Search results for: crow search algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5210

Search results for: crow search algorithm

3590 Hybrid Anomaly Detection Using Decision Tree and Support Vector Machine

Authors: Elham Serkani, Hossein Gharaee Garakani, Naser Mohammadzadeh, Elaheh Vaezpour

Abstract:

Intrusion detection systems (IDS) are the main components of network security. These systems analyze the network events for intrusion detection. The design of an IDS is through the training of normal traffic data or attack. The methods of machine learning are the best ways to design IDSs. In the method presented in this article, the pruning algorithm of C5.0 decision tree is being used to reduce the features of traffic data used and training IDS by the least square vector algorithm (LS-SVM). Then, the remaining features are arranged according to the predictor importance criterion. The least important features are eliminated in the order. The remaining features of this stage, which have created the highest level of accuracy in LS-SVM, are selected as the final features. The features obtained, compared to other similar articles which have examined the selected features in the least squared support vector machine model, are better in the accuracy, true positive rate, and false positive. The results are tested by the UNSW-NB15 dataset.

Keywords: decision tree, feature selection, intrusion detection system, support vector machine

Procedia PDF Downloads 265
3589 Sentiment Analysis of Ensemble-Based Classifiers for E-Mail Data

Authors: Muthukumarasamy Govindarajan

Abstract:

Detection of unwanted, unsolicited mails called spam from email is an interesting area of research. It is necessary to evaluate the performance of any new spam classifier using standard data sets. Recently, ensemble-based classifiers have gained popularity in this domain. In this research work, an efficient email filtering approach based on ensemble methods is addressed for developing an accurate and sensitive spam classifier. The proposed approach employs Naive Bayes (NB), Support Vector Machine (SVM) and Genetic Algorithm (GA) as base classifiers along with different ensemble methods. The experimental results show that the ensemble classifier was performing with accuracy greater than individual classifiers, and also hybrid model results are found to be better than the combined models for the e-mail dataset. The proposed ensemble-based classifiers turn out to be good in terms of classification accuracy, which is considered to be an important criterion for building a robust spam classifier.

Keywords: accuracy, arcing, bagging, genetic algorithm, Naive Bayes, sentiment mining, support vector machine

Procedia PDF Downloads 142
3588 Biomass Carbon Credit Estimation for Sustainable Urban Planning and Micro-climate Assessment

Authors: R. Niranchana, K. Meena Alias Jeyanthi

Abstract:

As a result of the present climate change dilemma, the energy balancing strategy is to construct a sustainable environment has become a top concern for researchers worldwide. The environment itself has always been a solution from the earliest days of human evolution. Carbon capture begins with its accurate estimation and monitoring credit inventories, and its efficient use. Sustainable urban planning with deliverables of re-use energy models might benefit from assessment methods like biomass carbon credit ranking. The term "biomass energy" refers to the various ways in which living organisms can potentially be converted into a source of energy. The approaches that can be applied to biomass and an algorithm for evaluating carbon credits are presented in this paper. The micro-climate evaluation using Computational Fluid dynamics was carried out across the location (1 km x1 km) at Dindigul, India (10°24'58.68" North, 77°54.1.80 East). Sustainable Urban design must be carried out considering environmental and physiological convection, conduction, radiation and evaporative heat exchange due to proceeding solar access and wind intensities.

Keywords: biomass, climate assessment, urban planning, multi-regression, carbon estimation algorithm

Procedia PDF Downloads 95
3587 Factors Influencing Respectful Perinatal Care Among Healthcare Professionals In Low-and Middle-resource Countries: A Systematic Review

Authors: Petronella Lunda, Catharina Susanna Minnie, Welma Lubbe

Abstract:

Background This review aimed to provide healthcare professionals with a scientific summary of the best available research evidence on factors influencing respectful perinatal care. The review question was ‘What were the perceptions of midwives and doctors on factors that influence respectful perinatal care?’ Methods A detailed search was done on electronic databases: EBSCOhost: Medline, OAlster, Scopus, SciELO, Science Direct, PubMed, Psych INFO, and SocINDEX. The databases were searched for available literature using a predetermined search strategy. Reference lists of included studies were analysed to identify studies missing from databases. The phenomenon of interest was factors influencing maternity care practices according to midwives and doctors. Pre-determined inclusion and exclusion criteria were used during the selection of potential studies. In total, 13 studies were included in the data analysis and synthesis. Three themes were identified and a total of nine sub-themes. Results Studies conducted in various settings were included in the study. Multiple factors influencing respectful perinatal care were identified. During data synthesis, three themes emerged: healthcare institution, healthcare professionals, and women-related factors. Alongside the themes were sub-themes human resources, medical supplies, norms and practices, physical infrastructure, healthcare professional competencies and attributes, women’s knowledge, and preferences. The three factors influence the provision of respectful perinatal care; addressing them might improve the provision of the care. Conclusion Addressing factors that influence respectful perinatal care is vital towards the prevention of compromised patient care during the perinatal period as these factors have the potential to accelerate or hinder provision of respectful care.

Keywords: doctors, maternity care, midwives, obstetrician, perceptions, perinatal care, respectful care

Procedia PDF Downloads 22
3586 Switched System Diagnosis Based on Intelligent State Filtering with Unknown Models

Authors: Nada Slimane, Foued Theljani, Faouzi Bouani

Abstract:

The paper addresses the problem of fault diagnosis for systems operating in several modes (normal or faulty) based on states assessment. We use, for this purpose, a methodology consisting of three main processes: 1) sequential data clustering, 2) linear model regression and 3) state filtering. Typically, Kalman Filter (KF) is an algorithm that provides estimation of unknown states using a sequence of I/O measurements. Inevitably, although it is an efficient technique for state estimation, it presents two main weaknesses. First, it merely predicts states without being able to isolate/classify them according to their different operating modes, whether normal or faulty modes. To deal with this dilemma, the KF is endowed with an extra clustering step based fully on sequential version of the k-means algorithm. Second, to provide state estimation, KF requires state space models, which can be unknown. A linear regularized regression is used to identify the required models. To prove its effectiveness, the proposed approach is assessed on a simulated benchmark.

Keywords: clustering, diagnosis, Kalman Filtering, k-means, regularized regression

Procedia PDF Downloads 182
3585 Tuning Fractional Order Proportional-Integral-Derivative Controller Using Hybrid Genetic Algorithm Particle Swarm and Differential Evolution Optimization Methods for Automatic Voltage Regulator System

Authors: Fouzi Aboura

Abstract:

The fractional order proportional-integral-derivative (FOPID) controller or fractional order (PIλDµ) is a proportional-integral-derivative (PID) controller where integral order (λ) and derivative order (µ) are fractional, one of the important application of classical PID is the Automatic Voltage Regulator (AVR).The FOPID controller needs five parameters optimization while the design of conventional PID controller needs only three parameters to be optimized. In our paper we have proposed a comparison between algorithms Differential Evolution (DE) and Hybrid Genetic Algorithm Particle Swarm Optimization (HGAPSO) ,we have studied theirs characteristics and performance analysis to find an optimum parameters of the FOPID controller, a new objective function is also proposed to take into account the relation between the performance criteria’s.

Keywords: FOPID controller, fractional order, AVR system, objective function, optimization, GA, PSO, HGAPSO

Procedia PDF Downloads 90
3584 Association Rules Mining Task Using Metaheuristics: Review

Authors: Abir Derouiche, Abdesslem Layeb

Abstract:

Association Rule Mining (ARM) is one of the most popular data mining tasks and it is widely used in various areas. The search for association rules is an NP-complete problem that is why metaheuristics have been widely used to solve it. The present paper presents the ARM as an optimization problem and surveys the proposed approaches in the literature based on metaheuristics.

Keywords: Optimization, Metaheuristics, Data Mining, Association rules Mining

Procedia PDF Downloads 159
3583 Vehicle Detection and Tracking Using Deep Learning Techniques in Surveillance Image

Authors: Abe D. Desta

Abstract:

This study suggests a deep learning-based method for identifying and following moving objects in surveillance video. The proposed method uses a fast regional convolution neural network (F-RCNN) trained on a substantial dataset of vehicle images to first detect vehicles. A Kalman filter and a data association technique based on a Hungarian algorithm are then used to monitor the observed vehicles throughout time. However, in general, F-RCNN algorithms have been shown to be effective in achieving high detection accuracy and robustness in this research study. For example, in one study The study has shown that the vehicle detection and tracking, the system was able to achieve an accuracy of 97.4%. In this study, the F-RCNN algorithm was compared to other popular object detection algorithms and was found to outperform them in terms of both detection accuracy and speed. The presented system, which has application potential in actual surveillance systems, shows the usefulness of deep learning approaches in vehicle detection and tracking.

Keywords: artificial intelligence, computer vision, deep learning, fast-regional convolutional neural networks, feature extraction, vehicle tracking

Procedia PDF Downloads 127
3582 Geoeducation Strategies for Teaching Natural Hazards in Schools

Authors: Carlos Alberto Ríos Reyes, Andrés Felipe Mejía Durán, Oscar Mauricio Castellanos Alarcón

Abstract:

There is no doubt of great importance to make it known that planet Earth is an entity in constant change and transformation; processes such as construction and destruction are part of the evolution of the territory. Geoeducation workshops represent a significant contribution to the search for educational projects focused on teaching relevant geoscience topics to make natural threats known in schools through recreational and didactic activities. This initiative represents an educational alternative that must be developed with the participation of primary and secondary schools, universities, and local communities. The methodology is based on several phases, which include: diagnosis to know the best teaching method for basic concepts and establish a starting point for the topics to be taught, as well as to identify areas and concepts that need to be reinforced and/or deepened; design of activities that involve all students regardless of their ability or level; use of accessible materials and experimentation to support clear and concise explanations for all students; adaptation of the teaching-learning process to individual needs; sensitization about natural threats; and evaluation and feedback. It is expected to offer a series of activities and materials as a significant contribution to the search for educational projects focused on teaching relevant geoscientific topics such as natural threats associated with earthquakes, volcanic eruptions, floods, landslides, etc. The major findings of this study are the pedagogical strategies that primary and secondary school teachers can appropriate to face the challenge of transferring geological knowledge and to advise decision-makers and citizens on the importance of geosciences for daily life. We conclude that the knowledge of the natural threats to our planet is very important to contribute to mitigating their risk.

Keywords: workshops, geoeducation, curriculum, geosciences, natural threats

Procedia PDF Downloads 66
3581 A National Systematic Review on Determining Prevalence of Mobbing Exposure in Turkish Nurses

Authors: Betül Sönmez, Aytolan Yıldırım

Abstract:

Objective: This systematic review aims to methodically analyze studies regarding mobbing behavior prevalence, individuals performing this behavior and the effects of mobbing on Turkish nurses. Background: Worldwide reports on mobbing cases have increased in the past years, a similar trend also observable in Turkey. It has been demonstrated that among healthcare workers, mobbing is significantly widespread in nurses. The number of studies carried out in this regard has also increased. Method: The main criteria for choosing articles in this systematic review were nurses located in Turkey, regardless of any specific date. In November 2014, a search using the keywords 'mobbing, bullying, psychological terror/violence, emotional violence, nurses, healthcare workers, Turkey' in PubMed, Science Direct, Ebscohost, National Thesis Centre database and Google search engine led to 71 studies in this field. 33 studies were not met the inclusion criteria specified for this study. Results: The findings were obtained using the results of 38 studies carried out in the past 13 years in Turkey, a large sample consisting of 8,877 nurses. Analysis of the incidences of mobbing behavior revealed a broad spectrum, ranging from none-slight experiences to 100% experiences. The most frequently observed mobbing behaviors include attacking personality, blocking communication and attacking professional and social reputation. Victims mostly experienced mobbing from their managers, the most common consequence of these actions being psychological effects. Conclusions: The results of studies with various scales indicate exposure of nurses to similar mobbing behavior. The high frequency of exposure of nurses to mobbing behavior in such a large sample highlights the importance of considering this issue in terms of individual and institutional consequences that adversely affect the performance of nurses.

Keywords: mobbing, bullying, workplace violence, nurses, Turkey

Procedia PDF Downloads 277
3580 The Conceptual Design Model of an Automated Supermarket

Authors: V. Sathya Narayanan, P. Sidharth, V. R. Sanal Kumar

Abstract:

The success of any retail business is predisposed by its swift response and its knack in understanding the constraints and the requirements of customers. In this paper a conceptual design model of an automated customer-friendly supermarket has been proposed. In this model a 10-sided, space benefited, regular polygon shaped gravity shelves have been designed for goods storage and effective customer-specific algorithms have been built-in for quick automatic delivery of the randomly listed goods. The algorithm is developed with two main objectives, viz., delivery time and priority. For meeting these objectives the randomly listed items are reorganized according to the critical-path of the robotic arm specific to the identified shop and its layout and the items are categorized according to the demand, shape, size, similarity and nature of the product for an efficient pick-up, packing and delivery process. We conjectured that the proposed automated supermarket model reduces business operating costs with much customer satisfaction warranting a win-win situation.

Keywords: automated supermarket, electronic shopping, polygon-shaped rack, shortest path algorithm for shopping

Procedia PDF Downloads 405
3579 A Systematic Review on Prevalence, Serotypes and Antibiotic Resistance of Salmonella in Ethiopia

Authors: Atsebaha Gebrekidan Kahsay, Tsehaye Asmelash, Enquebaher Kassaye

Abstract:

Background: Salmonella remains a global public health problem with a significant burden in sub-Saharan African countries. Human restricted cause of typhoid and paratyphoid fever are S. Typhi and S. Paratyphi, whereas S. Enteritidis and S. Typhimurium is the causative agent of invasive nontyphoidal diseases among humans and animals are their reservoir. The antibiotic resistance of Salmonella is another public health threat around the globe. To come up with full information about human and animal salmonellosis, we made a systematic review of the prevalence, serotypes, and antibiotic resistance of Salmonella in Ethiopia. Methods: This systematic review used Google Scholar and PubMed search engines to search articles from Ethiopia that were published in English in peer-reviewed international journals from 2010 to 2022. We used keywords to identify the intended research articles and used a Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist to ensure the inclusion and exclusion criteria. Frequencies and percentages were analyzed using Microsoft Excel. Results: Two hundred seven published articles were searched, and 43 were selected for a systematic review, human (28) and animals (15). The prevalence of Salmonella in humans and animals was 434 (5.2%) and 641(10.1%), respectively. Fourteen serotypes were identified from animals, and S. Typhimurium was among the top five. Among the ciprofloxacin-resistant isolates in human studies, 16.7% was the highest, whereas, for ceftriaxone, 100% resistance was reported. Conclusions: The prevalence of Salmonella among diarrheic patients and food handlers (5.2%) was lower than the prevalence in food animals (10.1%). We did not find serotypes of Salmonella in human studies, although fourteen serotypes were included in food-animal studies, and S. Typhimurium was among the top five. Salmonella species from some human studies revealed a non-susceptibility to ceftriaxone. We recommend further study about invasive nontyphoidal Salmonella and predisposing factors among humans and animals in Ethiopia.

Keywords: antibiotic resistance, prevalence, systematic review, serotypes, Salmonella, Ethiopia

Procedia PDF Downloads 82
3578 A Critical Review and Bibliometric Analysis on Measures of Achievement Motivation

Authors: Kanupriya Rawat, Aleksandra Błachnio, Paweł Izdebski

Abstract:

Achievement motivation, which drives a person to strive for success, is an important construct in sports psychology. This systematic review aims to analyze the methods of measuring achievement motivation used in previous studies published over the past four decades and to find out which method of measuring achievement motivation is the most prevalent and the most effective by thoroughly examining measures of achievement motivation used in each study and by evaluating most highly cited achievement motivation measures in sport. In order to understand this latent construct, thorough measurement is necessary, hence a critical evaluation of measurement tools is required. The literature search was conducted in the following databases: EBSCO, MEDLINE, APA PsychARTICLES, Academic Search Ultimate, Open Dissertations, ERIC, Science direct, Web of Science, as well as Wiley Online Library. A total of 26 articles met the inclusion criteria and were selected. From this review, it was found that the Achievement Goal Questionnaire- Sport (AGQ-Sport) and the Task and Ego Orientation in Sport Questionnaire (TEOSQ) were used in most of the research, however, the average weighted impact factor of the Achievement Goal Questionnaire- Sport (AGQ-Sport) is the second highest and most relevant in terms of research articles related to the sport psychology discipline. Task and Ego Orientation in Sport Questionnaire (TEOSQ) is highly popular in cross-cultural adaptation but has the second last average IF among other scales due to the less impact factor of most of the publishing journals. All measures of achievement motivation have Cronbach’s alpha value of more than .70, which is acceptable. The advantages and limitations of each measurement tool are discussed, and the distinction between using implicit and explicit measures of achievement motivation is explained. Overall, both implicit and explicit measures of achievement motivation have different conceptualizations of achievement motivation and are applicable at either the contextual or situational level. The conceptualization and degree of applicability are perhaps the most crucial factors for researchers choosing a questionnaire, even though they differ in their development, reliability, and use.

Keywords: achievement motivation, task and ego orientation, sports psychology, measures of achievement motivation

Procedia PDF Downloads 96
3577 Prediction of the Solubility of Benzoic Acid in Supercritical CO2 Using the PC-SAFT EoS

Authors: Hamidreza Bagheri, Alireza Shariati

Abstract:

There are many difficulties in the purification of raw components and products. However, researchers are seeking better ways for purification. One of the recent methods is extraction using supercritical fluids. In this study, the phase equilibria of benzoic acid-supercritical carbon dioxide system were investigated. Regarding the phase equilibria of this system, the modeling of solid-supercritical fluid behavior was performed using the Perturbed-Chain Statistical Association Fluid Theory (PC-SAFT) and Peng-Robinson equations of state (PR EoS). For this purpose, five PC-SAFT EoS parameters for pure benzoic acid were obtained using its experimental vapor pressure. Benzoic acid has association sites and the behavior of the benzoic acid-supercritical fluid system was well-predicted using both equations of state, while the binary interaction parameter values for PR EoS were negative. Genetic algorithm, which is one of the most accurate global optimization algorithms, was also used to optimize the pure benzoic acid parameters and the binary interaction parameters. The AAD% value for the PC-SAFT EoS, were 0.22 for the carbon dioxide-benzoic acid system.

Keywords: supercritical fluids, solubility, solid, PC-SAFT EoS, genetic algorithm

Procedia PDF Downloads 521
3576 Bioinformatics Identification of Rare Codon Clusters in Proteins Structure of HBV

Authors: Abdorrasoul Malekpour, Mohammad Ghorbani Mojtaba Mortazavi, Mohammadreza Fattahi, Mohammad Hassan Meshkibaf, Ali Fakhrzad, Saeid Salehi, Saeideh Zahedi, Amir Ahmadimoghaddam, Parviz Farzadnia Dr., Mohammadreza Hajyani Asl Bs

Abstract:

Hepatitis B as an infectious disease has eight main genotypes (A–H). The aim of this study is to Bioinformatically identify Rare Codon Clusters (RCC) in proteins structure of HBV. For detection of protein family accession numbers (Pfam) of HBV proteins; used of uni-prot database and Pfam search tool were used. Obtained Pfam IDs were analyzed in Sherlocc program and RCCs in HBV proteins were detected. In further, the structures of TrEMBL entries proteins studied in PDB database and 3D structures of the HBV proteins and locations of RCCs were visualized and studied using Swiss PDB Viewer software. Pfam search tool have found nine significant hits and 0 insignificant hits in 3 frames. Results of Pfams studied in the Sherlocc program show this program not identified RCCs in the external core antigen (PF08290) and truncated HBeAg protein (PF08290). By contrast the RCCs become identified in Hepatitis core antigen (PF00906) Large envelope protein S (PF00695), X protein (PF00739), DNA polymerase (viral) N-terminal domain (PF00242) and Protein P (Pf00336). In HBV genome, seven RCC identified that found in hepatitis core antigen, large envelope protein S and DNA polymerase proteins and proteins structures of TrEMBL entries sequences that reported in Sherlocc program outputs are not complete. Based on situation of RCC in structure of HBV proteins, it suggested those RCCs are important in HBV life cycle. We hoped that this study provide a new and deep perspective in protein research and drug design for treatment of HBV.

Keywords: rare codon clusters, hepatitis B virus, bioinformatic study, infectious disease

Procedia PDF Downloads 488
3575 Performance Evaluation of Discrete Fourier Transform Algorithm Based PMU for Wide Area Measurement System

Authors: Alpesh Adeshara, Rajendrasinh Jadeja, Praghnesh Bhatt

Abstract:

Implementation of advanced technologies requires sophisticated instruments that deal with the operation, control, restoration and protection of rapidly growing power system network under normal and abnormal conditions. Presently, the applications of Phasor Measurement Unit (PMU) are widely found in real time operation, monitoring, controlling and analysis of power system network as it eliminates the various limitations of Supervisory Control and Data Acquisition System (SCADA) conventionally used in power system. The use of PMU data is very rapidly increasing its importance for online and offline analysis. Wide Area Measurement System (WAMS) is developed as new technology by use of multiple PMUs in power system. The present paper proposes a model of MATLAB based PMU using Discrete Fourier Transform (DFT) algorithm and evaluation of its operation under different contingencies. In this paper, PMU based two bus system having WAMS network is presented as a case study.

Keywords: GPS global positioning system, PMU phasor measurement system, WAMS wide area monitoring system, DFT, PDC

Procedia PDF Downloads 496
3574 Experimenting the Influence of Input Modality on Involvement Load Hypothesis

Authors: Mohammad Hassanzadeh

Abstract:

As far as incidental vocabulary learning is concerned, the basic contention of the Involvement Load Hypothesis (ILH) is that retention of unfamiliar words is, generally, conditional upon the degree of involvement in processing them. This study examined input modality and incidental vocabulary uptake in a task-induced setting whereby three variously loaded task types (marginal glosses, fill-in-task, and sentence-writing) were alternately assigned to one group of students at Allameh Tabataba’i University (n=2l) during six classroom sessions. While one round of exposure was comprised of the audiovisual medium (TV talk shows), the second round consisted of textual materials with approximately similar subject matter (reading texts). In both conditions, however, the tasks were equivalent to one another. Taken together, the study pursued the dual objectives of establishing a litmus test for the ILH and its proposed values of ‘need’, ‘search’ and ‘evaluation’ in the first place. Secondly, it sought to bring to light the superiority issue of exposure to audiovisual input versus the written input as far as the incorporation of tasks is concerned. At the end of each treatment session, a vocabulary active recall test was administered to measure their incidental gains. Running a one-way analysis of variance revealed that the audiovisual intervention yielded higher gains than the written version even when differing tasks were included. Meanwhile, task 'three' (sentence-writing) turned out the most efficient in tapping learners' active recall of the target vocabulary items. In addition to shedding light on the superiority of audiovisual input over the written input when circumstances are relatively held constant, this study for the most part, did support the underlying tenets of ILH.

Keywords: Keywords— Evaluation, incidental vocabulary learning, input mode, Involvement Load Hypothesis, need, search.

Procedia PDF Downloads 279
3573 A Review on Comparative Analysis of Path Planning and Collision Avoidance Algorithms

Authors: Divya Agarwal, Pushpendra S. Bharti

Abstract:

Autonomous mobile robots (AMR) are expected as smart tools for operations in every automation industry. Path planning and obstacle avoidance is the backbone of AMR as robots have to reach their goal location avoiding obstacles while traversing through optimized path defined according to some criteria such as distance, time or energy. Path planning can be classified into global and local path planning where environmental information is known and unknown/partially known, respectively. A number of sensors are used for data collection. A number of algorithms such as artificial potential field (APF), rapidly exploring random trees (RRT), bidirectional RRT, Fuzzy approach, Purepursuit, A* algorithm, vector field histogram (VFH) and modified local path planning algorithm, etc. have been used in the last three decades for path planning and obstacle avoidance for AMR. This paper makes an attempt to review some of the path planning and obstacle avoidance algorithms used in the field of AMR. The review includes comparative analysis of simulation and mathematical computations of path planning and obstacle avoidance algorithms using MATLAB 2018a. From the review, it could be concluded that different algorithms may complete the same task (i.e. with a different set of instructions) in less or more time, space, effort, etc.

Keywords: path planning, obstacle avoidance, autonomous mobile robots, algorithms

Procedia PDF Downloads 232
3572 Study of the Biochemical Properties of the Protease Coagulant Milk Extracted from Sunflower Cake: Manufacturing Test of Cheeses Uncooked Dough Press and Analysis of Sensory Properties

Authors: Kahlouche Amal, Touzene F. Zohra, Betatache Fatihaet Nouani Abdelouahab

Abstract:

The development of the world production of the cheese these last decades, as well as agents' greater request cheap coagulants, accentuated the search for new surrogates of the rennet. What about the interest to explore the vegetable biodiversity, the source well cheap of many naturals metabolites that the scientists today praise it (thistle, latex of fig tree, Cardoon, seeds of melon). Indeed, a big interest is concerned the search for surrogates of vegetable origin. The objective of the study is to show the possibility of extracting a protease coagulant the milk from the cake of Sunflower, available raw material and the potential source of surrogates of rennet. so, the determination of the proteolytic activity of raw extracts, the purification, the elimination of the pigments of tint of the enzymatic preparations, a better knowledge of the coagulative properties through study of the effect of certain factors (temperature, pH, concentration in CaCl2) are so many factors which contribute to value milk particularly those produced by the small ruminants of the Algerian dairy exploitations. Otherwise, extracts coagulants of vegetable origin allowed today to value traditional, in addition, although the extract coagulants of vegetable origin made it possible today to develop traditional cheeses whose Iberian peninsula is the promoter, but the test of 'pressed paste not cooked' cheese manufacturing led to the semi-scale pilot; and that, by using the enzymatic extract of sunflower (Helianthus annus) which gave satisfactory results as well to the level of outputs as on the sensory level,which, statistically,did not give any significant difference between studied cheeses. These results confirm the possibility of use of this coagulase as a substitute of rennet commercial on an industrial scale.

Keywords: characterization, cheese, Rennet, sunflower

Procedia PDF Downloads 351
3571 Predication Model for Leukemia Diseases Based on Data Mining Classification Algorithms with Best Accuracy

Authors: Fahd Sabry Esmail, M. Badr Senousy, Mohamed Ragaie

Abstract:

In recent years, there has been an explosion in the rate of using technology that help discovering the diseases. For example, DNA microarrays allow us for the first time to obtain a "global" view of the cell. It has great potential to provide accurate medical diagnosis, to help in finding the right treatment and cure for many diseases. Various classification algorithms can be applied on such micro-array datasets to devise methods that can predict the occurrence of Leukemia disease. In this study, we compared the classification accuracy and response time among eleven decision tree methods and six rule classifier methods using five performance criteria. The experiment results show that the performance of Random Tree is producing better result. Also it takes lowest time to build model in tree classifier. The classification rules algorithms such as nearest- neighbor-like algorithm (NNge) is the best algorithm due to the high accuracy and it takes lowest time to build model in classification.

Keywords: data mining, classification techniques, decision tree, classification rule, leukemia diseases, microarray data

Procedia PDF Downloads 321
3570 Using Jumping Particle Swarm Optimization for Optimal Operation of Pump in Water Distribution Networks

Authors: R. Rajabpour, N. Talebbeydokhti, M. H. Ahmadi

Abstract:

Carefully scheduling the operations of pumps can be resulted to significant energy savings. Schedules can be defined either implicit, in terms of other elements of the network such as tank levels, or explicit by specifying the time during which each pump is on/off. In this study, two new explicit representations based on time-controlled triggers were analyzed, where the maximum number of pump switches was established beforehand, and the schedule may contain fewer switches than the maximum. The optimal operation of pumping stations was determined using a Jumping Particle Swarm Optimization (JPSO) algorithm to achieve the minimum energy cost. The model integrates JPSO optimizer and EPANET hydraulic network solver. The optimal pump operation schedule of VanZyl water distribution system was determined using the proposed model and compared with those from Genetic and Ant Colony algorithms. The results indicate that the proposed model utilizing the JPSP algorithm outperformed the others and is a versatile management model for the operation of real-world water distribution system.

Keywords: JPSO, operation, optimization, water distribution system

Procedia PDF Downloads 245
3569 Reusing Assessments Tests by Generating Arborescent Test Groups Using a Genetic Algorithm

Authors: Ovidiu Domşa, Nicolae Bold

Abstract:

Using Information and Communication Technologies (ICT) notions in education and three basic processes of education (teaching, learning and assessment) can bring benefits to the pupils and the professional development of teachers. In this matter, we refer to these notions as concepts taken from the informatics area and apply them to the domain of education. These notions refer to genetic algorithms and arborescent structures, used in the specific process of assessment or evaluation. This paper uses these kinds of notions to generate subtrees from a main tree of tests related between them by their degree of difficulty. These subtrees must contain the highest number of connections between the nodes and the lowest number of missing edges (which are subtrees of the main tree) and, in the particular case of the non-existence of a subtree with no missing edges, the subtrees which have the lowest (minimal) number of missing edges between the nodes, where a node is a test and an edge is a direct connection between two tests which differs by one degree of difficulty. The subtrees are represented as sequences. The tests are the same (a number coding a test represents that test in every sequence) and they are reused for each sequence of tests.

Keywords: chromosome, genetic algorithm, subtree, test

Procedia PDF Downloads 324
3568 Orbit Determination from Two Position Vectors Using Finite Difference Method

Authors: Akhilesh Kumar, Sathyanarayan G., Nirmala S.

Abstract:

An unusual approach is developed to determine the orbit of satellites/space objects. The determination of orbits is considered a boundary value problem and has been solved using the finite difference method (FDM). Only positions of the satellites/space objects are known at two end times taken as boundary conditions. The technique of finite difference has been used to calculate the orbit between end times. In this approach, the governing equation is defined as the satellite's equation of motion with a perturbed acceleration. Using the finite difference method, the governing equations and boundary conditions are discretized. The resulting system of algebraic equations is solved using Tri Diagonal Matrix Algorithm (TDMA) until convergence is achieved. This methodology test and evaluation has been done using all GPS satellite orbits from National Geospatial-Intelligence Agency (NGA) precise product for Doy 125, 2023. Towards this, two hours of twelve sets have been taken into consideration. Only positions at the end times of each twelve sets are considered boundary conditions. This algorithm is applied to all GPS satellites. Results achieved using FDM compared with the results of NGA precise orbits. The maximum RSS error for the position is 0.48 [m] and the velocity is 0.43 [mm/sec]. Also, the present algorithm is applied on the IRNSS satellites for Doy 220, 2023. The maximum RSS error for the position is 0.49 [m], and for velocity is 0.28 [mm/sec]. Next, a simulation has been done for a Highly Elliptical orbit for DOY 63, 2023, for the duration of 6 hours. The RSS of difference in position is 0.92 [m] and velocity is 1.58 [mm/sec] for the orbital speed of more than 5km/sec. Whereas the RSS of difference in position is 0.13 [m] and velocity is 0.12 [mm/sec] for the orbital speed less than 5km/sec. Results show that the newly created method is reliable and accurate. Further applications of the developed methodology include missile and spacecraft targeting, orbit design (mission planning), space rendezvous and interception, space debris correlation, and navigation solutions.

Keywords: finite difference method, grid generation, NavIC system, orbit perturbation

Procedia PDF Downloads 85
3567 Cooperative Sensing for Wireless Sensor Networks

Authors: Julien Romieux, Fabio Verdicchio

Abstract:

Wireless Sensor Networks (WSNs), which sense environmental data with battery-powered nodes, require multi-hop communication. This power-demanding task adds an extra workload that is unfairly distributed across the network. As a result, nodes run out of battery at different times: this requires an impractical individual node maintenance scheme. Therefore we investigate a new Cooperative Sensing approach that extends the WSN operational life and allows a more practical network maintenance scheme (where all nodes deplete their batteries almost at the same time). We propose a novel cooperative algorithm that derives a piecewise representation of the sensed signal while controlling approximation accuracy. Simulations show that our algorithm increases WSN operational life and spreads communication workload evenly. Results convey a counterintuitive conclusion: distributing workload fairly amongst nodes may not decrease the network power consumption and yet extend the WSN operational life. This is achieved as our cooperative approach decreases the workload of the most burdened cluster in the network.

Keywords: cooperative signal processing, signal representation and approximation, power management, wireless sensor networks

Procedia PDF Downloads 390
3566 Path Planning for Multiple Unmanned Aerial Vehicles Based on Adaptive Probabilistic Sampling Algorithm

Authors: Long Cheng, Tong He, Iraj Mantegh, Wen-Fang Xie

Abstract:

Path planning is essential for UAVs (Unmanned Aerial Vehicle) with autonomous navigation in unknown environments. In this paper, an adaptive probabilistic sampling algorithm is proposed for the GPS-denied environment, which can be utilized for autonomous navigation system of multiple UAVs in a dynamically-changing structured environment. This method can be used for Unmanned Aircraft Systems Traffic Management (UTM) solutions and in autonomous urban aerial mobility, where a number of platforms are expected to share the airspace. A path network is initially built off line based on available environment map, and on-board sensors systems on the flying UAVs are used for continuous situational awareness and to inform the changes in the path network. Simulation results based on MATLAB and Gazebo in different scenarios and algorithms performance measurement show the high efficiency and accuracy of the proposed technique in unknown environments.

Keywords: path planning, adaptive probabilistic sampling, obstacle avoidance, multiple unmanned aerial vehicles, unknown environments

Procedia PDF Downloads 156
3565 Study for an Optimal Cable Connection within an Inner Grid of an Offshore Wind Farm

Authors: Je-Seok Shin, Wook-Won Kim, Jin-O Kim

Abstract:

The offshore wind farm needs to be designed carefully considering economics and reliability aspects. There are many decision-making problems for designing entire offshore wind farm, this paper focuses on an inner grid layout which means the connection between wind turbines as well as between wind turbines and an offshore substation. A methodology proposed in this paper determines the connections and the cable type for each connection section using K-clustering, minimum spanning tree and cable selection algorithms. And then, a cost evaluation is performed in terms of investment, power loss and reliability. Through the cost evaluation, an optimal layout of inner grid is determined so as to have the lowest total cost. In order to demonstrate the validity of the methodology, the case study is conducted on 240MW offshore wind farm, and the results show that it is helpful to design optimally offshore wind farm.

Keywords: offshore wind farm, optimal layout, k-clustering algorithm, minimum spanning algorithm, cable type selection, power loss cost, reliability cost

Procedia PDF Downloads 385
3564 Acculturation Impact on Mental Health Among Arab Americans

Authors: Sally Kafelghazal

Abstract:

Introduction: Arab Americans, who include immigrants, refugees, or U.S. born persons of Middle Eastern or North African descent, may experience significant difficulties during acculturation to Western society. Influential stressors include relocation, loss of social support, language barriers, and economic factors, all of which can impact mental health. There is limited research investigating the effects of acculturation on the mental health of the Arab American population. Objectives: The purpose of this study is to identify ways in which acculturation impacts the mental health of Arab Americans, specifically the development of depression and anxiety. Method: A literature search was conducted using PubMed and PsycArticles (ProQuest), utilizing the following search terms: “Arab Americans,” “Arabs,” “mental health,” “depression,” “anxiety,” “acculturation.” Thirty-nine articles were identified and of those, nine specifically investigated the relationship between acculturation and mental health in Arab Americans. Three of the nine focused exclusively on depression. Results: Several risk factors were identified that contribute to poor mental health associated with acculturation, which include immigrant or refugee status, facing discrimination, and religious ideology. Protective factors include greater levels of acculturation, being U.S. born, and greater heritage identity. Greater mental health disorders were identified in Arab Americans compared to normative samples, perhaps particularly depression; none of the articles specifically addressed anxiety. Conclusion: The current research findings support the potential association between the process of acculturation and greater levels of mental health disorders in Arab Americans. However, the diversity of the Arab American population makes it difficult to draw consistent conclusions. Further research needs to be conducted in order to assess which subgroups in the Arab American population are at highest risk for developing new or exacerbating existing mental health disorders in order to devise more effective interventions.

Keywords: arab americans, arabs, mental health, anxiety, depression, acculturation

Procedia PDF Downloads 81
3563 Gray Level Image Encryption

Authors: Roza Afarin, Saeed Mozaffari

Abstract:

The aim of this paper is image encryption using Genetic Algorithm (GA). The proposed encryption method consists of two phases. In modification phase, pixels locations are altered to reduce correlation among adjacent pixels. Then, pixels values are changed in the diffusion phase to encrypt the input image. Both phases are performed by GA with binary chromosomes. For modification phase, these binary patterns are generated by Local Binary Pattern (LBP) operator while for diffusion phase binary chromosomes are obtained by Bit Plane Slicing (BPS). Initial population in GA includes rows and columns of the input image. Instead of subjective selection of parents from this initial population, a random generator with predefined key is utilized. It is necessary to decrypt the coded image and reconstruct the initial input image. Fitness function is defined as average of transition from 0 to 1 in LBP image and histogram uniformity in modification and diffusion phases, respectively. Randomness of the encrypted image is measured by entropy, correlation coefficients and histogram analysis. Experimental results show that the proposed method is fast enough and can be used effectively for image encryption.

Keywords: correlation coefficients, genetic algorithm, image encryption, image entropy

Procedia PDF Downloads 330
3562 Design of a Graphical User Interface for Data Preprocessing and Image Segmentation Process in 2D MRI Images

Authors: Enver Kucukkulahli, Pakize Erdogmus, Kemal Polat

Abstract:

The 2D image segmentation is a significant process in finding a suitable region in medical images such as MRI, PET, CT etc. In this study, we have focused on 2D MRI images for image segmentation process. We have designed a GUI (graphical user interface) written in MATLABTM for 2D MRI images. In this program, there are two different interfaces including data pre-processing and image clustering or segmentation. In the data pre-processing section, there are median filter, average filter, unsharp mask filter, Wiener filter, and custom filter (a filter that is designed by user in MATLAB). As for the image clustering, there are seven different image segmentations for 2D MR images. These image segmentation algorithms are as follows: PSO (particle swarm optimization), GA (genetic algorithm), Lloyds algorithm, k-means, the combination of Lloyds and k-means, mean shift clustering, and finally BBO (Biogeography Based Optimization). To find the suitable cluster number in 2D MRI, we have designed the histogram based cluster estimation method and then applied to these numbers to image segmentation algorithms to cluster an image automatically. Also, we have selected the best hybrid method for each 2D MR images thanks to this GUI software.

Keywords: image segmentation, clustering, GUI, 2D MRI

Procedia PDF Downloads 377
3561 SEM Image Classification Using CNN Architectures

Authors: Güzi̇n Ti̇rkeş, Özge Teki̇n, Kerem Kurtuluş, Y. Yekta Yurtseven, Murat Baran

Abstract:

A scanning electron microscope (SEM) is a type of electron microscope mainly used in nanoscience and nanotechnology areas. Automatic image recognition and classification are among the general areas of application concerning SEM. In line with these usages, the present paper proposes a deep learning algorithm that classifies SEM images into nine categories by means of an online application to simplify the process. The NFFA-EUROPE - 100% SEM data set, containing approximately 21,000 images, was used to train and test the algorithm at 80% and 20%, respectively. Validation was carried out using a separate data set obtained from the Middle East Technical University (METU) in Turkey. To increase the accuracy in the results, the Inception ResNet-V2 model was used in view of the Fine-Tuning approach. By using a confusion matrix, it was observed that the coated-surface category has a negative effect on the accuracy of the results since it contains other categories in the data set, thereby confusing the model when detecting category-specific patterns. For this reason, the coated-surface category was removed from the train data set, hence increasing accuracy by up to 96.5%.

Keywords: convolutional neural networks, deep learning, image classification, scanning electron microscope

Procedia PDF Downloads 125