes a set of interfaces that can follow and expand the structure, which is also helpful for subsequent maintenance and innovation. This study shows a case of using the developed Convolutional Neural Networks (CNN) to integrate with this system, using the designed model architecture to simplify the complex training process. It is expected that the simplified training process can be used to establish an adaptive deep learning experimental structure. By selecting different test data for repeated training, the accuracy of the identification system can be enhanced. On this platform, the measurement status and partial discharge pattern of each equipment can be checked in real time, and the function of real-time identification can be set, and various training models can be used to carry out real-time partial discharge insulation defect identification and insulation state diagnosis. When the electric power equipment entering the dangerous period, replace equipment early to avoid unexpected electrical accidents.Keywords: partial discharge, convolutional neural network, partial discharge analysis platform, adaptive deep learning
Procedia PDF Downloads 7819143 Adsorption Studies of Lead from Aqueos Solutions on Cocount Shell Activated Carbon
Authors: G. E. Sharaf El-Deen, S. E. A. Sharaf El-Deen
Abstract:
Activated carbon was prepared from coconut shell (ACS); a discarded agricultural waste was used to produce bioadsorbent through easy and environmental friendly processes. This activated carbon based biosorbent was evaluated for adsorptive removal of lead from water. The characterisation results showed this biosorbent had very high specific surface area and functional groups. The adsorption equilibrium data was well described by Langmuir, whilst kinetics data by pseudo-first order, pseudo-second order and Intraparticle diffusion models. The adsorption process could be described by the pseudo-second order kinetic.Keywords: coconut shell, activated carbon, adsorption isotherm and kinetics, lead removal
Procedia PDF Downloads 30819142 On Periodic Integer-Valued Moving Average Models
Authors: Aries Nawel, Bentarzi Mohamed
Abstract:
This paper deals with the study of some probabilistic and statistical properties of a Periodic Integer-Valued Moving Average Model (PINMA_{S}(q)). The closed forms of the mean, the second moment and the periodic autocovariance function are obtained. Furthermore, the time reversibility of the model is discussed in details. Moreover, the estimation of the underlying parameters are obtained by the Yule-Walker method, the Conditional Least Square method (CLS) and the Weighted Conditional Least Square method (WCLS). A simulation study is carried out to evaluate the performance of the estimation method. Moreover, an application on real data set is provided.Keywords: periodic integer-valued moving average, periodically correlated process, time reversibility, count data
Procedia PDF Downloads 20219141 Use of SUDOKU Design to Assess the Implications of the Block Size and Testing Order on Efficiency and Precision of Dulce De Leche Preference Estimation
Authors: Jéssica Ferreira Rodrigues, Júlio Silvio De Sousa Bueno Filho, Vanessa Rios De Souza, Ana Carla Marques Pinheiro
Abstract:
This study aimed to evaluate the implications of the block size and testing order on efficiency and precision of preference estimation for Dulce de leche samples. Efficiency was defined as the inverse of the average variance of pairwise comparisons among treatments. Precision was defined as the inverse of the variance of treatment means (or effects) estimates. The experiment was originally designed to test 16 treatments as a series of 8 Sudoku 16x16 designs being 4 randomized independently and 4 others in the reverse order, to yield balance in testing order. Linear mixed models were assigned to the whole experiment with 112 testers and all their grades, as well as their partially balanced subgroups, namely: a) experiment with the four initial EU; b) experiment with EU 5 to 8; c) experiment with EU 9 to 12; and b) experiment with EU 13 to 16. To record responses we used a nine-point hedonic scale, it was assumed a mixed linear model analysis with random tester and treatments effects and with fixed test order effect. Analysis of a cumulative random effects probit link model was very similar, with essentially no different conclusions and for simplicity, we present the results using Gaussian assumption. R-CRAN library lme4 and its function lmer (Fit Linear Mixed-Effects Models) was used for the mixed models and libraries Bayesthresh (default Gaussian threshold function) and ordinal with the function clmm (Cumulative Link Mixed Model) was used to check Bayesian analysis of threshold models and cumulative link probit models. It was noted that the number of samples tested in the same session can influence the acceptance level, underestimating the acceptance. However, proving a large number of samples can help to improve the samples discrimination.Keywords: acceptance, block size, mixed linear model, testing order, testing order
Procedia PDF Downloads 32119140 Supervised Machine Learning Approach for Studying the Effect of Different Joint Sets on Stability of Mine Pit Slopes Under the Presence of Different External Factors
Authors: Sudhir Kumar Singh, Debashish Chakravarty
Abstract:
Slope stability analysis is an important aspect in the field of geotechnical engineering. It is also important from safety, and economic point of view as any slope failure leads to loss of valuable lives and damage to property worth millions. This paper aims at mitigating the risk of slope failure by studying the effect of different joint sets on the stability of mine pit slopes under the influence of various external factors, namely degree of saturation, rainfall intensity, and seismic coefficients. Supervised machine learning approach has been utilized for making accurate and reliable predictions regarding the stability of slopes based on the value of Factor of Safety. Numerous cases have been studied for analyzing the stability of slopes using the popular Finite Element Method, and the data thus obtained has been used as training data for the supervised machine learning models. The input data has been trained on different supervised machine learning models, namely Random Forest, Decision Tree, Support vector Machine, and XGBoost. Distinct test data that is not present in training data has been used for measuring the performance and accuracy of different models. Although all models have performed well on the test dataset but Random Forest stands out from others due to its high accuracy of greater than 95%, thus helping us by providing a valuable tool at our disposition which is neither computationally expensive nor time consuming and in good accordance with the numerical analysis result.Keywords: finite element method, geotechnical engineering, machine learning, slope stability
Procedia PDF Downloads 10119139 In Exploring Local Community Empowerment and Participation in Blue Tourism Activities
Authors: Philasande Runeli, Lynn Jonas
Abstract:
Empowerment suggests participation is working collaboratively towards shared objectives, obtaining resources and critically analysing one’s social and political differences are all necessary steps in the empowering process. The aim of leadership empowerment is to give a team the resources and encouragement they need to work more productively together. This study explores potential ways to increase local empowerment and participation in blue tourism activities in an urban coastal context in South Africa. Blue tourism, which refers to the application of sustainability practices to tourism activities in coastal and marine settings, has the potential to significantly improve socioeconomic conditions in coastal communities. However, people's engagement in these activities remain restricted. The study uses a constructivist research paradigm and employs a qualitative method, conducting semi-structured interviews with community members from three different communities gaining in-depth perspectives from them. The study's goal is to identify impediments and potential for community participation in blue tourism, as well as offering practical solutions for promoting long-term and inclusive participation. Initial key findings highlight critical barriers to participation, emphasising the importance of skills development, policy alignment with local needs, and public-private partnerships as key components of community empowerment. This study offers policymakers and stakeholders recommendations for promoting inclusive blue tourism initiatives. The recommended initiatives emphasise the significance of skills development, infrastructure investment, and sustainable tourism models in ensuring economic empowerment and environmental conservation in urban coastal communities in developing states.Keywords: blue tourism, community empowerment and participation, sustainable tourism models, inclusive participation
Procedia PDF Downloads 2019138 Predicting the Impact of Scope Changes on Project Cost and Schedule Using Machine Learning Techniques
Authors: Soheila Sadeghi
Abstract:
In the dynamic landscape of project management, scope changes are an inevitable reality that can significantly impact project performance. These changes, whether initiated by stakeholders, external factors, or internal project dynamics, can lead to cost overruns and schedule delays. Accurately predicting the consequences of these changes is crucial for effective project control and informed decision-making. This study aims to develop predictive models to estimate the impact of scope changes on project cost and schedule using machine learning techniques. The research utilizes a comprehensive dataset containing detailed information on project tasks, including the Work Breakdown Structure (WBS), task type, productivity rate, estimated cost, actual cost, duration, task dependencies, scope change magnitude, and scope change timing. Multiple machine learning models are developed and evaluated to predict the impact of scope changes on project cost and schedule. These models include Linear Regression, Decision Tree, Ridge Regression, Random Forest, Gradient Boosting, and XGBoost. The dataset is split into training and testing sets, and the models are trained using the preprocessed data. Cross-validation techniques are employed to assess the robustness and generalization ability of the models. The performance of the models is evaluated using metrics such as Mean Squared Error (MSE) and R-squared. Residual plots are generated to assess the goodness of fit and identify any patterns or outliers. Hyperparameter tuning is performed to optimize the XGBoost model and improve its predictive accuracy. The feature importance analysis reveals the relative significance of different project attributes in predicting the impact on cost and schedule. Key factors such as productivity rate, scope change magnitude, task dependencies, estimated cost, actual cost, duration, and specific WBS elements are identified as influential predictors. The study highlights the importance of considering both cost and schedule implications when managing scope changes. The developed predictive models provide project managers with a data-driven tool to proactively assess the potential impact of scope changes on project cost and schedule. By leveraging these insights, project managers can make informed decisions, optimize resource allocation, and develop effective mitigation strategies. The findings of this research contribute to improved project planning, risk management, and overall project success.Keywords: cost impact, machine learning, predictive modeling, schedule impact, scope changes
Procedia PDF Downloads 4319137 Churn Prediction for Savings Bank Customers: A Machine Learning Approach
Authors: Prashant Verma
Abstract:
Commercial banks are facing immense pressure, including financial disintermediation, interest rate volatility and digital ways of finance. Retaining an existing customer is 5 to 25 less expensive than acquiring a new one. This paper explores customer churn prediction, based on various statistical & machine learning models and uses under-sampling, to improve the predictive power of these models. The results show that out of the various machine learning models, Random Forest which predicts the churn with 78% accuracy, has been found to be the most powerful model for the scenario. Customer vintage, customer’s age, average balance, occupation code, population code, average withdrawal amount, and an average number of transactions were found to be the variables with high predictive power for the churn prediction model. The model can be deployed by the commercial banks in order to avoid the customer churn so that they may retain the funds, which are kept by savings bank (SB) customers. The article suggests a customized campaign to be initiated by commercial banks to avoid SB customer churn. Hence, by giving better customer satisfaction and experience, the commercial banks can limit the customer churn and maintain their deposits.Keywords: savings bank, customer churn, customer retention, random forests, machine learning, under-sampling
Procedia PDF Downloads 14319136 Systems Engineering and Project Management Process Modeling in the Aeronautics Context: Case Study of SMEs
Authors: S. Lemoussu, J. C. Chaudemar, R. A. Vingerhoeds
Abstract:
The aeronautics sector is currently living an unprecedented growth largely due to innovative projects. In several cases, such innovative developments are being carried out by Small and Medium sized-Enterprises (SMEs). For instance, in Europe, a handful of SMEs are leading projects like airships, large civil drones, or flying cars. These SMEs have all limited resources, must make strategic decisions, take considerable financial risks and in the same time must take into account the constraints of safety, cost, time and performance as any commercial organization in this industry. Moreover, today, no international regulations fully exist for the development and certification of this kind of projects. The absence of such a precise and sufficiently detailed regulatory framework requires a very close contact with regulatory instances. But, SMEs do not always have sufficient resources and internal knowledge to handle this complexity and to discuss these issues. This poses additional challenges for those SMEs that have system integration responsibilities and that must provide all the necessary means of compliance to demonstrate their ability to design, produce, and operate airships with the expected level of safety and reliability. The final objective of our research is thus to provide a methodological framework supporting SMEs in their development taking into account recent innovation and institutional rules of the sector. We aim to provide a contribution to the problematic by developing a specific Model-Based Systems Engineering (MBSE) approach. Airspace regulation, aeronautics standards and international norms on systems engineering are taken on board to be formalized in a set of models. This paper presents the on-going research project combining Systems Engineering and Project Management process modeling and taking into account the metamodeling problematic.Keywords: aeronautics, certification, process modeling, project management, SME, systems engineering
Procedia PDF Downloads 16619135 Model Development for Real-Time Human Sitting Posture Detection Using a Camera
Authors: Jheanel E. Estrada, Larry A. Vea
Abstract:
This study developed model to detect proper/improper sitting posture using the built in web camera which detects the upper body points’ location and distances (chin, manubrium and acromion process). It also established relationships of human body frames and proper sitting posture. The models were developed by training some well-known classifiers such as KNN, SVM, MLP, and Decision Tree using the data collected from 60 students of different body frames. Decision Tree classifier demonstrated the most promising model performance with an accuracy of 95.35% and a kappa of 0.907 for head and shoulder posture. Results also showed that there were relationships between body frame and posture through Body Mass Index.Keywords: posture, spinal points, gyroscope, image processing, ergonomics
Procedia PDF Downloads 32919134 Recovery of Acetonitrile from Aqueous Solutions by Extractive Distillation: The Effect of Entrainer
Authors: Aleksandra Y. Sazonova, Valentina M. Raeva
Abstract:
The aim of this work was to apply extractive distillation for acetonitrile removal from water solutions, to validate thermodynamic criterion based on excess Gibbs energy to entrainer selection process for acetonitrile – water mixture separation and show its potential efficiency at isothermal conditions as well as at isobaric (conditions of real distillation process), to simulate and analyze an extractive distillation process with chosen entrainers: optimize amount of trays and feeds, entrainer/original mixture and reflux ratios. Equimolar composition of the feed stream was chosen for the process, comparison of the energy consumptions was carried out. Glycerol was suggested as the most energetically and ecologically suitable entrainer.Keywords: acetonitrile, entrainer, extractive distillation, water
Procedia PDF Downloads 26819133 In-Situ Studies of Cyclohexane Oxidation Using Laser Raman Spectroscopy for the Refinement of Mechanism Based Kinetic Models
Authors: Christine Fräulin, Daniela Schurr, Hamed Shahidi Rad, Gerrit Waters, Günter Rinke, Roland Dittmeyer, Michael Nilles
Abstract:
The reaction mechanisms of many liquid-phase reactions in organic chemistry have not yet been sufficiently clarified. Process conditions of several hundred degrees celsius and pressures to ten megapascals complicate the sampling and the determination of kinetic data. Space resolved in-situ measurements promises new insights. A non-invasive in-situ measurement technique has the advantages that no sample preparation is necessary, there is no change in sample mixture before analysis and the sampling do no lead to interventions in the flow. Thus, the goal of our research was the development of a contact-free spatially resolved measurement technique for kinetic studies of liquid phase reaction under process conditions. Therefore we used laser Raman spectroscopy combined with an optical transparent microchannel reactor. To show the performance of the system we choose the oxidation of cyclohexane as sample reaction. Cyclohexane oxidation is an economically important process. The products are intermediates for caprolactam and adipic acid, which are starting materials for polyamide 6 and 6.6 production. To maintain high selectivities of 70 to 90 %, the reaction is performed in industry at a low conversion of about six percent. As Raman spectroscopy is usually very selective but not very sensitive the detection of the small product concentration in cyclohexane oxidation is quite challenging. To meet these requirements, an optical experimental setup was optimized to determine the concentrations by laser Raman spectroscopy with respect to good detection sensitivity. With this measurement technique space resolved kinetic studies of uncatalysed and homogeneous catalyzed cyclohexane oxidation were carried out to obtain details about the reaction mechanism.Keywords: in-situ laser raman spectroscopy, space resolved kinetic measurements, homogeneous catalysis, chemistry
Procedia PDF Downloads 33519132 Comparing Performance of Neural Network and Decision Tree in Prediction of Myocardial Infarction
Authors: Reza Safdari, Goli Arji, Robab Abdolkhani Maryam zahmatkeshan
Abstract:
Background and purpose: Cardiovascular diseases are among the most common diseases in all societies. The most important step in minimizing myocardial infarction and its complications is to minimize its risk factors. The amount of medical data is increasingly growing. Medical data mining has a great potential for transforming these data into information. Using data mining techniques to generate predictive models for identifying those at risk for reducing the effects of the disease is very helpful. The present study aimed to collect data related to risk factors of heart infarction from patients’ medical record and developed predicting models using data mining algorithm. Methods: The present work was an analytical study conducted on a database containing 350 records. Data were related to patients admitted to Shahid Rajaei specialized cardiovascular hospital, Iran, in 2011. Data were collected using a four-sectioned data collection form. Data analysis was performed using SPSS and Clementine version 12. Seven predictive algorithms and one algorithm-based model for predicting association rules were applied to the data. Accuracy, precision, sensitivity, specificity, as well as positive and negative predictive values were determined and the final model was obtained. Results: five parameters, including hypertension, DLP, tobacco smoking, diabetes, and A+ blood group, were the most critical risk factors of myocardial infarction. Among the models, the neural network model was found to have the highest sensitivity, indicating its ability to successfully diagnose the disease. Conclusion: Risk prediction models have great potentials in facilitating the management of a patient with a specific disease. Therefore, health interventions or change in their life style can be conducted based on these models for improving the health conditions of the individuals at risk.Keywords: decision trees, neural network, myocardial infarction, Data Mining
Procedia PDF Downloads 42919131 Signs-Only Compressed Row Storage Format for Exact Diagonalization Study of Quantum Fermionic Models
Authors: Michael Danilov, Sergei Iskakov, Vladimir Mazurenko
Abstract:
The present paper describes a high-performance parallel realization of an exact diagonalization solver for quantum-electron models in a shared memory computing system. The proposed algorithm contains a storage format for efficient computing eigenvalues and eigenvectors of a quantum electron Hamiltonian matrix. The results of the test calculations carried out for 15 sites Hubbard model demonstrate reduction in the required memory and good multiprocessor scalability, while maintaining performance of the same order as compressed row storage.Keywords: sparse matrix, compressed format, Hubbard model, Anderson model
Procedia PDF Downloads 40219130 Media Diplomacy in the Age of Social Networks towards a Conceptual Framework for Understanding Diplomatic Cyber Engagement
Authors: Mohamamd Ayish
Abstract:
This study addresses media diplomacy as an integral component of public diplomacy which emerged in the United States in the post-World War II era and found applications in other countries around the world. The study seeks to evolve a conceptual framework for understanding the practice of public diplomacy through social networks, often referred to as social engagement diplomacy. This form of diplomacy is considered far more ahead of the other two forms associated with both government controlled and independent media. The cases of the Voice of America Arabic Service and the 1977 CBS interviews with the late Egyptian President Anwar Sadat and Israeli Prime Minister Menachem Begin are cited in this study as reflecting the two traditional models. The new social engagement model sees public diplomacy as an act of communication that seeks to effect changes in target audiences through a process of persuasion shaped by discourse orientations and technological features. The proposed conceptual framework for social, diplomatic engagement draws on an open communication environment, an empowered audience, an interactive and symmetrical process of communication, multimedia-based flows of information, direct and credible feedback, distortion and high risk. The writer believes this study would be helpful in providing appropriate knowledge pertaining to our understanding of social diplomacy and furnishing concrete insights into how diplomats could harness virtual space to maximize their goals in the global environment.Keywords: diplomacy, engagement, social, globalization
Procedia PDF Downloads 27619129 Application of Signature Verification Models for Document Recognition
Authors: Boris M. Fedorov, Liudmila P. Goncharenko, Sergey A. Sybachin, Natalia A. Mamedova, Ekaterina V. Makarenkova, Saule Rakhimova
Abstract:
In modern economic conditions, the question of the possibility of correct recognition of a signature on digital documents in order to verify the expression of will or confirm a certain operation is relevant. The additional complexity of processing lies in the dynamic variability of the signature for each individual, as well as in the way information is processed because the signature refers to biometric data. The article discusses the issues of using artificial intelligence models in order to improve the quality of signature confirmation in document recognition. The analysis of several possible options for using the model is carried out. The results of the study are given, in which it is possible to correctly determine the authenticity of the signature on small samples.Keywords: signature recognition, biometric data, artificial intelligence, neural networks
Procedia PDF Downloads 14819128 Investigation of Scaling Laws for Stiffness and strength in Bioinspired Glass Sponge Structures Produced by Fused Filament Fabrication
Authors: Hassan Beigi Rizi, Harold Auradou, Lamine Hattali
Abstract:
Various industries, including civil engineering, automotive, aerospace, and biomedical fields, are currently seeking novel and innovative high-performance lightweight materials to reduce energy consumption. Inspired by the structure of Euplectella Aspergillum Glass Sponges (EA-sponge), 2D unit cells were created and fabricated using a Fused Filament Fabrication (FFF) process with Polylactic acid (PLA) filaments. The stiffness and strength of bio-inspired EA-sponge lattices were investigated both experimentally and numerically under uniaxial tensile loading and are compared to three standard square lattices with diagonal struts (Designs B and C) and non-diagonal struts (Design D) reinforcements. The aim is to establish predictive scaling laws models and examine the deformation mechanisms involved. The results indicated that for the EA-sponge structure, the relative moduli and yield strength scaled linearly with relative density, suggesting that the deformation mechanism is stretching-dominated. The Finite element analysis (FEA), with periodic boundary conditions for volumetric homogenization, confirms these trends and goes beyond the experimental limits imposed by the FFF printing process. Therefore, the stretching-dominated behavior, investigated from 0.1 to 0.5 relative density, demonstrate that the study of EA-sponge structure can be exploited for the realization of square lattice topologies that are stiff and strong and have attractive potential for lightweight structural applications. However, the FFF process introduces an accuracy limitation, with approximately 10% error, making it challenging to print structures with a relative density below 0.2. Future work could focus on exploring the impact of different printing materials on the performance of EA-sponge structures.Keywords: bio-inspiration, lattice structures, fused filament fabrication, scaling laws
Procedia PDF Downloads 7