Search results for: decision processing
5847 A Comparative Study of Natural Language Processing Models for Detecting Obfuscated Text
Authors: Rubén Valcarce-Álvarez, Francisco Jáñez-Martino, Rocío Alaiz-Rodríguez
Abstract:
Cybersecurity challenges, including scams, drug sales, the distribution of child sexual abuse material, fake news, and hate speech on both the surface and deep web, have significantly increased over the past decade. Users who post such content often employ strategies to evade detection by automated filters. Among these tactics, text obfuscation plays an essential role in deceiving detection systems. This approach involves modifying words to make them more difficult for automated systems to interpret while remaining sufficiently readable for human users. In this work, we aim at spotting obfuscated words and the employed techniques, such as leetspeak, word inversion, punctuation changes, and mixed techniques. We benchmark Named Entity Recognition (NER) using models from the BERT family as well as two large language models (LLMs), Llama and Mistral, on XX_NER_WordCamouflage dataset. Our experiments evaluate these models by comparing their precision, recall, F1 scores, and accuracy, both overall and for each individual class.Keywords: natural language processing (NLP), text obfuscation, named entity recognition (NER), deep learning
Procedia PDF Downloads 35846 D3Advert: Data-Driven Decision Making for Ad Personalization through Personality Analysis Using BiLSTM Network
Authors: Sandesh Achar
Abstract:
Personalized advertising holds greater potential for higher conversion rates compared to generic advertisements. However, its widespread application in the retail industry faces challenges due to complex implementation processes. These complexities impede the swift adoption of personalized advertisement on a large scale. Personalized advertisement, being a data-driven approach, necessitates consumer-related data, adding to its complexity. This paper introduces an innovative data-driven decision-making framework, D3Advert, which personalizes advertisements by analyzing personalities using a BiLSTM network. The framework utilizes the Myers–Briggs Type Indicator (MBTI) dataset for development. The employed BiLSTM network, specifically designed and optimized for D3Advert, classifies user personalities into one of the sixteen MBTI categories based on their social media posts. The classification accuracy is 86.42%, with precision, recall, and F1-Score values of 85.11%, 84.14%, and 83.89%, respectively. The D3Advert framework personalizes advertisements based on these personality classifications. Experimental implementation and performance analysis of D3Advert demonstrate a 40% improvement in impressions. D3Advert’s innovative and straightforward approach has the potential to transform personalized advertising and foster widespread personalized advertisement adoption in marketing.Keywords: personalized advertisement, deep Learning, MBTI dataset, BiLSTM network, NLP.
Procedia PDF Downloads 445845 Fuzzy Inference-Assisted Saliency-Aware Convolution Neural Networks for Multi-View Summarization
Authors: Tanveer Hussain, Khan Muhammad, Amin Ullah, Mi Young Lee, Sung Wook Baik
Abstract:
The Big Data generated from distributed vision sensors installed on large scale in smart cities create hurdles in its efficient and beneficial exploration for browsing, retrieval, and indexing. This paper presents a three-folded framework for effective video summarization of such data and provide a compact and representative format of Big Video Data. In the first fold, the paper acquires input video data from the installed cameras and collect clues such as type and count of objects and clarity of the view from a chunk of pre-defined number of frames of each view. The decision of representative view selection for a particular interval is based on fuzzy inference system, acquiring a precise and human resembling decision, reinforced by the known clues as a part of the second fold. In the third fold, the paper forwards the selected view frames to the summary generation mechanism that is supported by a saliency-aware convolution neural network (CNN) model. The new trend of fuzzy rules for view selection followed by CNN architecture for saliency computation makes the multi-view video summarization (MVS) framework a suitable candidate for real-world practice in smart cities.Keywords: big video data analysis, fuzzy logic, multi-view video summarization, saliency detection
Procedia PDF Downloads 1885844 Motives for Reshoring from China to Europe: A Hierarchical Classification of Companies
Authors: Fabienne Fel, Eric Griette
Abstract:
Reshoring, whether concerning back-reshoring or near-reshoring, is a quite recent phenomenon. Despite the economic and political interest of this topic, academic research questioning determinants of reshoring remains rare. Our paper aims at contributing to fill this gap. In order to better understand the reasons for reshoring, we conducted a study among 280 French firms during spring 2016, three-quarters of which sourced, or source, in China. 105 firms in the sample have reshored all or part of their Chinese production or supply in recent years, and we aimed to establish a typology of the motives that drove them to this decision. We asked our respondents about the history of their Chinese supplies, their current reshoring strategies, and their motivations. Statistical analysis was performed with SPSS 22 and SPAD 8. Our results show that change in commercial and financial terms with China is the first motive explaining the current reshoring movement from this country (it applies to 54% of our respondents). A change in corporate strategy is the second motive (30% of our respondents); the reshoring decision follows a change in companies’ strategies (upgrading, implementation of a CSR policy, or a 'lean management' strategy). The third motive (14% of our sample) is a mere correction of the initial offshoring decision, considered as a mistake (under-estimation of hidden costs, non-quality and non-responsiveness problems). Some authors emphasize that developing a short supply chain, involving geographic proximity between design and production, gives a competitive advantage to companies wishing to offer innovative products. Admittedly 40% of our respondents indicate that this motive could have played a part in their decision to reshore, but this reason was not enough for any of them and is not an intrinsic motive leading to leaving Chinese suppliers. Having questioned our respondents about the importance given to various problems leading them to reshore, we then performed a Principal Components Analysis (PCA), associated with an Ascending Hierarchical Classification (AHC), based on Ward criterion, so as to point out more specific motivations. Three main classes of companies should be distinguished: -The 'Cost Killers' (23% of the sample), which reshore their supplies from China only because of higher procurement costs and so as to find lower costs elsewhere. -The 'Realists' (50% of the sample), giving equal weight or importance to increasing procurement costs in China and to the quality of their supplies (to a large extend). Companies being part of this class tend to take advantage of this changing environment to change their procurement strategy, seeking suppliers offering better quality and responsiveness. - The 'Voluntarists' (26% of the sample), which choose to reshore their Chinese supplies regardless of higher Chinese costs, to obtain better quality and greater responsiveness. We emphasize that if the main driver for reshoring from China is indeed higher local costs, it is should not be regarded as an exclusive motivation; 77% of the companies in the sample, are also seeking, sometimes exclusively, more reactive suppliers, liable to quality, respect for the environment and intellectual property.Keywords: China, procurement, reshoring, strategy, supplies
Procedia PDF Downloads 3265843 Calibration and Validation of the Aquacrop Model for Simulating Growth and Yield of Rain-Fed Sesame (Sesamum Indicum L.) Under Different Soil Fertility Levels in the Semi-arid Areas of Tigray, Ethiopia
Authors: Abadi Berhane, Walelign Worku, Berhanu Abrha, Gebre Hadgu
Abstract:
Sesame is an important oilseed crop in Ethiopia, which is the second most exported agricultural commodity next to coffee. However, there is poor soil fertility management and a research-led farming system for the crop. The AquaCrop model was applied as a decision-support tool, which performs a semi-quantitative approach to simulate the yield of crops under different soil fertility levels. The objective of this experiment was to calibrate and validate the AquaCrop model for simulating the growth and yield of sesame under different nitrogen fertilizer levels and to test the performance of the model as a decision-support tool for improved sesame cultivation in the study area. The experiment was laid out as a randomized complete block design (RCBD) in a factorial arrangement in the 2016, 2017, and 2018 main cropping seasons. In this experiment, four nitrogen fertilizer rates, 0, 23, 46, and 69 Kg/ha nitrogen, and three improved varieties (Setit-1, Setit-2, and Humera-1). In the meantime, growth, yield, and yield components of sesame were collected from each treatment. Coefficient of determination (R2), Root mean square error (RMSE), Normalized root mean square error (N-RMSE), Model efficiency (E), and Degree of agreement (D) were used to test the performance of the model. The results indicated that the AquaCrop model successfully simulated soil water content with R2 varying from 0.92 to 0.98, RMSE 6.5 to 13.9 mm, E 0.78 to 0.94, and D 0.95 to 0.99, and the corresponding values for AB also varied from 0.92 to 0.98, 0.33 to 0.54 tons/ha, 0.74 to 0.93, and 0.9 to 0.98, respectively. The results on the canopy cover of sesame also showed that the model acceptably simulated canopy cover with R2 varying from 0.95 to 0.99 and a RMSE of 5.3 to 8.6%. The AquaCrop model was appropriately calibrated to simulate soil water content, canopy cover, aboveground biomass, and sesame yield; the results indicated that the model adequately simulated the growth and yield of sesame under the different nitrogen fertilizer levels. The AquaCrop model might be an important tool for improved soil fertility management and yield enhancement strategies of sesame. Hence, the model might be applied as a decision-support tool in soil fertility management in sesame production.Keywords: aquacrop model, normalized water productivity, nitrogen fertilizer, canopy cover, sesame
Procedia PDF Downloads 795842 Using Bidirectional Encoder Representations from Transformers to Extract Topic-Independent Sentiment Features for Social Media Bot Detection
Authors: Maryam Heidari, James H. Jones Jr.
Abstract:
Millions of online posts about different topics and products are shared on popular social media platforms. One use of this content is to provide crowd-sourced information about a specific topic, event or product. However, this use raises an important question: what percentage of information available through these services is trustworthy? In particular, might some of this information be generated by a machine, i.e., a bot, instead of a human? Bots can be, and often are, purposely designed to generate enough volume to skew an apparent trend or position on a topic, yet the consumer of such content cannot easily distinguish a bot post from a human post. In this paper, we introduce a model for social media bot detection which uses Bidirectional Encoder Representations from Transformers (Google Bert) for sentiment classification of tweets to identify topic-independent features. Our use of a Natural Language Processing approach to derive topic-independent features for our new bot detection model distinguishes this work from previous bot detection models. We achieve 94\% accuracy classifying the contents of data as generated by a bot or a human, where the most accurate prior work achieved accuracy of 92\%.Keywords: bot detection, natural language processing, neural network, social media
Procedia PDF Downloads 1165841 An Intelligent Nondestructive Testing System of Ultrasonic Infrared Thermal Imaging Based on Embedded Linux
Authors: Hao Mi, Ming Yang, Tian-yue Yang
Abstract:
Ultrasonic infrared nondestructive testing is a kind of testing method with high speed, accuracy and localization. However, there are still some problems, such as the detection requires manual real-time field judgment, the methods of result storage and viewing are still primitive. An intelligent non-destructive detection system based on embedded linux is put forward in this paper. The hardware part of the detection system is based on the ARM (Advanced Reduced Instruction Set Computer Machine) core and an embedded linux system is built to realize image processing and defect detection of thermal images. The CLAHE algorithm and the Butterworth filter are used to process the thermal image, and then the boa server and CGI (Common Gateway Interface) technology are used to transmit the test results to the display terminal through the network for real-time monitoring and remote monitoring. The system also liberates labor and eliminates the obstacle of manual judgment. According to the experiment result, the system provides a convenient and quick solution for industrial non-destructive testing.Keywords: remote monitoring, non-destructive testing, embedded Linux system, image processing
Procedia PDF Downloads 2245840 Digital Forensics Compute Cluster: A High Speed Distributed Computing Capability for Digital Forensics
Authors: Daniel Gonzales, Zev Winkelman, Trung Tran, Ricardo Sanchez, Dulani Woods, John Hollywood
Abstract:
We have developed a distributed computing capability, Digital Forensics Compute Cluster (DFORC2) to speed up the ingestion and processing of digital evidence that is resident on computer hard drives. DFORC2 parallelizes evidence ingestion and file processing steps. It can be run on a standalone computer cluster or in the Amazon Web Services (AWS) cloud. When running in a virtualized computing environment, its cluster resources can be dynamically scaled up or down using Kubernetes. DFORC2 is an open source project that uses Autopsy, Apache Spark and Kafka, and other open source software packages. It extends the proven open source digital forensics capabilities of Autopsy to compute clusters and cloud architectures, so digital forensics tasks can be accomplished efficiently by a scalable array of cluster compute nodes. In this paper, we describe DFORC2 and compare it with a standalone version of Autopsy when both are used to process evidence from hard drives of different sizes.Keywords: digital forensics, cloud computing, cyber security, spark, Kubernetes, Kafka
Procedia PDF Downloads 3945839 Patient Progression at Discharge: A Communication, Coordination, and Accountability Gap among Hospital Teams
Authors: Nana Benma Osei
Abstract:
Patient discharge can be a hectic process. Patients are sometimes sent to the wrong location or forgotten in lounges in the waiting room. This ends up compromising patient care because the delay in picking the patients can affect how they adhere to medication. Patients may fail to take their medication, and this will lead to negative outcomes. The situation highlights the demands of modern-day healthcare, and the use of technology can help in reducing such challenges and in enhancing the patient’s experience, leading to greater satisfaction with the care provided. The paper contains the proposed changes to a healthcare facility by introducing the clinical decision support system, which will be needed to improve coordination and communication during patient discharge. This will be done under Kurt Lewin’s Change Management Model, which recognizes the different phases in the change process. A pilot program is proposed initially before the program can be implemented in the entire organization. This allows for the identification of challenges and ways of managing them. The paper anticipates some of the possible challenges that may arise during implementation, and a multi-disciplinary approach is considered the most effective. Opposition to the change is likely to arise because staff members may lack information on how the changes will affect them and the skills they will need to learn to use the new system. Training will occur before the technology can be implemented. Every member will go for training, and adequate time is allocated for training purposes. A comparison of data will determine whether the project has succeeded.Keywords: patient discharge, clinical decision support system, communication, collaboration
Procedia PDF Downloads 1035838 An Evaluation of Drivers in Implementing Sustainable Manufacturing in India: Using DEMATEL Approach
Authors: D. Garg, S. Luthra, A. Haleem
Abstract:
Due to growing concern about environmental and social consequences throughout the world, a need has been felt to incorporate sustainability concepts in conventional manufacturing. This paper is an attempt to identify and evaluate drivers in implementing sustainable manufacturing in Indian context. Nine possible drivers for successful implementation of sustainable manufacturing have been identified from extensive review. Further, Decision Making Trial and Evaluation Laboratory (DEMATEL) approach has been utilized to evaluate and categorize these identified drivers for implementing sustainable manufacturing in to the cause and effect groups. Five drivers (Societal Pressure and Public Concerns; Regulations and Government Policies; Top Management Involvement, Commitment and Support; Effective Strategies and Activities towards Socially Responsible Manufacturing and Market Trends) have been categorized into the cause group and four drivers (Holistic View in Manufacturing Systems; Supplier Participation; Building Sustainable culture in Organization; and Corporate Image and Benefits) have been categorized into the effect group. “Societal Pressure and Public Concerns” has been found the most critical driver and “Corporate Image and Benefits” as least critical or the most easily influenced driver to implementing sustainable manufacturing in Indian context. This paper may surely help practitioners in better understanding of these drivers and their priorities towards effective implementation of sustainable manufacturing.Keywords: drivers, decision making trial and evaluation laboratory (DEMATEL), India, sustainable manufacturing
Procedia PDF Downloads 3885837 Using Electrical Impedance Tomography to Control a Robot
Authors: Shayan Rezvanigilkolaei, Shayesteh Vefaghnematollahi
Abstract:
Electrical impedance tomography is a non-invasive medical imaging technique suitable for medical applications. This paper describes an electrical impedance tomography device with the ability to navigate a robotic arm to manipulate a target object. The design of the device includes various hardware and software sections to perform medical imaging and control the robotic arm. In its hardware section an image is formed by 16 electrodes which are located around a container. This image is used to navigate a 3DOF robotic arm to reach the exact location of the target object. The data set to form the impedance imaging is obtained by having repeated current injections and voltage measurements between all electrode pairs. After performing the necessary calculations to obtain the impedance, information is transmitted to the computer. This data is fed and then executed in MATLAB which is interfaced with EIDORS (Electrical Impedance Tomography Reconstruction Software) to reconstruct the image based on the acquired data. In the next step, the coordinates of the center of the target object are calculated by image processing toolbox of MATLAB (IPT). Finally, these coordinates are used to calculate the angles of each joint of the robotic arm. The robotic arm moves to the desired tissue with the user command.Keywords: electrical impedance tomography, EIT, surgeon robot, image processing of electrical impedance tomography
Procedia PDF Downloads 2725836 An Efficient FPGA Realization of Fir Filter Using Distributed Arithmetic
Authors: M. Iruleswari, A. Jeyapaul Murugan
Abstract:
Most fundamental part used in many Digital Signal Processing (DSP) application is a Finite Impulse Response (FIR) filter because of its linear phase, stability and regular structure. Designing a high-speed and hardware efficient FIR filter is a very challenging task as the complexity increases with the filter order. In most applications the higher order filters are required but the memory usage of the filter increases exponentially with the order of the filter. Using multipliers occupy a large chip area and need high computation time. Multiplier-less memory-based techniques have gained popularity over past two decades due to their high throughput processing capability and reduced dynamic power consumption. This paper describes the design and implementation of highly efficient Look-Up Table (LUT) based circuit for the implementation of FIR filter using Distributed arithmetic algorithm. It is a multiplier less FIR filter. The LUT can be subdivided into a number of LUT to reduce the memory usage of the LUT for higher order filter. Analysis on the performance of various filter orders with different address length is done using Xilinx 14.5 synthesis tool. The proposed design provides less latency, less memory usage and high throughput.Keywords: finite impulse response, distributed arithmetic, field programmable gate array, look-up table
Procedia PDF Downloads 4585835 Portfolio Management for Construction Company during Covid-19 Using AHP Technique
Authors: Sareh Rajabi, Salwa Bheiry
Abstract:
In general, Covid-19 created many financial and non-financial damages to the economy and community. Level and severity of covid-19 as pandemic case varies over the region and due to different types of the projects. Covid-19 virus emerged as one of the most imperative risk management factors word-wide recently. Therefore, as part of portfolio management assessment, it is essential to evaluate severity of such risk on the project and program in portfolio management level to avoid any risky portfolio. Covid-19 appeared very effectively in South America, part of Europe and Middle East. Such pandemic infection affected the whole universe, due to lock down, interruption in supply chain management, health and safety requirements, transportations and commercial impacts. Therefore, this research proposes Analytical Hierarchy Process (AHP) to analyze and assess such pandemic case like Covid-19 and its impacts on the construction projects. The AHP technique uses four sub-criteria: Health and safety, commercial risk, completion risk and contractual risk to evaluate the project and program. The result will provide the decision makers with information which project has higher or lower risk in case of Covid-19 and pandemic scenario. Therefore, the decision makers can have most feasible solution based on effective weighted criteria for project selection within their portfolio to match with the organization’s strategies.Keywords: portfolio management, risk management, COVID-19, analytical hierarchy process technique
Procedia PDF Downloads 1095834 Business Intelligent to a Decision Support Tool for Green Entrepreneurship: Meso and Macro Regions
Authors: Anishur Rahman, Maria Areias, Diogo Simões, Ana Figeuiredo, Filipa Figueiredo, João Nunes
Abstract:
The circular economy (CE) has gained increased awareness among academics, businesses, and decision-makers as it stimulates resource circularity in the production and consumption systems. A large epistemological study has explored the principles of CE, but scant attention eagerly focused on analysing how CE is evaluated, consented to, and enforced using economic metabolism data and business intelligent framework. Economic metabolism involves the ongoing exchange of materials and energy within and across socio-economic systems and requires the assessment of vast amounts of data to provide quantitative analysis related to effective resource management. Limited concern, the present work has focused on the regional flows pilot region from Portugal. By addressing this gap, this study aims to promote eco-innovation and sustainability in the regions of Intermunicipal Communities Região de Coimbra, Viseu Dão Lafões and Beiras e Serra da Estrela, using this data to find precise synergies in terms of material flows and give companies a competitive advantage in form of valuable waste destinations, access to new resources and new markets, cost reduction and risk sharing benefits. In our work, emphasis on applying artificial intelligence (AI) and, more specifically, on implementing state-of-the-art deep learning algorithms is placed, contributing to construction a business intelligent approach. With the emergence of new approaches generally highlighted under the sub-heading of AI and machine learning (ML), the methods for statistical analysis of complex and uncertain production systems are facing significant changes. Therefore, various definitions of AI and its differences from traditional statistics are presented, and furthermore, ML is introduced to identify its place in data science and the differences in topics such as big data analytics and in production problems that using AI and ML are identified. A lifecycle-based approach is then taken to analyse the use of different methods in each phase to identify the most useful technologies and unifying attributes of AI in manufacturing. Most of macroeconomic metabolisms models are mainly direct to contexts of large metropolis, neglecting rural territories, so within this project, a dynamic decision support model coupled with artificial intelligence tools and information platforms will be developed, focused on the reality of these transition zones between the rural and urban. Thus, a real decision support tool is under development, which will surpass the scientific developments carried out to date and will allow to overcome imitations related to the availability and reliability of data.Keywords: circular economy, artificial intelligence, economic metabolisms, machine learning
Procedia PDF Downloads 735833 Performance Assessment of Multi-Level Ensemble for Multi-Class Problems
Authors: Rodolfo Lorbieski, Silvia Modesto Nassar
Abstract:
Many supervised machine learning tasks require decision making across numerous different classes. Multi-class classification has several applications, such as face recognition, text recognition and medical diagnostics. The objective of this article is to analyze an adapted method of Stacking in multi-class problems, which combines ensembles within the ensemble itself. For this purpose, a training similar to Stacking was used, but with three levels, where the final decision-maker (level 2) performs its training by combining outputs from the tree-based pair of meta-classifiers (level 1) from Bayesian families. These are in turn trained by pairs of base classifiers (level 0) of the same family. This strategy seeks to promote diversity among the ensembles forming the meta-classifier level 2. Three performance measures were used: (1) accuracy, (2) area under the ROC curve, and (3) time for three factors: (a) datasets, (b) experiments and (c) levels. To compare the factors, ANOVA three-way test was executed for each performance measure, considering 5 datasets by 25 experiments by 3 levels. A triple interaction between factors was observed only in time. The accuracy and area under the ROC curve presented similar results, showing a double interaction between level and experiment, as well as for the dataset factor. It was concluded that level 2 had an average performance above the other levels and that the proposed method is especially efficient for multi-class problems when compared to binary problems.Keywords: stacking, multi-layers, ensemble, multi-class
Procedia PDF Downloads 2695832 The Investment Decision-Making Principles in Regional Tourism
Authors: Evgeni Baratashvili, Giorgi Sulashvili, Malkhaz Sulashvili, Bela Khotenashvili, Irma Makharashvili
Abstract:
The most investment decision-making principle of regional travel firm's management and its partner is the formulation of the aims of investment programs. The investments can be targeted in order to reduce the firm's production costs and to purchase good transport equipment. In attractive region, in order to develop firm’s activities, the investment program can be targeted for increasing of provided services. That is the case where the sales already have been used in the market. The investment can be directed to establish the affiliate firms, branches, to construct new hotels, to create food and trade enterprises, to develop entertainment enterprises, etc. Economic development is of great importance to regional development. International experience shows that inclusive economic growth largely depends on not only the national, but also regional development planning and implementation of a strong and competitive regions. Regional development is considered as the key factor in achieving national success. Establishing a modern institute separate entities if the pilot centers will constitute a promotion, international best practice-based public-private partnership to encourage the use of models. Regional policy directions and strategies adopted in accordance with the successful implementation of major importance in the near future specific action plans for inclusive development and implementation, which will be provided in accordance with the effective monitoring and evaluation tools and measurable indicators combined. All of these above-mentioned investments are characterized by different levels, which are related to the following fact: How successful tourism marketing service is, whether it is able to determine the proper market's reaction according to the particular firm's actions. In the sphere of regional tourism industry and in the investment decision possible variants it can be developed the some specter of models. Each of the models can be modified and specified according to the situation, and characteristic skills of the existing problem that must be solved. Besides, while choosing the proper model, the process is affected by the regulation system of economic processes. Also, it is influenced by liberalization quality and by the level of state participation.Keywords: net income of travel firm, economic growth, Investment profitability, regional development, tourist product, tourism development
Procedia PDF Downloads 2605831 Parkinson’s Disease Detection Analysis through Machine Learning Approaches
Authors: Muhtasim Shafi Kader, Fizar Ahmed, Annesha Acharjee
Abstract:
Machine learning and data mining are crucial in health care, as well as medical information and detection. Machine learning approaches are now being utilized to improve awareness of a variety of critical health issues, including diabetes detection, neuron cell tumor diagnosis, COVID 19 identification, and so on. Parkinson’s disease is basically a disease for our senior citizens in Bangladesh. Parkinson's Disease indications often seem progressive and get worst with time. People got affected trouble walking and communicating with the condition advances. Patients can also have psychological and social vagaries, nap problems, hopelessness, reminiscence loss, and weariness. Parkinson's disease can happen in both men and women. Though men are affected by the illness at a proportion that is around partial of them are women. In this research, we have to get out the accurate ML algorithm to find out the disease with a predictable dataset and the model of the following machine learning classifiers. Therefore, nine ML classifiers are secondhand to portion study to use machine learning approaches like as follows, Naive Bayes, Adaptive Boosting, Bagging Classifier, Decision Tree Classifier, Random Forest classifier, XBG Classifier, K Nearest Neighbor Classifier, Support Vector Machine Classifier, and Gradient Boosting Classifier are used.Keywords: naive bayes, adaptive boosting, bagging classifier, decision tree classifier, random forest classifier, XBG classifier, k nearest neighbor classifier, support vector classifier, gradient boosting classifier
Procedia PDF Downloads 1295830 Application of Artificial Intelligence in Market and Sales Network Management: Opportunities, Benefits, and Challenges
Authors: Mohamad Mahdi Namdari
Abstract:
In today's rapidly changing and evolving business competition, companies and organizations require advanced and efficient tools to manage their markets and sales networks. Big data analysis, quick response in competitive markets, process and operations optimization, and forecasting customer behavior are among the concerns of executive managers. Artificial intelligence, as one of the emerging technologies, has provided extensive capabilities in this regard. The use of artificial intelligence in market and sales network management can lead to improved efficiency, increased decision-making accuracy, and enhanced customer satisfaction. Specifically, AI algorithms can analyze vast amounts of data, identify complex patterns, and offer strategic suggestions to improve sales performance. However, many companies are still distant from effectively leveraging this technology, and those that do face challenges in fully exploiting AI's potential in market and sales network management. It appears that the general public's and even the managerial and academic communities' lack of knowledge of this technology has caused the managerial structure to lag behind the progress and development of artificial intelligence. Additionally, high costs, fear of change and employee resistance, lack of quality data production processes, the need for updating structures and processes, implementation issues, the need for specialized skills and technical equipment, and ethical and privacy concerns are among the factors preventing widespread use of this technology in organizations. Clarifying and explaining this technology, especially to the academic, managerial, and elite communities, can pave the way for a transformative beginning. The aim of this research is to elucidate the capacities of artificial intelligence in market and sales network management, identify its opportunities and benefits, and examine the existing challenges and obstacles. This research aims to leverage AI capabilities to provide a framework for enhancing market and sales network performance for managers. The results of this research can help managers and decision-makers adopt more effective strategies for business growth and development by better understanding the capabilities and limitations of artificial intelligence.Keywords: artificial intelligence, market management, sales network, big data analysis, decision-making, digital marketing
Procedia PDF Downloads 435829 Distributed Processing for Content Based Lecture Video Retrieval on Hadoop Framework
Authors: U. S. N. Raju, Kothuri Sai Kiran, Meena G. Kamal, Vinay Nikhil Pabba, Suresh Kanaparthi
Abstract:
There is huge amount of lecture video data available for public use, and many more lecture videos are being created and uploaded every day. Searching for videos on required topics from this huge database is a challenging task. Therefore, an efficient method for video retrieval is needed. An approach for automated video indexing and video search in large lecture video archives is presented. As the amount of video lecture data is huge, it is very inefficient to do the processing in a centralized computation framework. Hence, Hadoop Framework for distributed computing for Big Video Data is used. First, step in the process is automatic video segmentation and key-frame detection to offer a visual guideline for the video content navigation. In the next step, we extract textual metadata by applying video Optical Character Recognition (OCR) technology on key-frames. The OCR and detected slide text line types are adopted for keyword extraction, by which both video- and segment-level keywords are extracted for content-based video browsing and search. The performance of the indexing process can be improved for a large database by using distributed computing on Hadoop framework.Keywords: video lectures, big video data, video retrieval, hadoop
Procedia PDF Downloads 5345828 Effect of Temperature and Deformation Mode on Texture Evolution of AA6061
Authors: M. Ghosh, A. Miroux, L. A. I. Kestens
Abstract:
At molecular or micrometre scale, practically all materials are neither homogeneous nor isotropic. The concept of texture is used to identify the structural features that cause the properties of a material to be anisotropic. For metallic materials, the anisotropy of the mechanical behaviour originates from the crystallographic nature of plastic deformation, and is therefore controlled by the crystallographic texture. Anisotropy in mechanical properties often constitutes a disadvantage in the application of materials, as it is often illustrated by the earing phenomena during drawing. However, advantages may also be attained when considering other properties (e.g. optimization of magnetic behaviour to a specific direction) by controlling texture through thermo-mechanical processing). Nevertheless, in order to have better control over the final properties it is essential to relate texture with materials processing route and subsequently optimise their performance. However, up to date, few studies have been reported about the evolution of texture in 6061 aluminium alloy during warm processing (from room temperature to 250ºC). In present investigation, recrystallized 6061 aluminium alloy samples were subjected to tensile and plane strain compression (PSC) at room and warm temperatures. The gradual change of texture following both deformation modes were measured and discussed. Tensile tests demonstrate the mechanism at low strain while PSC does the same at high strain and eventually simulate the condition of rolling. Cube dominated texture of the initial rolled and recrystallized AA6061 sheets were replaced by domination of S and R components after PSC at room temperature, warm temperature (250ºC) though did not reflect any noticeable deviation from room temperature observation. It was also noticed that temperature has no significant effect on the evolution of grain morphology during PSC. The band contrast map revealed that after 30% deformation the substructure inside the grain is mainly made of series of parallel bands. A tendency for decrease of Cube and increase of Goss was noticed after tensile deformation compared to as-received material. Like PSC, texture does not change after deformation at warm temperature though. n-fibre was noticed for all the three textures from Goss to Cube.Keywords: AA 6061, deformation, temperature, tensile, PSC, texture
Procedia PDF Downloads 4855827 Experimental Modeling of Spray and Water Sheet Formation Due to Wave Interactions with Vertical and Slant Bow-Shaped Model
Authors: Armin Bodaghkhani, Bruce Colbourne, Yuri S. Muzychka
Abstract:
The process of spray-cloud formation and flow kinematics produced from breaking wave impact on vertical and slant lab-scale bow-shaped models were experimentally investigated. Bubble Image Velocimetry (BIV) and Image Processing (IP) techniques were applied to study the various types of wave-model impacts. Different wave characteristics were generated in a tow tank to investigate the effects of wave characteristics, such as wave phase velocity, wave steepness on droplet velocities, and behavior of the process of spray cloud formation. The phase ensemble-averaged vertical velocity and turbulent intensity were computed. A high-speed camera and diffused LED backlights were utilized to capture images for further post processing. Various pressure sensors and capacitive wave probes were used to measure the wave impact pressure and the free surface profile at different locations of the model and wave-tank, respectively. Droplet sizes and velocities were measured using BIV and IP techniques to trace bubbles and droplets in order to measure their velocities and sizes by correlating the texture in these images. The impact pressure and droplet size distributions were compared to several previously experimental models, and satisfactory agreements were achieved. The distribution of droplets in front of both models are demonstrated. Due to the highly transient process of spray formation, the drag coefficient for several stages of this transient displacement for various droplet size ranges and different Reynolds number were calculated based on the ensemble average method. From the experimental results, the slant model produces less spray in comparison with the vertical model, and the droplet velocities generated from the wave impact with the slant model have a lower velocity as compared with the vertical model.Keywords: spray charachteristics, droplet size and velocity, wave-body interactions, bubble image velocimetry, image processing
Procedia PDF Downloads 3005826 Data Clustering in Wireless Sensor Network Implemented on Self-Organization Feature Map (SOFM) Neural Network
Authors: Krishan Kumar, Mohit Mittal, Pramod Kumar
Abstract:
Wireless sensor network is one of the most promising communication networks for monitoring remote environmental areas. In this network, all the sensor nodes are communicated with each other via radio signals. The sensor nodes have capability of sensing, data storage and processing. The sensor nodes collect the information through neighboring nodes to particular node. The data collection and processing is done by data aggregation techniques. For the data aggregation in sensor network, clustering technique is implemented in the sensor network by implementing self-organizing feature map (SOFM) neural network. Some of the sensor nodes are selected as cluster head nodes. The information aggregated to cluster head nodes from non-cluster head nodes and then this information is transferred to base station (or sink nodes). The aim of this paper is to manage the huge amount of data with the help of SOM neural network. Clustered data is selected to transfer to base station instead of whole information aggregated at cluster head nodes. This reduces the battery consumption over the huge data management. The network lifetime is enhanced at a greater extent.Keywords: artificial neural network, data clustering, self organization feature map, wireless sensor network
Procedia PDF Downloads 5175825 A Comparative Analysis of Solid Waste Treatment Technologies on Cost and Environmental Basis
Authors: Nesli Aydin
Abstract:
Waste management decision making in developing countries has moved towards being more pragmatic, transparent, sustainable and comprehensive. Turkey is required to make its waste related legislation compatible with European Legislation as it is a candidate country of the European Union. Improper Turkish practices such as open burning and open dumping practices must be abandoned urgently, and robust waste management systems have to be structured. The determination of an optimum waste management system in any region requires a comprehensive analysis in which many criteria are taken into account by stakeholders. In conducting this sort of analysis, there are two main criteria which are evaluated by waste management analysts; economic viability and environmentally friendliness. From an analytical point of view, a central characteristic of sustainable development is an economic-ecological integration. It is predicted that building a robust waste management system will need significant effort and cooperation between the stakeholders in developing countries such as Turkey. In this regard, this study aims to provide data regarding the cost and environmental burdens of waste treatment technologies such as an incinerator, an autoclave (with different capacities), a hydroclave and a microwave coupled with updated information on calculation methods, and a framework for comparing any proposed scenario performances on a cost and environmental basis.Keywords: decision making, economic viability, environmentally friendliness, waste management systems
Procedia PDF Downloads 3055824 Sustainable Geographic Information System-Based Map for Suitable Landfill Sites in Aley and Chouf, Lebanon
Authors: Allaw Kamel, Bazzi Hasan
Abstract:
Municipal solid waste (MSW) generation is among the most significant sources which threaten the global environmental health. Solid Waste Management has been an important environmental problem in developing countries because of the difficulties in finding sustainable solutions for solid wastes. Therefore, more efforts are needed to be implemented to overcome this problem. Lebanon has suffered a severe solid waste management problem in 2015, and a new landfill site was proposed to solve the existing problem. The study aims to identify and locate the most suitable area to construct a landfill taking into consideration the sustainable development to overcome the present situation and protect the future demands. Throughout the article, a landfill site selection methodology was discussed using Geographic Information System (GIS) and Multi Criteria Decision Analysis (MCDA). Several environmental, economic and social factors were taken as criterion for selection of a landfill. Soil, geology, and LUC (Land Use and Land Cover) indices with the Sustainable Development Index were main inputs to create the final map of Environmentally Sensitive Area (ESA) for landfill site. Different factors were determined to define each index. Input data of each factor was managed, visualized and analyzed using GIS. GIS was used as an important tool to identify suitable areas for landfill. Spatial Analysis (SA), Analysis and Management GIS tools were implemented to produce input maps capable of identifying suitable areas related to each index. Weight has been assigned to each factor in the same index, and the main weights were assigned to each index used. The combination of the different indices map generates the final output map of ESA. The output map was reclassified into three suitability classes of low, moderate, and high suitability. Results showed different locations suitable for the construction of a landfill. Results also reflected the importance of GIS and MCDA in helping decision makers finding a solution of solid wastes by a sanitary landfill.Keywords: sustainable development, landfill, municipal solid waste (MSW), geographic information system (GIS), multi criteria decision analysis (MCDA), environmentally sensitive area (ESA)
Procedia PDF Downloads 1505823 Breast Cancer Survivability Prediction via Classifier Ensemble
Authors: Mohamed Al-Badrashiny, Abdelghani Bellaachia
Abstract:
This paper presents a classifier ensemble approach for predicting the survivability of the breast cancer patients using the latest database version of the Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute. The system consists of two main components; features selection and classifier ensemble components. The features selection component divides the features in SEER database into four groups. After that it tries to find the most important features among the four groups that maximizes the weighted average F-score of a certain classification algorithm. The ensemble component uses three different classifiers, each of which models different set of features from SEER through the features selection module. On top of them, another classifier is used to give the final decision based on the output decisions and confidence scores from each of the underlying classifiers. Different classification algorithms have been examined; the best setup found is by using the decision tree, Bayesian network, and Na¨ıve Bayes algorithms for the underlying classifiers and Na¨ıve Bayes for the classifier ensemble step. The system outperforms all published systems to date when evaluated against the exact same data of SEER (period of 1973-2002). It gives 87.39% weighted average F-score compared to 85.82% and 81.34% of the other published systems. By increasing the data size to cover the whole database (period of 1973-2014), the overall weighted average F-score jumps to 92.4% on the held out unseen test set.Keywords: classifier ensemble, breast cancer survivability, data mining, SEER
Procedia PDF Downloads 3295822 Machine Learning Approach for Mutation Testing
Authors: Michael Stewart
Abstract:
Mutation testing is a type of software testing proposed in the 1970s where program statements are deliberately changed to introduce simple errors so that test cases can be validated to determine if they can detect the errors. Test cases are executed against the mutant code to determine if one fails, detects the error and ensures the program is correct. One major issue with this type of testing was it became intensive computationally to generate and test all possible mutations for complex programs. This paper used reinforcement learning and parallel processing within the context of mutation testing for the selection of mutation operators and test cases that reduced the computational cost of testing and improved test suite effectiveness. Experiments were conducted using sample programs to determine how well the reinforcement learning-based algorithm performed with one live mutation, multiple live mutations and no live mutations. The experiments, measured by mutation score, were used to update the algorithm and improved accuracy for predictions. The performance was then evaluated on multiple processor computers. With reinforcement learning, the mutation operators utilized were reduced by 50 – 100%.Keywords: automated-testing, machine learning, mutation testing, parallel processing, reinforcement learning, software engineering, software testing
Procedia PDF Downloads 1985821 Multi-Criteria Evaluation of IDS Architectures in Cloud Computing
Authors: Elmahdi Khalil, Saad Enniari, Mostapha Zbakh
Abstract:
Cloud computing promises to increase innovation and the velocity with witch applications are deployed, all while helping any enterprise meet most IT service needs at a lower total cost of ownership and higher return investment. As the march of cloud continues, it brings both new opportunities and new security challenges. To take advantages of those opportunities while minimizing risks, we think that Intrusion Detection Systems (IDS) integrated in the cloud is one of the best existing solutions nowadays in the field. The concept of intrusion detection was known since past and was first proposed by a well-known researcher named Anderson in 1980's. Since that time IDS's are evolving. Although, several efforts has been made in the area of Intrusion Detection systems for cloud computing environment, many attacks still prevail. Therefore, the work presented in this paper proposes a multi criteria analysis and a comparative study between several IDS architectures designated to work in a cloud computing environments. To achieve this objective, in the first place we will search in the state of the art of several consistent IDS architectures designed to work in a cloud environment. Whereas, in a second step we will establish the criteria that will be useful for the evaluation of architectures. Later, using the approach of multi criteria decision analysis Mac Beth (Measuring Attractiveness by a Categorical Based Evaluation Technique we will evaluate the criteria and assign to each one the appropriate weight according to their importance in the field of IDS architectures in cloud computing. The last step is to evaluate architectures against the criteria and collecting results of the model constructed in the previous steps.Keywords: cloud computing, cloud security, intrusion detection/prevention system, multi-criteria decision analysis
Procedia PDF Downloads 4725820 Feasibility Study of a Solar Farm Project with an Executive Approach
Authors: Amir Reza Talaghat
Abstract:
Since 2015, a new approach and policy regarding energy resources protection and using renewable energies has been started in Iran which was developing new projects. Investigating about the feasibility study of these new projects helped to figure out five steps to prepare an executive feasibility study of the concerned projects, which are proper site selections, authorizations, design and simulation, economic study and programming, respectively. The results were interesting and essential for decision makers and investors to start implementing of these projects in reliable condition. The research is obtained through collection and study of the project's documents as well as recalculation to review conformity of the results with GIS data and the technical information of the bidders. In this paper, it is attempted to describe the result of the performed research by describing the five steps as an executive methodology, for preparing a feasible study of installing a 10 MW – solar farm project. The corresponding results of the research also help decision makers to start similar projects is explained in this paper as follows: selecting the best location for the concerned PV plant, reliable and safe conditions for investment and the required authorizations to start implementing the solar farm project in the concerned region, selecting suitable component to achieve the best possible performance for the plant, economic profit of the investment, proper programming to implement the project on time.Keywords: solar farm, solar energy, execution of PV power plant PV power plant
Procedia PDF Downloads 1795819 Mage Fusion Based Eye Tumor Detection
Authors: Ahmed Ashit
Abstract:
Image fusion is a significant and efficient image processing method used for detecting different types of tumors. This method has been used as an effective combination technique for obtaining high quality images that combine anatomy and physiology of an organ. It is the main key in the huge biomedical machines for diagnosing cancer such as PET-CT machine. This thesis aims to develop an image analysis system for the detection of the eye tumor. Different image processing methods are used to extract the tumor and then mark it on the original image. The images are first smoothed using median filtering. The background of the image is subtracted, to be then added to the original, results in a brighter area of interest or tumor area. The images are adjusted in order to increase the intensity of their pixels which lead to clearer and brighter images. once the images are enhanced, the edges of the images are detected using canny operators results in a segmented image comprises only of the pupil and the tumor for the abnormal images, and the pupil only for the normal images that have no tumor. The images of normal and abnormal images are collected from two sources: “Miles Research” and “Eye Cancer”. The computerized experimental results show that the developed image fusion based eye tumor detection system is capable of detecting the eye tumor and segment it to be superimposed on the original image.Keywords: image fusion, eye tumor, canny operators, superimposed
Procedia PDF Downloads 3655818 Bedouin Dispersion in Israel: Between Sustainable Development and Social Non-Recognition
Authors: Tamir Michal
Abstract:
The subject of Bedouin dispersion has accompanied the State of Israel from the day of its establishment. From a legal point of view, this subject has offered a launchpad for creative judicial decisions. Thus, for example, the first court decision in Israel to recognize affirmative action (Avitan), dealt with a petition submitted by a Jew appealing the refusal of the State to recognize the Petitioner’s entitlement to the long-term lease of a plot designated for Bedouins. The Supreme Court dismissed the petition, holding that there existed a public interest in assisting Bedouin to establish permanent urban settlements, an interest which justifies giving them preference by selling them plots at subsidized prices. In another case (The Forum for Coexistence in the Negev) the Supreme Court extended equitable relief for the purpose of constructing a bridge, even though the construction infringed the Law, in order to allow the children of dispersed Bedouin to reach school. Against this background, the recent verdict, delivered during the Protective Edge military campaign, which dismissed a petition aimed at forcing the State to spread out Protective Structures in Bedouin villages in the Negev against the risk of being hit from missiles launched from Gaza (Abu Afash) is disappointing. Even if, in arguendo, no selective discrimination was involved in the State’s decision not to provide such protection, the decision, and its affirmation by the Court, is problematic when examined through the prism of the Theory of Recognition. The article analyses the issue by tools of theory of Recognition, according to which people develop their identities through mutual relations of recognition in different fields. In the social context, the path to recognition is cognitive respect, which is provided by means of legal rights. By seeing other participants in Society as bearers of rights and obligations, the individual develops an understanding of his legal condition as reflected in the attitude to others. Consequently, even if the Court’s decision may be justified on strict legal grounds, the fact that Jewish settlements were protected during the military operation, whereas Bedouin villages were not, is a setback in the struggle to make the Bedouin citizens with equal rights in Israeli society. As the Court held, ‘Beyond their protective function, the Migunit [Protective Structures] may make a moral and psychological contribution that should not be undervalued’. This contribution is one that the Bedouin did not receive in the Abu Afash verdict. The basic thesis is that the Court’s verdict analyzed above clearly demonstrates that the reliance on classical liberal instruments (e.g., equality) cannot secure full appreciation of all aspects of Bedouin life, and hence it can in fact prejudice them. Therefore, elements of the recognition theory should be added, in order to find the channel for cognitive dignity, thereby advancing the Bedouins’ ability to perceive themselves as equal human beings in the Israeli society.Keywords: bedouin dispersion, cognitive respect, recognition theory, sustainable development
Procedia PDF Downloads 350