Search results for: carbon efficiency
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9167

Search results for: carbon efficiency

7547 The Effect of Wet Cooling Pad Thickness and Geometric Configuration to Enhance Evaporative Cooler Saturation Efficiency: A Review

Authors: Biruk Abate

Abstract:

Evaporative cooling occurs when air with high temperature and reduced humidity passes over a wet porous surface and a higher degree of cooling process is achieved for storage of fruits and vegetables due to greater rate of evaporation. The main objective of this reviewed study is to understand the effect of evaporative surface pad thickness and geometric configuration on the saturation efficiency of evaporative cooler and to state some related factors affecting the performance of the system. From this overview, selection of pad thickness and geometrical shape with suitable characteristics of heat and mass transfer and water holding capacity of the pads was reviewed as these parameters are important for saturation efficiency of evaporative cooling. Increasing the cooling pad thickness through increasing the face velocity increases the effectiveness of wet-bulb saturation. Increasing ambient temperature, inlet air speed and ambient air humidity decreases the wet bulb effectiveness and it increases with increasing length of the pad. Increasing the ambient temperature and inlet air velocity decreases the humidity ratio, but increases with increasing ambient air humidity and lengths of the pad. Increasing the temperature-humidity index is possible with increasing ambient temperature, inlet air velocity, ambient air humidity and pad length. Generally, all materials having a higher wetted surface area per unit volume give higher efficiency. Materials with higher thickness increase the wetted surface area for better mix-up of air and water to give higher efficiency for the same shape and this in turn helps to store fruits and vegetables.

Keywords: Degree of cooling, heat and mass transfer, evaporative cooling, porous surface

Procedia PDF Downloads 130
7546 Design of a Controlled BHJ Solar Cell Using Modified Organic Vapor Spray Deposition Technique

Authors: F. Stephen Joe, V. Sathya Narayanan, V. R. Sanal Kumar

Abstract:

A comprehensive review of the literature on photovoltaic cells has been carried out for exploring the better options for cost efficient technologies for future solar cell applications. Literature review reveals that the Bulk Heterojunction (BHJ) Polymer Solar cells offer special opportunities as renewable energy resources. It is evident from the previous studies that the device fabricated with TiOx layer shows better power conversion efficiency than that of the device without TiOx layer. In this paper, authors designed a controlled BHJ solar cell using a modified organic vapor spray deposition technique facilitated with a vertical-moving gun named as 'Stephen Joe Technique' for getting a desirable surface pattern over the substrate to improving its efficiency over the years for industrial applications. We comprehended that the efficient processing and the interface engineering of these solar cells could increase the efficiency up to 5-10 %.

Keywords: BHJ polymer solar cell, photovoltaic cell, solar cell, Stephen Joe technique

Procedia PDF Downloads 543
7545 Energy Efficiency Approach to Reduce Costs of Ownership of Air Jet Weaving

Authors: Corrado Grassi, Achim Schröter, Yves Gloy, Thomas Gries

Abstract:

Air jet weaving is the most productive, but also the most energy consuming weaving method. Increasing energy costs and environmental impact are constantly a challenge for the manufacturers of weaving machines. Current technological developments concern with low energy costs, low environmental impact, high productivity, and constant product quality. The high degree of energy consumption of the method can be ascribed to the high need of compressed air. An energy efficiency method is applied to the air jet weaving technology. Such method identifies and classifies the main relevant energy consumers and processes from the exergy point of view and it leads to the identification of energy efficiency potentials during the weft insertion process. Starting from the design phase, energy efficiency is considered as the central requirement to be satisfied. The initial phase of the method consists of an analysis of the state of the art of the main weft insertion components in order to point out a prioritization of the high demanding energy components and processes. The identified major components are investigated to reduce the high demand of energy of the weft insertion process. During the interaction of the flow field coming from the relay nozzles within the profiled reed, only a minor part of the stream is really accelerating the weft yarn, hence resulting in large energy inefficiency. Different tools such as FEM analysis, CFD simulation models and experimental analysis are used in order to design a more energy efficient design of the involved components in the filling insertion. A different concept for the metal strip of the profiled reed is developed. The developed metal strip allows a reduction of the machine energy consumption. Based on a parametric and aerodynamic study, the designed reed transmits higher values of the flow power to the filling yarn. The innovative reed fulfills both the requirement of raising energy efficiency and the compliance with the weaving constraints.

Keywords: air jet weaving, aerodynamic simulation, energy efficiency, experimental validation, weft insertion

Procedia PDF Downloads 197
7544 Economic Analysis of Domestic Combined Heat and Power System in the UK

Authors: Thamo Sutharssan, Diogo Montalvao, Wen-Chung Wang, Yong Chen, Claudia Pisac

Abstract:

A combined heat and power (CHP) system is an efficient and clean way to generate power (electricity). Heat produced by the CHP system can be used for water and space heating. The CHP system which uses hydrogen as fuel produces zero carbon emission. Its’ efficiency can reach more than 80% whereas that of a traditional power station can only reach up to 50% because much of the thermal energy is wasted. The other advantages of CHP systems include that they can decentralize energy generation, improve energy security and sustainability, and significantly reduce the energy cost to the users. This paper presents the economic benefits of using a CHP system in the domestic environment. For this analysis, natural gas is considered as potential fuel as the hydrogen fuel cell based CHP systems are rarely used. UK government incentives for CHP systems are also considered as the added benefit. Results show that CHP requires a significant initial investment in return it can reduce the annual energy bill significantly. Results show that an investment may be paid back in 7 years. After the back period, CHP can run for about 3 years as most of the CHP manufacturers provide 10-year warranty.

Keywords: combined heat and power, clean energy, hydrogen fuel cell, economic analysis of CHP, zero emission

Procedia PDF Downloads 385
7543 Green Organic Chemistry, a New Paradigm in Pharmaceutical Sciences

Authors: Pesaru Vigneshwar Reddy, Parvathaneni Pavan

Abstract:

Green organic chemistry which is the latest and one of the most researched topics now-a- days has been in demand since 1990’s. Majority of the research in green organic chemistry chemicals are some of the important starting materials for greater number of major chemical industries. The production of organic chemicals has raw materials (or) reagents for other application is major sector of manufacturing polymers, pharmaceuticals, pesticides, paints, artificial fibers, food additives etc. organic synthesis on a large scale compound to the labratory scale, involves the use of energy, basic chemical ingredients from the petro chemical sectors, catalyst and after the end of the reaction, seperation, purification, storage, packing distribution etc. During these processes there are many problems of health and safety for workers in addition to the environmental problems caused there by use and deposition as waste. Green chemistry with its 12 principles would like to see changes in conventional way that were used for decades to make synthetic organic chemical and the use of less toxic starting materials. Green chemistry would like to increase the efficiency of synthetic methods, to use less toxic solvents, reduce the stage of synthetic routes and minimize waste as far as practically possible. In this way, organic synthesis will be part of the effort for sustainable development Green chemistry is also interested for research and alternatives innovations on many practical aspects of organic synthesis in the university and research labaratory of institutions. By changing the methodologies of organic synthesis, health and safety will be advanced in the small scale laboratory level but also will be extended to the industrial large scale production a process through new techniques. The three key developments in green chemistry include the use of super critical carbondioxide as green solvent, aqueous hydrogen peroxide as an oxidising agent and use of hydrogen in asymmetric synthesis. It also focuses on replacing traditional methods of heating with that of modern methods of heating like microwaves traditions, so that carbon foot print should reduces as far as possible. Another beneficiary of this green chemistry is that it will reduce environmental pollution through the use of less toxic reagents, minimizing of waste and more bio-degradable biproducts. In this present paper some of the basic principles, approaches, and early achievements of green chemistry has a branch of chemistry that studies the laws of passing of chemical reactions is also considered, with the summarization of green chemistry principles. A discussion about E-factor, old and new synthesis of ibuprofen, microwave techniques, and some of the recent advancements also considered.

Keywords: energy, e-factor, carbon foot print, micro-wave, sono-chemistry, advancement

Procedia PDF Downloads 306
7542 Green Transport Solutions for Developing Cities: A Case Study of Nairobi, Kenya

Authors: Benedict O. Muyale, Emmanuel S. Murunga

Abstract:

Cities have always been the loci for nationals as well as growth of cultural fusion and innovation. Over 50%of global population dwells in cities and urban centers. This means that cities are prolific users of natural resources and generators of waste; hence they produce most of the greenhouse gases which are causing global climate change. The root cause of increase in the transport sector carbon curve is mainly the greater numbers of individually owned cars. Development in these cities is geared towards economic progress while environmental sustainability is ignored. Infrastructure projects focus on road expansion, electrification, and more parking spaces. These lead to more carbon emissions, traffic congestion, and air pollution. Recent development plans for Nairobi city are now on road expansion with little priority for electric train solutions. The Vision 2030, Kenya’s development guide, has shed some light on the city with numerous road expansion projects. This chapter seeks to realize the following objectives; (1) to assess the current transport situation of Nairobi; (2) to review green transport solutions being undertaken in the city; (3) to give an overview of alternative green transportation solutions, and (4) to provide a green transportation framework matrix. This preliminary study will utilize primary and secondary data through mainly desktop research and analysis, literature, books, magazines and on-line information. This forms the basis for formulation of approaches for incorporation into the green transportation framework matrix of the main study report.The main goal is the achievement of a practical green transportation system for implementation by the City County of Nairobi to reduce carbon emissions and congestion and promote environmental sustainability.

Keywords: cities, transport, Nairobi, green technologies

Procedia PDF Downloads 321
7541 Shape Optimization of Header Pipes in Power Plants for Enhanced Efficiency and Environmental Sustainability

Authors: Ahmed Cherif Megri, HossamEldin ElSherif

Abstract:

In a power plant, the header pipe plays a pivotal role in optimizing the performance of diverse systems by serving as a central conduit for the collection and distribution of steam within the plant. This paper investigates the significance of header pipes within power plant setups, highlighting their critical influence on reliability, efficiency, and the performance of the power plant as a whole. The concept of shape optimization emerges as a crucial factor in power plant design and operation, with the potential to maximize performance while minimizing the use of materials. Shape optimization not only enhances efficiency but also contributes to reducing the environmental footprint of power plant installations. In this paper, we initially developed a methodology designed for optimizing header shapes with the primary goal of reducing the usage of costly new alloy materials and lowering the overall maintenance operation expenses. Secondly, we conducted a case study based on an authentic header sourced from an operational power plant.

Keywords: shape optimization, header, power plant, inconel alloy, CFD, structural optimization

Procedia PDF Downloads 73
7540 Carbohydrates Quantification from Agro-Industrial Waste and Fermentation with Lactic Acid Bacteria

Authors: Prittesh Patel, Bhavika Patel, Ramar Krishnamurthy

Abstract:

Present study was conducted to isolate lactic acid bacteria (LAB) from Oreochromis niloticus and Nemipterus japonicus fish gut. The LAB isolated were confirmed through 16s rRNA sequencing. It was observed that isolated Lactococcus spp. were able to tolerate NaCl and bile acid up to certain range. The isolated Lactococcus spp. were also able to survive in acidic and alkaline conditions. Further agro-industrial waste like peels of pineapple, orange, lemon, sugarcane, pomegranate; sweet lemon was analyzed for their polysaccharide contents and prebiotic properties. In the present study, orange peels, sweet lemon peels, and pineapple peels give maximum indigestible polysaccharide. To evaluate synbiotic effect combination of probiotic and prebiotic were analyzed under in vitro conditions. Isolates Lactococcus garvieae R3 and Lactococcus sp. R4 reported to have better fermentation efficiency with orange, sweet lemon and pineapple compare to lemon, sugarcane and pomegranate. The different agro-industrial waste evaluated in this research resulted in being a cheap and fermentable carbon source by LAB.

Keywords: agro-industrial waste, lactic acid bacteria, prebiotic, probiotic, synbiotic

Procedia PDF Downloads 164
7539 Simulation of Performance of LaBr₃ (Ce) Using GEANT4

Authors: Zarana Dave

Abstract:

Cerium-doped lanthanum bromide, LaBr₃ (Ce), scintillator shows attracting properties for spectroscopy that makes it a suitable solution for security, medical, geophysics and high energy physics applications. Here, the performance parameters of a cylindrical LaBr₃ (Ce) scintillator was investigated. The first aspect is the determination of the efficiency for γ - ray detection, measured with GEANT4 simulation toolkit from 10keV to 10MeV energy range. The second is the detailed study of background radiation of LaBr₃ (Ce). It has relatively high intrinsic radiation background due to naturally occurring ¹³⁸La and ²²⁷Ac radioisotopes.

Keywords: LaBr₃(Ce), GEANT4, efficiency, background radiation

Procedia PDF Downloads 222
7538 Quality Assessment of Some Selected Locally Produced and Marketed Soft Drinks

Authors: Gerardette Darkwah, Gloria Ankar Brewoo, John Barimah, Gilbert Owiah Sampson, Vincent Abe-Inge

Abstract:

Soft drinks which are widely consumed in Ghana have been reported in other countries to contain toxic heavy metals beyond the acceptable limits in other countries. Therefore, the objective of this study was to assess the quality characteristics of selected locally produced and marketed soft drinks. Three (3) different batches of 23 soft drinks were sampled from the Takoradi markets. The samples were prescreened for the presence of reducing sugars, phosphates, alcohol and carbon dioxide. The heavy metal contents and physicochemical properties were also determined with AOAC methods. The results indicated the presence of reducing sugars, carbon dioxide and the absence of alcohol in all the selected soft drink samples. The pH, total sugars, moisture, total soluble solids (TSS) and titratable acidity ranged from 2.42 – 3.44, 3.30 – 10.44%, 85.63 – 94.85%, 5.00 – 13.33°Brix, and 0.21 – 1.99% respectively. The concentration of heavy metals were also below detection limits in all samples. The quality of the selected were within specifications prescribed by regulatory bodies.

Keywords: heavy metal contamination, locally manufactured, quality, soft drinks

Procedia PDF Downloads 148
7537 A Design Method for Wind Turbine Blade to Have Uniform Strength and Optimum Power Generation Performance

Authors: Pengfei Liu, Yiyi Xu

Abstract:

There have been substantial incidents of wind turbine blade fractures and failures due to the lack of systematic blade strength design method incorporated with the aerodynamic forces and power generation efficiency. This research was to develop a methodology and procedure for the wind turbine rotor blade strength taking into account the strength, integration, and aerodynamic performance in terms of power generation efficiency. The wind turbine blade designed using this method and procedure will have a uniform strength across the span to save unnecessary thickness in many blade radial locations and yet to maintain the optimum power generation performance. A turbine rotor code, taking into account both aerodynamic and structural properties, was developed. An existing wind turbine blade was used as an example. For a condition of extreme wind speed of 100 km per hour, the design reduced about 19% of material usage while maintaining the optimum power regeneration efficiency.

Keywords: renewable energy, wind turbine, turbine blade strength, aerodynamics-strength coupled optimization

Procedia PDF Downloads 179
7536 Advanced CoMP Scheme for LTE-based V2X System

Authors: Su-Hyun Jung, Young-Su Ryu, Yong-Jun Kim, Hyoung-Kyu Song

Abstract:

In this paper, a highly efficient coordinated multiple-point (CoMP) scheme for vehicular communication is proposed. The proposed scheme controls the transmit power and applies proper transmission scheme for the various situations. The proposed CoMP scheme provides comparable performance to the conventional dynamic cell selection (DCS) scheme. Moreover, this scheme provides improved power efficiency compared with the conventional joint transmission (JT) scheme. Simulation results show that the proposed scheme can achieve more enhanced performance with the high power efficiency and improve the cell capacity.

Keywords: CoMP, LTE-A, V2I, V2V, V2X.

Procedia PDF Downloads 583
7535 The Pile Group Efficiency for Different Embedment Lengths in Dry Sand

Authors: Mohamed M. Shahin

Abstract:

This study investigated the design of the pile foundation to support heavy structures-especially bridges for highways-in the Sahara, which contains many dunes of medium dense sand in different levels, where the foundation is supposed to be piles. The base resistance of smooth model pile groups in sand under static loading is investigated experimentally in a pile soil test apparatus. Improvement were made to the sand around the piles in order to increase the shaft resistance of the single pile and the pile groups, and also base resistance especially for the central pile in pile groups. The study outlines the behaviour of a single-pile, 4-, 5-, and 9- pile groups arranged in a doubly symmetric [square] layout with different embedment lengths and pile spacing in loose dry sand [normal] and dense dry sand [compacted] around the piles. This study evaluate the variation of the magnitude and the proportion of end bearing capacity of individual piles in different pile groups. Also to investigate the magnitude of the efficiency coefficient in the case of different pile groups.

Keywords: pile group, base resistance, efficiency coefficient, pile spacing, pile-soil interaction

Procedia PDF Downloads 363
7534 Impact Evaluation and Technical Efficiency in Ethiopia: Correcting for Selectivity Bias in Stochastic Frontier Analysis

Authors: Tefera Kebede Leyu

Abstract:

The purpose of this study was to estimate the impact of LIVES project participation on the level of technical efficiency of farm households in three regions of Ethiopia. We used household-level data gathered by IRLI between February and April 2014 for the year 2013(retroactive). Data on 1,905 (754 intervention and 1, 151 control groups) sample households were analyzed using STATA software package version 14. Efforts were made to combine stochastic frontier modeling with impact evaluation methodology using the Heckman (1979) two-stage model to deal with possible selectivity bias arising from unobservable characteristics in the stochastic frontier model. Results indicate that farmers in the two groups are not efficient and operate below their potential frontiers i.e., there is a potential to increase crop productivity through efficiency improvements in both groups. In addition, the empirical results revealed selection bias in both groups of farmers confirming the justification for the use of selection bias corrected stochastic frontier model. It was also found that intervention farmers achieved higher technical efficiency scores than the control group of farmers. Furthermore, the selectivity bias-corrected model showed a different technical efficiency score for the intervention farmers while it more or less remained the same for that of control group farmers. However, the control group of farmers shows a higher dispersion as measured by the coefficient of variation compared to the intervention counterparts. Among the explanatory variables, the study found that farmer’s age (proxy to farm experience), land certification, frequency of visit to improved seed center, farmer’s education and row planting are important contributing factors for participation decisions and hence technical efficiency of farmers in the study areas. We recommend that policies targeting the design of development intervention programs in the agricultural sector focus more on providing farmers with on-farm visits by extension workers, provision of credit services, establishment of farmers’ training centers and adoption of modern farm technologies. Finally, we recommend further research to deal with this kind of methodological framework using a panel data set to test whether technical efficiency starts to increase or decrease with the length of time that farmers participate in development programs.

Keywords: impact evaluation, efficiency analysis and selection bias, stochastic frontier model, Heckman-two step

Procedia PDF Downloads 75
7533 Effect Of E-banking On Performance Efficiency Of Commercial Banks In Pakistan

Authors: Naeem Hassan

Abstract:

The study intended to investigate the impact of the e banking system on the performance efficiency of the commercial banks in KP, Pakistan. In addition to this main purpose, the study also aimed at analyzing the impact of e banking on the service quality as well as satisfaction of the customers using e banking system. More over, the focus was also given to highlight the risks involved in the e banking system. The researcher has adopted the quantitative methodology in the study. in order to reach concrete finding, the researcher has analyzed the secondary data taken from the annual reports of selected banks and State bank of Pakistan as well as the primary data collected through the self-administrated questionnaire from the participants selected for the current study. The study highlighted that there is a significant impact of e banking on the financial efficiency on the commercial banks in KP, Pakistan. Additionally, the results of the study also show that the online banking is having significant effects on the customer satisfaction. The researcher recommends on the bases of findings that commercial banks should continue to adopt new technologies which will improve their margins and hence their net profit after tax in order to attract more investors. Additionally, commercial bank needs to minimize the time and risk in e-banking to attract more customers which will improve their net profit. Furthermore, the study findings also recommend the banking policy makers should also review policies related to promotion of innovation adoption and transfer of technology. Commercial banking system should encourage adoption of innovations that will improve profit of the banking industry.

Keywords: E-banking, performance efficiency, commercial banks, effect

Procedia PDF Downloads 72
7532 Process Performance and Nitrogen Removal Kinetics in Anammox Hybrid Reactor

Authors: Swati Tomar, Sunil Kumar Gupta

Abstract:

Anammox is a promising and cost effective alternative to conventional treatment systems that facilitates direct oxidation of ammonium nitrogen under anaerobic conditions with nitrite as an electron acceptor without addition of any external carbon sources. The present study investigates the process kinetics of laboratory scale anammox hybrid reactor (AHR) which combines the dual advantages of attached and suspended growth. The performance & behaviour of AHR was studied under varying hydraulic retention time (HRTs) and nitrogen loading rate (NLRs). The experimental unit consisted of 4 numbers of 5L capacity anammox hybrid reactor inoculated with mixed seed culture containing anoxic and activated sludge. Pseudo steady state (PSS) ammonium and nitrite removal efficiencies of 90.6% and 95.6%, respectively, were achieved during acclimation phase. After establishment of PSS, the performance of AHR was monitored at seven different HRTs of 3.0, 2.5, 2.0, 1.5, 1.0, 0.5 and 0.25 d with increasing NLR from 0.4 to 4.8 kg N/m3d. The results showed that with increase in NLR and decrease in HRT (3.0 to 0.25 d), AHR registered appreciable decline in nitrogen removal efficiency from 92.9% to 67.4 %, respectively. The HRT of 2.0 d was considered optimal to achieve substantial nitrogen removal of 89%, because on further decrease in HRT below 1.5 days, remarkable decline in the values of nitrogen removal efficiency were observed. Analysis of data indicated that attached growth system contributes an additional 15.4 % ammonium removal and reduced the sludge washout rate (additional 29% reduction). This enhanced performance may be attributed to 25% increase in sludge retention time due to the attached growth media. Three kinetic models, namely, first order, Monod and Modified Stover-Kincannon model were applied to assess the substrate removal kinetics of nitrogen removal in AHR. Validation of the models were carried out by comparing experimental set of data with the predicted values obtained from the respective models. For substrate removal kinetics, model validation revealed that Modified Stover-Kincannon is most precise (R2=0.943) and can be suitably applied to predict the kinetics of nitrogen removal in AHR. Lawrence and McCarty model described the kinetics of bacterial growth. The predicted value of yield coefficient and decay constant were in line with the experimentally observed values.

Keywords: anammox, kinetics, modelling, nitrogen removal, sludge wash out rate, AHR

Procedia PDF Downloads 317
7531 Optimizing Electric Vehicle Charging Networks with Dynamic Pricing and Demand Elasticity

Authors: Chiao-Yi Chen, Dung-Ying Lin

Abstract:

With the growing awareness of environmental protection and the implementation of government carbon reduction policies, the number of electric vehicles (EVs) has rapidly increased, leading to a surge in charging demand and imposing significant challenges on the existing power grid’s capacity. Traditional urban power grid planning has not adequately accounted for the additional load generated by EV charging, which often strains the infrastructure. This study aims to optimize grid operation and load management by dynamically adjusting EV charging prices based on real-time electricity supply and demand, leveraging consumer demand elasticity to enhance system efficiency. This study uniquely addresses the intricate interplay between urban traffic patterns and power grid dynamics in the context of electric vehicle (EV) adoption. By integrating Hsinchu City's road network with the IEEE 33-bus system, the research creates a comprehensive model that captures both the spatial and temporal aspects of EV charging demand. This approach allows for a nuanced analysis of how traffic flow directly influences the load distribution across the power grid. The strategic placement of charging stations at key nodes within the IEEE 33-bus system, informed by actual road traffic data, enables a realistic simulation of the dynamic relationship between vehicle movement and energy consumption. This integration of transportation and energy systems provides a holistic view of the challenges and opportunities in urban EV infrastructure planning, highlighting the critical need for solutions that can adapt to the ever-changing interplay between traffic patterns and grid capacity. The proposed dynamic pricing strategy effectively reduces peak charging loads, enhances the operational efficiency of charging stations, and maximizes operator profits, all while ensuring grid stability. These findings provide practical insights and a valuable framework for optimizing EV charging infrastructure and policies in future smart cities, contributing to more resilient and sustainable urban energy systems.

Keywords: dynamic pricing, demand elasticity, EV charging, grid load balancing, optimization

Procedia PDF Downloads 20
7530 Design and Implementation of an Efficient Solar-Powered Pumping System

Authors: Mennatallah M. Fouad, Omar Hussein, Lamia A. Shihata

Abstract:

The main problem in many rural areas is the absence of electricity and limited access to water. The novelty of this work lies in implementing a small-scale experimental setup for a solar-powered water pumping system with a battery back-up system. Cooling and cleaning of the PV panel are implemented to enhance its overall efficiency and output. Moreover, a simulation for a large scale solar-powered pumping system is performed using PVSyst software. Results of the experimental setup show that the PV system with a battery backup proved to be a feasible and viable system to operate the water pumping system. Excess water from the pumping system is used to cool and clean the PV panel and achieved an average percentage increase in the PV output by 21.8%. Simulation results have shown that the system provides adequate output to power the solar-powered system and saves 0.3 tons of CO₂ compared to conventional fossil fuels. It is recommended for hot countries to adopt this system, which would help in decreasing the dependence on the depleting fossil fuels, provide access to electricity to areas where there is no electricity supply and also provide a source of water for crop growth as well as decrease the carbon emissions.

Keywords: efficient solar pumping, PV cleaning, PV cooling, PV-operated water pump

Procedia PDF Downloads 135
7529 Design, Modification and Structural Analysis of Bicycle Sprocket Using ANSYS

Authors: Roman Kalvin, Saba Arif, Anam Nadeem, Burhan Ali Ghumman, Juntakan Taweekun

Abstract:

Bicycles are important parts of the transportation industry. In the current world, use of sprocket is very high on bicycles these days. Sprocket and chains are important parts of the transmission of power in the bicycle. However, transmission of power is highly dependent on sprocket design. In conventional bicycles, sprockets are made up of mild steel which undergoes wear and tears with the passage of time due to high pressures applied on it. In the current research, a new sprocket is designed by changing its structure and material to carbon fiber from mild steel. The existing sprocket of a bicycle is compared with the new and modified sprocket design. However, new design has structural and material changes as well. According to the results, in carbon fiber, sprocket deformation is 0.091 mm while sprocket stress value is 371.13N/mm². Also, comparison based analysis is done by physical testing and software analysis. There is 8.1% variation in software and experimental results of steel. Additionally, the difference between both methods comes 8 to 9%. This improved design can be used in future for more durability and long run timings for bicycles.

Keywords: sprocket, mild steel, drafting, stress, deformation

Procedia PDF Downloads 254
7528 An Analytical Study of the Quality of Educational Administration and Management At Secondary School Level in Punjab, Pakistan

Authors: Shamim Akhtar

Abstract:

The purpose of the present research was to analyse the performance level of district administrators and school heads teachers at secondary school level. The sample of the study was head teachers and teachers of secondary schools. In survey three scales were used, two scales were for the head teachers, one five point scale was for analysing the working efficiency of educational administrators and other seven points scale was for head teachers for analysing their own performance and one another seven point rating scale similar to head teacher was for the teachers for analysing the working performance of their head teachers. The results of the head teachers’ responses revealed that the performance of their District Educational Administrators was average and for the performance efficiency of the head teachers, researcher constructed the rating scales on seven parameters of management likely academic management, personnel management, financial management, infra-structure management, linkage and interface, student’s services, and managerial excellence. Results of percentages, means, and graphical presentation on different parameters of management showed that there was an obvious difference in head teachers and teachers’ responses and head teachers probably were overestimating their efficiency; but teachers evaluated that they were performing averagely on majority statements. Results of t-test showed that there was no significance difference in the responses of rural and urban teachers but significant difference in male and female teachers’ responses showed that female head teachers were performing their responsibilities better than male head teachers in public sector schools. When efficiency of the head teachers on different parameters of management were analysed it was concluded that their efficiency on academic and personnel management was average and on financial management and on managerial excellence was highly above of average level but on others parameters like infra-structure management, linkage and interface and on students services was above of average level on most statements but highly above of average on some statements. Hence there is need to improve the working efficiency in academic management and personnel management.

Keywords: educational administration, educational management, parameters of management, education

Procedia PDF Downloads 337
7527 Exergy Analysis of Poultry Litter-to-Energy Production by the Advanced Combustion System

Authors: Samuel Oludayo Alamu, Seong Lee

Abstract:

The need for generating energy from biomass in an efficient way as well as maximizing the yield of total energy from the thermal conversion process has been a major concern for researchers. A holistic approach which involves the combination of First law of thermodynamics (FLT) and the second law of thermodynamics (SLT) is required for conducting an effective assessment of an energy plant since FLT analysis alone fails to identify the quality of the dissipated energy and how much work potential is available. The overall purpose of this study is to investigate the exergy analysis of direct combustion of poultry waste being converted to energy with a handful of environmental assessment of the conversion processes in order to maximize thermal efficiency. The exergy analysis around the shell and tube heat exchanger (STHE) was investigated primarily by varying the operating parameters for different tube shapes and flow direction, and an exergy model was obtained from estimations of the higher heating value and standard entropy of poultry waste from the elemental compositions. The STHE was designed and fabricated by Lee Research Group at Morgan State University. The analysis conducted on theSTHE using the flue gas temperature entering and exiting show that only about one-third of the energy input to the STHE was available to do work with an overall efficiency of 13.8%, while a huge amount was lost to the surrounding. By recirculating the flue gas, the exergy efficiency of the combustion system can be maximized with a greater reduction in the amount of exergy loss.

Keywords: exergy analysis, shell and tube heat exchanger, thermodynamics, combustion system, thermal efficiency

Procedia PDF Downloads 109
7526 Analysing Maximum Power Point Tracking in a Stand Alone Photovoltaic System

Authors: Osamede Asowata

Abstract:

Optimized gain in respect to output power of stand-alone photovoltaic (PV) systems is one of the major focus of PV in recent times. This is evident in its low carbon emission and efficiency. Power failure or outage from commercial providers, in general, does not promote development to public and private sector; these basically limit the development of industries. The need for a well-structured PV system is of importance for an efficient and cost effective monitoring system. The purpose of this paper is to validate the maximum power point of an off-grid PV system taking into consideration the most effective tilt and orientation angles for PV's in the southern hemisphere. This paper is based on analyzing the system using a solar charger with maximum power point tracking (MPPT) from a pulse width modulation (PWM) perspective. The power conditioning device chosen is a solar charger with MPPT. The practical setup consists of a PV panel that is set to an orientation angle of 0°N, with a corresponding tilt angle of 36°, 26°, and 16°. Preliminary results include regression analysis (normal probability plot) showing the maximum power point in the system as well the best tilt angle for maximum power point tracking.

Keywords: poly-crystalline PV panels, solar chargers, tilt and orientation angles, maximum power point tracking, MPPT, Pulse Width Modulation (PWM).

Procedia PDF Downloads 177
7525 The Cost of Solar-Centric Renewable Portfolio

Authors: Timothy J. Considine, Edward J. M. Manderson

Abstract:

This paper develops an econometric forecasting system of energy demand coupled with engineering-economic models of energy supply. The framework is used to quantify the impact of state-level renewable portfolio standards (RPSs) achieved predominately with solar generation on electricity rates, electricity consumption, and environmental quality. We perform the analysis using Arizona’s RPS as a case study. We forecast energy demand in Arizona out to 2035, and find by this time the state will require an additional 35 million MWh of electricity generation. If Arizona implements its RPS when supplying this electricity demand, we find there will be a substantial increase in electricity rates (relative to a business-as-usual scenario of reliance on gas-fired generation). Extending the current regime of tax credits can greatly reduce this increase, at the taxpayers’ expense. We find that by 2025 Arizona’s RPS will implicitly abate carbon dioxide emissions at a cost between $101 and $135 per metric ton, and by 2035 abatement costs are between $64 and $112 per metric ton (depending on the future evolution of nature gas prices).

Keywords: electricity demand, renewable portfolio standard, solar, carbon dioxide

Procedia PDF Downloads 485
7524 Facial Design of Combined Photoelectrocehmcial-Fenton Coupling Nanocomposites for Antibiotic Eliminations

Authors: Xinyong Li

Abstract:

A new coupling system was constructed by combining photo-electrochemical cell with eletro-fenton cell (PEC-EF). The electrode material in this system was derived from MnyFe₁₋yCo Prussian-Blue-Analog (PBA). Mn₀.₄Fe₀.₆Co₀.₆₇-N@C spin-coated on carbon paper behaved as the gas diffusion cathode and Mn₀.₄Fe₀.₆Co₀.₆₇O₂.₂ spin-coated on fluorine-tin oxide glass (FTO) as anode. The two separated cells could degrade Sulfamethoxazole (SMX) simultaneously and some coupling mechanisms by PEC and EF enhancing the degradation efficiency were investigated. The continuous on-site generation of H₂O₂ at cathode through an oxygen reduction reaction (ORR) was realized over rotating ring-disk electrode (RRDE). The electron transfer number (n) of the ORR with Mn₀.₄Fe₀.₆Co₀.₆₇-N@C was 2.5 in the selected potential and pH range. The photo-electrochemical properties of Mn₀.₄Fe₀.₆Co₀.₆₇O₂.₂ were systematically studied, which displayed good response towards visible light. The photo-induced electrons at anode can transfer to cathode for further use. Efficient photo-electro-catalytic performance was observed in degrading SMX. Almost 100% SMX removal was achieved in 120 min. This work not only provided a highly effective technique for antibiotic treatment but also revealed the synergic effect between PEC and EF.

Keywords: Electro-Fenton, photo-electrochemical, synergic effect, sulfamethoxazole

Procedia PDF Downloads 142
7523 The Toxicity of Doxorubicin Connected with Nanotransporters

Authors: Iva Blazkova, Amitava Moulick, Vedran Milosavljevic, Pavel Kopel, Marketa Vaculovicova, Vojtech Adam, Rene Kizek

Abstract:

Doxorubicin is one of the most commonly used and the most effective chemotherapeutic drugs. This antracycline drug isolated from the bacteria Streptomyces peuceticus var. caesius is sold under the trade name Adriamycin (hydroxydaunomycin, hydroxydaunorubicin). Doxorubicin is used in single therapy to treat hematological malignancies (blood cancers, leukaemia, lymphoma), many types of carcinoma (solid tumors) and soft tissue sarcomas. It has many serious side effects like nausea and vomiting, hair lost, myelosupression, oral mucositis, skin reactions and redness, but the most serious one is the cardiotoxicity. Because of the risk of heart attack and congestive heart failure, the total dose administered to patients has to be accurately monitored. With the aim to lower the side effects and to targeted delivery of doxorubicin into the tumor tissue, the different nanoparticles are studied. The drug can be bound on a surface of nanoparticle, encapsulated in the inner cavity, or incorporated into the structure of nanoparticle. Among others, carbon nanoparticles (graphene, carbon nanotubes, fullerenes) are highly studied. Besides the number of inorganic nanoparticles, a great potential exhibit also organic ones mainly lipid-based and polymeric nanoparticle. The aim of this work was to perform a toxicity study of free doxorubicin compared to doxorubicin conjugated with various nanotransporters. The effect of liposomes, fullerenes, graphene, and carbon nanotubes on the toxicity was analyzed. As a first step, the binding efficacy of between doxorubicin and the nanotransporter was determined. The highest efficacy was detected in case of liposomes (85% of applied drug was encapsulated) followed by graphene, carbon nanotubes and fullerenes. For the toxicological studies, the chicken embryos incubated under controlled conditions (37.5 °C, 45% rH, rotation every 2 hours) were used. In 7th developmental day of chicken embryos doxorubicin or doxorubicin-nanotransporter complex was applied on the chorioallantoic membrane of the eggs and the viability was analyzed every day till the 17th developmental day. Then the embryos were extracted from the shell and the distribution of doxorubicin in the body was analyzed by measurement of organs extracts using laser induce fluorescence detection. The chicken embryo mortality caused by free doxorubicin (30%) was significantly lowered by using the conjugation with nanomaterials. The highest accumulation of doxorubicin and doxorubicin nanotransporter complexes was observed in the liver tissue

Keywords: doxorubicin, chicken embryos, nanotransporters, toxicity

Procedia PDF Downloads 449
7522 Influence of Cure Degree in GO and CNT-Epoxy Nanocomposites

Authors: Marina Borgert Moraes, Wesley Francisco, Filipe Vargas, Gilmar Patrocínio Thim

Abstract:

In recent years, carbon nanotubes (CNT) and graphene oxide (GO), especially the functionalized ones, have been added to epoxy resin in order to increase the mechanical, electrical and thermal properties of nanocomposites. However, it's still unknown how the presence of these nanoparticles influences the curing process and the final mechanical properties as well. In this work, kinetic and mechanical properties of the nanocomposites were analyzed, where the kinetic process was followed by DSC and the mechanical properties by DMA. Initially, CNT was annealed at high temperature (1800 °C) under vacuum atmosphere, followed by a chemical treatment using acids and ethylenediamine. GO was synthesized through chemical route, washed clean, dried and ground to #200. The presence of functional groups on CNT and GO surface was confirmed by XPS spectra and FT-IR. Then, epoxy resin, nanoparticles and acetone were mixed by sonication in order to obtain the composites. DSC analyses were performed on samples with different curing cycles (1h 80°C + 2h 120°C; 3h 80°C + 2h 120°C; 5h 80°C) and samples with different times at constant temperature (120°C). Results showed that the kinetic process and the mechanical strength are very dependent on the presence of graphene and functionalized-CNT in the nanocomposites.

Keywords: carbon nanotube, epoxy resin, Graphene oxide, nanocomposite

Procedia PDF Downloads 318
7521 Energy Options and Environmental Impacts of Carbon Dioxide Utilization Pathways

Authors: Evar C. Umeozor, Experience I. Nduagu, Ian D. Gates

Abstract:

The energy requirements of carbon dioxide utilization (CDU) technologies/processes are diverse, so also are their environmental footprints. This paper explores the energy and environmental impacts of systems for CO₂ conversion to fuels, chemicals, and materials. Energy needs of the technologies and processes deployable in CO₂ conversion systems are met by one or combinations of hydrogen (chemical), electricity, heat, and light. Likewise, the environmental footprint of any CO₂ utilization pathway depends on the systems involved. So far, evaluation of CDU systems has been constrained to particular energy source/type or a subset of the overall system needed to make CDU possible. This introduces limitations to the general understanding of the energy and environmental implications of CDU, which has led to various pitfalls in past studies. A CDU system has an energy source, CO₂ supply, and conversion units. We apply a holistic approach to consider the impacts of all components in the process, including various sources of energy, CO₂ feedstock, and conversion technologies. The electricity sources include nuclear power, renewables (wind and solar PV), gas turbine, and coal. Heat is supplied from either electricity or natural gas, and hydrogen is produced from either steam methane reforming or electrolysis. The CO₂ capture unit uses either direct air capture or post-combustion capture via amine scrubbing, where applicable, integrated configurations of the CDU system are explored. We demonstrate how the overall energy and environmental impacts of each utilization pathway are obtained by aggregating the values for all components involved. Proper accounting of the energy and emission intensities of CDU must incorporate total balances for the utilization process and differences in timescales between alternative conversion pathways. Our results highlight opportunities for the use of clean energy sources, direct air capture, and a number of promising CO₂ conversion pathways for producing methanol, ethanol, synfuel, urea, and polymer materials.

Keywords: carbon dioxide utilization, processes, energy options, environmental impacts

Procedia PDF Downloads 147
7520 Design and Analysis of a Laminated Composite Automotive Drive Shaft

Authors: Hossein Kh. Bisheh, Nan Wu

Abstract:

Advanced composite materials have a great importance in engineering structures due to their high specific modulus and strength and low weight. These materials can be used in design and fabrication of automotive drive shafts to reduce the weight of the structure. Hence, an optimum design of a composite drive shaft satisfying the design criteria, can be an appropriate substitution of metallic drive shafts. The aim of this study is to design and analyze a composite automotive drive shaft with high specific strength and low weight satisfying the design criteria. Tsai-Wu criterion is chosen as the failure criterion. Various designs with different lay-ups and materials are investigated based on the design requirements and finally, an optimum design satisfying the design criteria is chosen based on the weight and cost considerations. The results of this study indicate that if the weight is the main concern, a shaft made of Carbon/Epoxy can be a good option, and if the cost is a more important parameter, a hybrid shaft made of aluminum and Carbon/Epoxy can be considered.

Keywords: Bending natural frequency, Composite drive shaft, Peak torque, Torsional buckling

Procedia PDF Downloads 233
7519 Energy Efficient Plant Design Approaches: Case Study of the Sample Building of the Energy Efficiency Training Facilities

Authors: Idil Kanter Otcu

Abstract:

Nowadays, due to the growing problems of energy supply and the drastic reduction of natural non-renewable resources, the development of new applications in the energy sector and steps towards greater efficiency in energy consumption are required. Since buildings account for a large share of energy consumption, increasing the structural density of buildings causes an increase in energy consumption. This increase in energy consumption means that energy efficiency approaches to building design and the integration of new systems using emerging technologies become necessary in order to curb this consumption. As new systems for productive usage of generated energy are developed, buildings that require less energy to operate, with rational use of resources, need to be developed. One solution for reducing the energy requirements of buildings is through landscape planning, design and application. Requirements such as heating, cooling and lighting can be met with lower energy consumption through planting design, which can help to achieve more efficient and rational use of resources. Within this context, rather than a planting design which considers only the ecological and aesthetic features of plants, these considerations should also extend to spatial organization whereby the relationship between the site and open spaces in the context of climatic elements and planting designs are taken into account. In this way, the planting design can serve an additional purpose. In this study, a landscape design which takes into consideration location, local climate morphology and solar angle will be illustrated on a sample building project.

Keywords: energy efficiency, landscape design, plant design, xeriscape landscape

Procedia PDF Downloads 261
7518 Production of Linamarase from Lactobacillus delbrueckii NRRL B-763

Authors: Ogbonnaya Nwokoro, Florence O. Anya

Abstract:

Nutritional factors relating to the production of linamarase from Lactobacillus delbrueckii NRRL B–763 were investigated. The microorganism was cultivated in a medium containing 1% linamarin. Enzyme was produced using a variety of carbon substrates but the highest enzyme activity was detected in the presence of salicin (522 U/ml) after 48 h while the lowest yield was observed with CM cellulose (38 U/ml) after 72 h. Enzyme was not produced in the presence of cellobiose. Among a variety of nitrogen substrates tested, peptone supported maximum enzyme production (412 U/ml) after 48 h. Lowest enzyme production was observed with urea (40 U/ml). Organic nitrogen substrates generally supported higher enzyme productivity than inorganic nitrogen substrates. Enzyme activity was observed in the presence of Mn2+ (% relative activity = 216) while Hg2+ was inhibitory (% relative activity = 28). Locally-formulated media were comparable to MRS broth in supporting linamarase production by the bacterium. Higher enzyme activity was produced in media with surfactant than in media without surfactant. The enzyme may be useful in enhanced degradation of cassava cyanide.

Keywords: linamarase, locally formulated media, carbon substrates, nitrogen substrates, metal ions

Procedia PDF Downloads 427