Search results for: building performance rating tool
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20350

Search results for: building performance rating tool

4120 Mechanical Behavior of Geosynthetics vs the Combining Effect of Aging, Temperature and Internal Structure

Authors: Jaime Carpio-García, Elena Blanco-Fernández, Jorge Rodríguez-Hernández, Daniel Castro-Fresno

Abstract:

Geosynthetic mechanical behavior vs temperature or vs aging has been widely studied independently during the last years, both in laboratory and in outdoor conditions. This paper studies this behavior deeper, considering that geosynthetics have to perform adequately at different outdoor temperatures once they have been subjected to a certain degree of aging, and also considering the different geosynthetic structures made of the same material. This combining effect has been not considered so far, and it is important to ensure the performance of geosynthetics, especially where high temperatures are expected. In order to fill this gap, six commercial geosynthetics with different internal structures made of polypropylene (PP), high density polyethylene (HDPE), bitumen and polyvinyl chloride (PVC), or even a combination of some of them have been mechanically tested at mild temperature (20ºC or 23ºC) and at warm temperature (45ºC) before and after specific exposition to air at standardized high temperature in order to simulate 25 years of aging due to oxidation. Besides, for 45ºC tests, an innovative heating system during test for high deformable specimens is proposed. The influence of the combining effect of aging, structure and temperature in the product behavior have been analyzed and discussed, concluding that internal structure is more influential than aging in the mechanical behavior of a geosynthetic versus temperature.

Keywords: geosynthetics, mechanical behavior, temperature, aging, internal structure

Procedia PDF Downloads 70
4119 Comparison of Two Methods of Cryopreservation of Testicular Tissue from Prepubertal Lambs

Authors: Rensson Homero Celiz Ygnacio, Marco Aurélio Schiavo Novaes, Lucy Vanessa Sulca Ñaupas, Ana Paula Ribeiro Rodrigues

Abstract:

The cryopreservation of testicular tissue emerges as an alternative for the preservation of the reproductive potential of individuals who still cannot produce sperm; however, they will undergo treatments that may affect their fertility (e.g., chemotherapy). Therefore, the present work aims to compare two cryopreservation methods (slow freezing and vitrification) in testicular tissue of prepubertal lambs. For that, to obtain the testicular tissue, the animals were castrated and the testicles were collected immediately in a physiological solution supplemented with antibiotics. In the laboratory, the testis was split into small pieces. The total size of the testicular fragments was 3×3x1 mm³ and was placed in a dish contained in Minimum Essential Medium (MEM-HEPES). The fragments were distributed randomly into non-cryopreserved (fresh control), slow freezing (SF), and vitrified. To SF procedures, two fragments from a given male were then placed in a 2,0 mL cryogenic vial containing 1,0 mL MEM-HEPES supplemented with 20% fetal bovine serum (FBS) and 20% dimethylsulfoxide (DMSO). Tubes were placed into a Mr. Frosty™ Freezing container with isopropyl alcohol and transferred to a -80°C freezer for overnight storage. On the next day, each tube was plunged into liquid nitrogen (NL). For vitrification, the ovarian tissue cryosystem (OTC) device was used. Testicular fragments were placed in the OTC device and exposed to the first vitrification solution composed of MEM-HEPES supplemented with 10 mg/mL Bovine Serum Albumin (BSA), 0.25 M sucrose, 10% Ethylene glycol (EG), 10% DMSO and 150 μM alpha-lipoic acid for four min. The VS1 was discarded and then the fragments were submerged into a second vitrification solution (VS2) containing the same composition of VS1 but 20% EG and 20% DMSO. VS2 was then discarded and each OTC device containing up to four testicular fragments was closed and immersed in NL. After the storage period, the fragments were removed from the NL, kept at room temperature for one min and then immersed at 37 °C in a water bath for 30 s. Samples were warmed by sequentially immersing in solutions of MEM-HEPES supplemented with 3 mg/mL BSA and decreasing concentrations of sucrose. Hematoxylin-eosin staining to analyze the tissue architecture was used. The score scale used was from 0 to 3, classified with a score 0 representing normal morphologically, and 3 were considered a lot of alteration. The histomorphological evaluation of the testicular tissue shows that when evaluating the nuclear alteration (distinction of nucleoli and condensation of nuclei), there are no differences when using slow freezing with respect to the control. However, vitrification presents greater damage (p <0.05). On the other hand, when evaluating the epithelial alteration, we observed that the freezing showed scores statistically equal to the control in variables such as retraction of the basement membrane, formation of gaps and organization of the peritubular cells. The results of the study demonstrated that cryopreservation using the slow freezing method is an excellent tool for the preservation of pubertal testicular tissue.

Keywords: cryopreservation, slow freezing, vitrification, testicular tissue, lambs

Procedia PDF Downloads 175
4118 An Image Enhancement Method Based on Curvelet Transform for CBCT-Images

Authors: Shahriar Farzam, Maryam Rastgarpour

Abstract:

Image denoising plays extremely important role in digital image processing. Enhancement of clinical image research based on Curvelet has been developed rapidly in recent years. In this paper, we present a method for image contrast enhancement for cone beam CT (CBCT) images based on fast discrete curvelet transforms (FDCT) that work through Unequally Spaced Fast Fourier Transform (USFFT). These transforms return a table of Curvelet transform coefficients indexed by a scale parameter, an orientation and a spatial location. Accordingly, the coefficients obtained from FDCT-USFFT can be modified in order to enhance contrast in an image. Our proposed method first uses a two-dimensional mathematical transform, namely the FDCT through unequal-space fast Fourier transform on input image and then applies thresholding on coefficients of Curvelet to enhance the CBCT images. Consequently, applying unequal-space fast Fourier Transform leads to an accurate reconstruction of the image with high resolution. The experimental results indicate the performance of the proposed method is superior to the existing ones in terms of Peak Signal to Noise Ratio (PSNR) and Effective Measure of Enhancement (EME).

Keywords: curvelet transform, CBCT, image enhancement, image denoising

Procedia PDF Downloads 300
4117 Self Tuning Controller for Reducing Cycle to Cycle Variations in SI Engine

Authors: Alirıza Kaleli, M. Akif Ceviz, Erdoğan Güner, Köksal Erentürk

Abstract:

The cyclic variations in spark ignition engines occurring especially under specific engine operating conditions make the maximum pressure variable for successive in-cylinder pressure cycles. Minimization of cyclic variations has a great importance in effectively operating near to lean limit, or at low speed and load. The cyclic variations may reduce the power output of the engine, lead to operational instabilities, and result in undesirable engine vibrations and noise. In this study, spark timing is controlled in order to reduce the cyclic variations in spark ignition engines. Firstly, an ARMAX model has developed between spark timing and maximum pressure using system identification techniques. By using this model, the maximum pressure of the next cycle has been predicted. Then, self-tuning minimum variance controller has been designed to change the spark timing for consecutive cycles of the first cylinder of test engine to regulate the in-cylinder maximum pressure. The performance of the proposed controller is illustrated in real time and experimental results show that the controller has a reliable effect on cycle to cycle variations of maximum cylinder pressure when the engine works under low speed conditions.

Keywords: cyclic variations, cylinder pressure, SI engines, self tuning controller

Procedia PDF Downloads 481
4116 Effects and Mechanization of a High Gradient Magnetic Separation Process for Particulate and Microbe Removal from Ballast Water

Authors: Zhijun Ren, Zhang Lin, Zhao Ye, Zuo Xiangyu, Mei Dongxing

Abstract:

As a pretreatment process of ballast water treatment, the performance of high gradient magnetic separation (HGMS) technology for the removal of particulates and microorganisms was studied. The results showed that HGMS process could effectively remove suspended particles larger than 5 µm and had ability to resist impact load. Microorganism could also be effectively removed by HGMS process, and the removal effect increased with increasing magnetic field strength. The maximum removal rates for Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were 4016.1% and 9675.3% higher, respectively, than without the magnetic field. In addition, the superoxide dismutase (SOD) activity of the microbes decreased by 32.2% when the magnetic field strength was 15.4 mT for 72 min. The microstructure of the stainless steel wool was investigated, and the results showed that particle removal by HGMS has common function by the magnetic force of the high-strength, high-gradient magnetic field on weakly magnetic particles in the water, and on the stainless steel wool.

Keywords: HGMS, particulates, superoxide dismutase (SOD) activity, steel wool magnetic medium

Procedia PDF Downloads 449
4115 Efficacy of a Wiener Filter Based Technique for Speech Enhancement in Hearing Aids

Authors: Ajish K. Abraham

Abstract:

Hearing aid is the most fundamental technology employed towards rehabilitation of persons with sensory neural hearing impairment. Hearing in noise is still a matter of major concern for many hearing aid users and thus continues to be a challenging issue for the hearing aid designers. Several techniques are being currently used to enhance the speech at the hearing aid output. Most of these techniques, when implemented, result in reduction of intelligibility of the speech signal. Thus the dissatisfaction of the hearing aid user towards comprehending the desired speech amidst noise is prevailing. Multichannel Wiener Filter is widely implemented in binaural hearing aid technology for noise reduction. In this study, Wiener filter based noise reduction approach is experimented for a single microphone based hearing aid set up. This method checks the status of the input speech signal in each frequency band and then selects the relevant noise reduction procedure. Results showed that the Wiener filter based algorithm is capable of enhancing speech even when the input acoustic signal has a very low Signal to Noise Ratio (SNR). Performance of the algorithm was compared with other similar algorithms on the basis of improvement in intelligibility and SNR of the output, at different SNR levels of the input speech. Wiener filter based algorithm provided significant improvement in SNR and intelligibility compared to other techniques.

Keywords: hearing aid output speech, noise reduction, SNR improvement, Wiener filter, speech enhancement

Procedia PDF Downloads 247
4114 Intellectual Property Law as a Tool to Enhance and Sustain Museums in Digital Era

Authors: Nayira Ahmed Galal Elden Hassan, Amr Mostafa Awad Kassem

Abstract:

The management of Intellectual Property (IP) in museums presents a multifaceted challenge, requiring a balance between granting access to cultural assets and maintaining control over them. In the digital age, IP has emerged as a critical aspect of museum operations, encompassing valuable assets within collections and museum-generated content. Effective IP management enables museums to generate revenue, protect rights, and promote cultural heritage while leveraging digital technologies. Opportunities such as e-commerce and licensing can drive economic growth, but they also introduce complexities related to IP protection and regulation. This study explores the dual nature of IP assets—collection-based and museum-generated—highlighting their implications for sustainability and cultural preservation. The analysis includes examples such as the German State Museum’s management of replicas from the Nefertiti bust, showcasing the challenges museums face when navigating IP frameworks. The research underscores the importance of a comprehensive understanding of IP laws to prevent legal disputes, reputational risks, and revenue loss. By adopting an analytical and comparative methodology, this paper examines museums that have effectively implemented IP rules to enhance their operations and sustain their resources. It investigates how IP management can help museums fulfill their mission of community engagement, education, and outreach while ensuring long-term sustainability. The findings demonstrate that balanced IP strategies are essential for securing financial stability, safeguarding cultural heritage, and adapting to the demands of the digital era. This research seeks to explore how museums can effectively fulfill their mission of community engagement, education, and outreach while ensuring long-term sustainability. It examines the extent to which intellectual property (IP) management can contribute to achieving these objectives, focusing on the benefits and challenges associated with adopting IP management strategies. Additionally, the study addresses the question of ownership by investigating who holds the rights to cultural assets and how these rights can be managed effectively to align with both institutional goals and the preservation of cultural heritage.The findings underscore the pivotal role of effective IP management in empowering museums to navigate the digital landscape, maximize revenue streams, and safeguard cultural heritage. The study emphasizes the necessity of adopting a balanced approach to IP management, which aligns institutional goals with the ethical and legal considerations of cultural heritage preservation.

Keywords: intellectual property, museums, IP management, digital technologies, sustainability, cultural heritage

Procedia PDF Downloads 8
4113 Hybrid Algorithm for Non-Negative Matrix Factorization Based on Symmetric Kullback-Leibler Divergence for Signal Dependent Noise: A Case Study

Authors: Ana Serafimovic, Karthik Devarajan

Abstract:

Non-negative matrix factorization approximates a high dimensional non-negative matrix V as the product of two non-negative matrices, W and H, and allows only additive linear combinations of data, enabling it to learn parts with representations in reality. It has been successfully applied in the analysis and interpretation of high dimensional data arising in neuroscience, computational biology, and natural language processing, to name a few. The objective of this paper is to assess a hybrid algorithm for non-negative matrix factorization with multiplicative updates. The method aims to minimize the symmetric version of Kullback-Leibler divergence known as intrinsic information and assumes that the noise is signal-dependent and that it originates from an arbitrary distribution from the exponential family. It is a generalization of currently available algorithms for Gaussian, Poisson, gamma and inverse Gaussian noise. We demonstrate the potential usefulness of the new generalized algorithm by comparing its performance to the baseline methods which also aim to minimize symmetric divergence measures.

Keywords: non-negative matrix factorization, dimension reduction, clustering, intrinsic information, symmetric information divergence, signal-dependent noise, exponential family, generalized Kullback-Leibler divergence, dual divergence

Procedia PDF Downloads 246
4112 Data Science-Based Key Factor Analysis and Risk Prediction of Diabetic

Authors: Fei Gao, Rodolfo C. Raga Jr.

Abstract:

This research proposal will ascertain the major risk factors for diabetes and to design a predictive model for risk assessment. The project aims to improve diabetes early detection and management by utilizing data science techniques, which may improve patient outcomes and healthcare efficiency. The phase relation values of each attribute were used to analyze and choose the attributes that might influence the examiner's survival probability using Diabetes Health Indicators Dataset from Kaggle’s data as the research data. We compare and evaluate eight machine learning algorithms. Our investigation begins with comprehensive data preprocessing, including feature engineering and dimensionality reduction, aimed at enhancing data quality. The dataset, comprising health indicators and medical data, serves as a foundation for training and testing these algorithms. A rigorous cross-validation process is applied, and we assess their performance using five key metrics like accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC-ROC). After analyzing the data characteristics, investigate their impact on the likelihood of diabetes and develop corresponding risk indicators.

Keywords: diabetes, risk factors, predictive model, risk assessment, data science techniques, early detection, data analysis, Kaggle

Procedia PDF Downloads 75
4111 Developing a Web-Based Workflow Management System in Cloud Computing Platforms

Authors: Wang Shuen-Tai, Lin Yu-Ching, Chang Hsi-Ya

Abstract:

Cloud computing is the innovative and leading information technology model for enabling convenient, on-demand network access to a shared pool of configurable computing resources that can be rapidly provisioned and released with minimal management effort. In this paper, we aim at the development of workflow management system for cloud computing platforms based on our previous research on the dynamic allocation of the cloud computing resources and its workflow process. We took advantage of the HTML 5 technology and developed web-based workflow interface. In order to enable the combination of many tasks running on the cloud platform in sequence, we designed a mechanism and developed an execution engine for workflow management on clouds. We also established a prediction model which was integrated with job queuing system to estimate the waiting time and cost of the individual tasks on different computing nodes, therefore helping users achieve maximum performance at lowest payment. This proposed effort has the potential to positively provide an efficient, resilience and elastic environment for cloud computing platform. This development also helps boost user productivity by promoting a flexible workflow interface that lets users design and control their tasks' flow from anywhere.

Keywords: web-based, workflow, HTML5, Cloud Computing, Queuing System

Procedia PDF Downloads 309
4110 Developing Creative and Critically Reflective Digital Learning Communities

Authors: W. S. Barber, S. L. King

Abstract:

This paper is a qualitative case study analysis of the development of a fully online learning community of graduate students through arts-based community building activities. With increasing numbers and types of online learning spaces, it is incumbent upon educators to continue to push the edge of what best practices look like in digital learning environments. In digital learning spaces, instructors can no longer be seen as purveyors of content knowledge to be examined at the end of a set course by a final test or exam. The rapid and fluid dissemination of information via Web 3.0 demands that we reshape our approach to teaching and learning, from one that is content-focused to one that is process-driven. Rather than having instructors as formal leaders, today’s digital learning environments require us to share expertise, as it is the collective experiences and knowledge of all students together with the instructors that help to create a very different kind of learning community. This paper focuses on innovations pursued in a 36 hour 12 week graduate course in higher education entitled “Critical and Reflective Practice”. The authors chronicle their journey to developing a fully online learning community (FOLC) by emphasizing the elements of social, cognitive, emotional and digital spaces that form a moving interplay through the community. In this way, students embrace anywhere anytime learning and often take the learning, as well as the relationships they build and skills they acquire, beyond the digital class into real world situations. We argue that in order to increase student online engagement, pedagogical approaches need to stem from two primary elements, both creativity and critical reflection, that are essential pillars upon which instructors can co-design learning environments with students. The theoretical framework for the paper is based on the interaction and interdependence of Creativity, Intuition, Critical Reflection, Social Constructivism and FOLCs. By leveraging students’ embedded familiarity with a wide variety of technologies, this case study of a graduate level course on critical reflection in education, examines how relationships, quality of work produced, and student engagement can improve by using creative and imaginative pedagogical strategies. The authors examine their professional pedagogical strategies through the lens that the teacher acts as facilitator, guide and co-designer. In a world where students can easily search for and organize information as self-directed processes, creativity and connection can at times be lost in the digitized course environment. The paper concludes by posing further questions as to how institutions of higher education may be challenged to restructure their credit granting courses into more flexible modules, and how students need to be considered an important part of assessment and evaluation strategies. By introducing creativity and critical reflection as central features of the digital learning spaces, notions of best practices in digital teaching and learning emerge.

Keywords: online, pedagogy, learning, communities

Procedia PDF Downloads 405
4109 Brand Building in Higher Education: A Grounded Theory Investigation of the Impact of the ‘Positive-Visualization-Course in Brand Identity’ upon Freshmen Student's Perception

Authors: Maria Kountouridou, Dino Domic

Abstract:

Within an increasingly competitive and dynamic environment, the higher education sector is becoming more commodified, with the concept of branding to become exceedingly imperative and an inextricable ingredient for the university’s success. Branding in higher education has proven to be an effective strategy that managed to receive considerable attention in the recent few years, and a growing number of articles have begun to appear in the literature. However, a clear void in the literature confirms that the concept of students’ perceptions towards the university’s brand image has not been researched extensively. An investigation on this central concept is of paramount importance since it will facilitate the development of an inductively generated theoretical model concerning branding in higher education. This research focuses on examining the impact of the ‘positive-visualization-course in brand identity’ upon the perception of freshmen students towards a university’s brand image. A grounded theory methodology has been selected, consisting of semi-structured interviews. Forty-two students have participated in the research, among which twenty-five women and seventeen men. The identification of the sample emerged through the use of the snowball sampling technique. The participants were divided into two groups (experimental and control group) after the researcher had taken into consideration the factor ‘program of study’, to eliminate any possible interaction between the participants of each group. An experiment was carried out where a ‘positive-visualization-course in brand identity’ was conducted among the participants of the experimental group, while the participants of the control group have not been exposed to the course. For the purpose of this research, the term ‘positive-visualization-course in brand identity’ refers to a course where brand history, past achievements/recognitions/awards, its values, and its mission are presented. Prior to the course implementation, face-to-face semi-structured interviews were carried out among the participants of both groups, with the aim of examining the freshmen students’ perceptions towards the university’s brand image. One week after the course implementation, the researcher carried out semi-structured interviews with the participants of the experimental group only in order to identify whether students’ perceptions had been affected after the course completion. Four months after the course completion, semi-structured interviews were carried out among the participants of both groups. Eight months after the course completion, semi-structured interviews were conducted with the aim of identifying the freshmen students’ updated perceptions. Data has been analyzed using substantive coding (open and selective coding), theoretical coding, field memos, and constant comparative analysis. The findings strongly suggest that the ‘positive-visualization-course in brand identity’ can positively affect freshmen students’ perceptions towards a university’s brand image. Additionally, other factors conduce to the formation of perception throughout the months. This study contributes and expands upon the existing literature by presenting an inductively generated theoretical model to guide future research in the links between ‘positive-visualization-course in brand identity’ and the perception of freshmen students towards a university’s brand image.

Keywords: brand image, brand name, branding, higher education marketing, perception

Procedia PDF Downloads 178
4108 Continuous Dyeing of Graphene and Polyaniline on Textiles for Electromagnetic interference Shielding: An Application of Intelligent Fabrics

Authors: Mourad Makhlouf Sabrina Bouriche, Zoubir Benmaamar, Didier Villemin

Abstract:

Background: The increasing presence of electromagnetic interference (EMI) requires the development of effective protection solutions. Intelligent textiles offer a promising approach due to their wear ability and the possibility of integration into everyday clothing. In this study, the use of graphene and polyaniline for EMI shielding on cotton fabrics was examined. Methods: In this study, the continuous dyeing of recycled graphite-derived graphene and polyaniline was examined. Bottom-reforming technology was adopted to improve adhesion and achieve uniform distribution of conductive material on the fiber surface. The effect of material weight ratio on fabric performance and X-band EMI shielding effectiveness (SE) was evaluated. Significant Findings: The dyed cotton fabrics incorporating graphene, polyaniline, and their combination exhibited improved conductivity. Notably, these fabrics achieved EMI SE values ranging from 9 to 16 dB within the X-band frequency range (8-9 GHz). These findings demonstrate the potential of this approach for developing intelligent textiles with effective EMI shielding capabilities. Additionally, the utilization of recycled materials contributes to a more sustainable shielding solution.

Keywords: Intelligent textiles, graphene, polyaniline, electromagnetic shielding, conductivity, recycling

Procedia PDF Downloads 43
4107 Reclamation of Molding Sand: A Chemical Approach to Recycle Waste Foundry Sand

Authors: Mohd Moiz Khan, S. M. Mahajani, G. N. Jadhav

Abstract:

Waste foundry sand (total clay content 15%) contains toxic heavy metals and particulate matter which make dumping of waste sand an environmental and health hazard. Disposal of waste foundry sand (WFS) remains one of the substantial challenges faced by Indian foundries nowadays. To cope up with this issue, the chemical method was used to reclaim WFS. A stirrer tank reactor was used for chemical reclamation. Experiments were performed to reduce the total clay content from 15% to as low as 0.9% in chemical reclamation. This method, although found to be effective for WFS reclamation, it may face a challenge due to the possibly high operating cost. Reclaimed sand was found to be satisfactory in terms of sand qualities such as total clay (0.9%), active clay (0.3%), acid demand value (ADV) (2.6%), loss on igniting (LOI) (3 %), grain fineness number (GFN) (56), and compressive strength (60 kPa). The experimental data generated on chemical reactor under different conditions is further used to optimize the design and operating parameters (rotation speed, sand to acidic solution ratio, acid concentration, temperature and time) for the best performance. The use of reclaimed sand within the foundry would improve the economics and efficiency of the process and reduce environmental concerns.

Keywords: chemical reclamation, clay content, environmental concerns, recycle, waste foundry sand

Procedia PDF Downloads 147
4106 Advances in Artificial intelligence Using Speech Recognition

Authors: Khaled M. Alhawiti

Abstract:

This research study aims to present a retrospective study about speech recognition systems and artificial intelligence. Speech recognition has become one of the widely used technologies, as it offers great opportunity to interact and communicate with automated machines. Precisely, it can be affirmed that speech recognition facilitates its users and helps them to perform their daily routine tasks, in a more convenient and effective manner. This research intends to present the illustration of recent technological advancements, which are associated with artificial intelligence. Recent researches have revealed the fact that speech recognition is found to be the utmost issue, which affects the decoding of speech. In order to overcome these issues, different statistical models were developed by the researchers. Some of the most prominent statistical models include acoustic model (AM), language model (LM), lexicon model, and hidden Markov models (HMM). The research will help in understanding all of these statistical models of speech recognition. Researchers have also formulated different decoding methods, which are being utilized for realistic decoding tasks and constrained artificial languages. These decoding methods include pattern recognition, acoustic phonetic, and artificial intelligence. It has been recognized that artificial intelligence is the most efficient and reliable methods, which are being used in speech recognition.

Keywords: speech recognition, acoustic phonetic, artificial intelligence, hidden markov models (HMM), statistical models of speech recognition, human machine performance

Procedia PDF Downloads 478
4105 Dual-Channel Multi-Band Spectral Subtraction Algorithm Dedicated to a Bilateral Cochlear Implant

Authors: Fathi Kallel, Ahmed Ben Hamida, Christian Berger-Vachon

Abstract:

In this paper, a Speech Enhancement Algorithm based on Multi-Band Spectral Subtraction (MBSS) principle is evaluated for Bilateral Cochlear Implant (BCI) users. Specifically, dual-channel noise power spectral estimation algorithm using Power Spectral Densities (PSD) and Cross Power Spectral Densities (CPSD) of the observed signals is studied. The enhanced speech signal is obtained using Dual-Channel Multi-Band Spectral Subtraction ‘DC-MBSS’ algorithm. For performance evaluation, objective speech assessment test relying on Perceptual Evaluation of Speech Quality (PESQ) score is performed to fix the optimal number of frequency bands needed in DC-MBSS algorithm. In order to evaluate the speech intelligibility, subjective listening tests are assessed with 3 deafened BCI patients. Experimental results obtained using French Lafon database corrupted by an additive babble noise at different Signal-to-Noise Ratios (SNR) showed that DC-MBSS algorithm improves speech understanding for single and multiple interfering noise sources.

Keywords: speech enhancement, spectral substracion, noise estimation, cochlear impalnt

Procedia PDF Downloads 549
4104 Assessment of Material Type, Diameter, Orientation and Closeness of Fibers in Vulcanized Reinforced Rubbers

Authors: Ali Osman Güney, Bahattin Kanber

Abstract:

In this work, the effect of material type, diameter, orientation and closeness of fibers on the general performance of reinforced vulcanized rubbers are investigated using finite element method with experimental verification. Various fiber materials such as hemp, nylon, polyester are used for different fiber diameters, orientations and closeness. 3D finite element models are developed by considering bonded contact elements between fiber and rubber sheet interfaces. The fibers are assumed as linear elastic, while vulcanized rubber is considered as hyper-elastic. After an experimental verification of finite element results, the developed models are analyzed under prescribed displacement that causes tension. The normal stresses in fibers and shear stresses between fibers and rubber sheet are investigated in all models. Large deformation of reinforced rubber sheet also represented with various fiber conditions under incremental loading. A general assessment is achieved about best fiber properties of reinforced rubber sheets for tension-load conditions.

Keywords: reinforced vulcanized rubbers, fiber properties, out of plane loading, finite element method

Procedia PDF Downloads 347
4103 Multi Tier Data Collection and Estimation, Utilizing Queue Model in Wireless Sensor Networks

Authors: Amirhossein Mohajerzadeh, Abolghasem Mohajerzadeh

Abstract:

In this paper, target parameter is estimated with desirable precision in hierarchical wireless sensor networks (WSN) while the proposed algorithm also tries to prolong network lifetime as much as possible, using efficient data collecting algorithm. Target parameter distribution function is considered unknown. Sensor nodes sense the environment and send the data to the base station called fusion center (FC) using hierarchical data collecting algorithm. FC builds underlying phenomena based on collected data. Considering the aggregation level, x, the goal is providing the essential infrastructure to find the best value for aggregation level in order to prolong network lifetime as much as possible, while desirable accuracy is guaranteed (required sample size is fully depended on desirable precision). First, the sample size calculation algorithm is discussed, second, the average queue length based on M/M[x]/1/K queue model is determined and it is used for energy consumption calculation. Nodes can decrease transmission cost by aggregating incoming data. Furthermore, the performance of the new algorithm is evaluated in terms of lifetime and estimation accuracy.

Keywords: aggregation, estimation, queuing, wireless sensor network

Procedia PDF Downloads 186
4102 Designing Entrepreneurship Education Contents for Entrepreneurial Intention Building among Undergraduates in India

Authors: Sumita Srivastava

Abstract:

Despite several measures taken by the Government of India, entrepreneurship is still not perceived as a viable career option by the young generation. Although the rate of startups has improved a little after the penetration of e portals as business platforms, still the numbers are not very significant. It is also important to note that entrepreneurial initiatives are mostly taken up by graduates of premier institutions of India like Indian Institute of Technology (IITs) and Indian Institute of Management (IIMs). The scenario is not very satisfactory amongst the masses graduating from mainstream universities of the country. Indian youth at large are not attracted towards entrepreneurship as a career choice. The reason probably lies in the social fabric of the country and inappropriate education system which does not support the entrepreneurship at large amongst youth in the country. Education is critical to the development of an economy from the poverty level to the level of self-sustenance and development. The current curriculum in the majority of business schools in India prepares the average graduate to become employed by the available firms or business owners in society. For graduates in other streams, employment opportunities are very limited. The aim of this study was to identify and design entrepreneurship education contents to encourage undergraduates to pursue entrepreneurship as a career choice. This comprehensive study was conducted in multiple stages. Extensive research was conducted at each stage with an appropriate methodology. These stages of the project study were interconnected with each other, and each preceding stage provided inputs for the following stage of the study. In the first stage of the study, an empirical analysis was conducted to understand the current state of entrepreneurial intentions of undergraduates of Agra city. Various stakeholders were contacted at the stage, including students (n = 500), entrepreneurs (n = 20) and academicians and field experts (n = 10). At the second stage of the project study, a systems science technique, Nominal Group Technique (NGT) was used to identify the critical elements of entrepreneurship education in India based upon the findings of stage 1. The application of the Nominal Group Technique involved a workshop format; 15 domain experts participated in the workshop. Throughout the process, a democratic process was followed to avoid individual dominance and premature focusing on a single idea. The study obtained 63 responses from experts for effective entrepreneurship education in India. The responses were reduced to seven elements after a few thematic iterations. These elements were then segregated into content (knowledge, skills and attitude) and learning interaction on the basis of experts’ responses. After identifying critical elements of entrepreneurship education in the previous stage, the course was designed and validated at stage 3 of the project. Scientific methods were used at this stage to validate the curriculum contents and training interventions experimentally. The educational and training interventions designed through this study would not only help in developing entrepreneurial intentions but also creating skills relevant to the local entrepreneurial opportunities in the vicinity.

Keywords: curriculum design, entrepreneurial intention, entrepreneuship education, nominal group technique

Procedia PDF Downloads 130
4101 Identifying the Barriers Facing Chinese Small and Medium-Sized Enterprises and Evaluating the Effectiveness of Public Supports

Authors: A. Yongsheng Guo, B. Obedat. Abdulazeez, C. Xiaoxian Zhu

Abstract:

This study aimed to identify the barriers to the development of small and medium-sized enterprises (SMEs) in China and build a theoretical framework to evaluate the support provided by the authorities and institutions. A grounded theory approach was adopted to collect and analyze data. 32 interviews were conducted with SME managers, and open, axial and selective coding was utilized to develop themes. Based on institutional theory, grounded theory models were used to present findings. The findings showed that the main barriers in the business environment were defaulting on contracts, bureaucracy in procedures, lack of financial and legal support, limited intermediaries and channels, and poor quality of products and services. This study found that many programs were provided to support SMEs. A theoretical framework was developed to evaluate the performance of the programs from the managers’ perspective. The concepts of economy, efficiency and effectiveness were used to evaluate the perceived value of the programs. This study suggests that specialized programs are needed to suit sector-specific requirements, and creative packages are helpful in supporting SMEs' growth.

Keywords: business support, public economics, public programme, SME

Procedia PDF Downloads 53
4100 Simultaneous Optimization of Design and Maintenance through a Hybrid Process Using Genetic Algorithms

Authors: O. Adjoul, A. Feugier, K. Benfriha, A. Aoussat

Abstract:

In general, issues related to design and maintenance are considered in an independent manner. However, the decisions made in these two sets influence each other. The design for maintenance is considered an opportunity to optimize the life cycle cost of a product, particularly in the nuclear or aeronautical field, where maintenance expenses represent more than 60% of life cycle costs. The design of large-scale systems starts with product architecture, a choice of components in terms of cost, reliability, weight and other attributes, corresponding to the specifications. On the other hand, the design must take into account maintenance by improving, in particular, real-time monitoring of equipment through the integration of new technologies such as connected sensors and intelligent actuators. We noticed that different approaches used in the Design For Maintenance (DFM) methods are limited to the simultaneous characterization of the reliability and maintainability of a multi-component system. This article proposes a method of DFM that assists designers to propose dynamic maintenance for multi-component industrial systems. The term "dynamic" refers to the ability to integrate available monitoring data to adapt the maintenance decision in real time. The goal is to maximize the availability of the system at a given life cycle cost. This paper presents an approach for simultaneous optimization of the design and maintenance of multi-component systems. Here the design is characterized by four decision variables for each component (reliability level, maintainability level, redundancy level, and level of monitoring data). The maintenance is characterized by two decision variables (the dates of the maintenance stops and the maintenance operations to be performed on the system during these stops). The DFM model helps the designers choose technical solutions for the large-scale industrial products. Large-scale refers to the complex multi-component industrial systems and long life-cycle, such as trains, aircraft, etc. The method is based on a two-level hybrid algorithm for simultaneous optimization of design and maintenance, using genetic algorithms. The first level is to select a design solution for a given system that considers the life cycle cost and the reliability. The second level consists of determining a dynamic and optimal maintenance plan to be deployed for a design solution. This level is based on the Maintenance Free Operating Period (MFOP) concept, which takes into account the decision criteria such as, total reliability, maintenance cost and maintenance time. Depending on the life cycle duration, the desired availability, and the desired business model (sales or rental), this tool provides visibility of overall costs and optimal product architecture.

Keywords: availability, design for maintenance (DFM), dynamic maintenance, life cycle cost (LCC), maintenance free operating period (MFOP), simultaneous optimization

Procedia PDF Downloads 119
4099 Identification System for Grading Banana in Food Processing Industry

Authors: Ebenezer O. Olaniyi, Oyebade K. Oyedotun, Khashman Adnan

Abstract:

In the food industry high quality production is required within a limited time to meet up with the demand in the society. In this research work, we have developed a model which can be used to replace the human operator due to their low output in production and slow in making decisions as a result of an individual differences in deciding the defective and healthy banana. This model can perform the vision attributes of human operators in deciding if the banana is defective or healthy for food production based. This research work is divided into two phase, the first phase is the image processing where several image processing techniques such as colour conversion, edge detection, thresholding and morphological operation were employed to extract features for training and testing the network in the second phase. These features extracted in the first phase were used in the second phase; the classification system phase where the multilayer perceptron using backpropagation neural network was employed to train the network. After the network has learned and converges, the network was tested with feedforward neural network to determine the performance of the network. From this experiment, a recognition rate of 97% was obtained and the time taken for this experiment was limited which makes the system accurate for use in the food industry.

Keywords: banana, food processing, identification system, neural network

Procedia PDF Downloads 471
4098 Ambiguity Resolution for Ground-based Pulse Doppler Radars Using Multiple Medium Pulse Repetition Frequency

Authors: Khue Nguyen Dinh, Loi Nguyen Van, Thanh Nguyen Nhu

Abstract:

In this paper, we propose an adaptive method to resolve ambiguities and a ghost target removal process to extract targets detected by a ground-based pulse-Doppler radar using medium pulse repetition frequency (PRF) waveforms. The ambiguity resolution method is an adaptive implementation of the coincidence algorithm, which is implemented on a two-dimensional (2D) range-velocity matrix to resolve range and velocity ambiguities simultaneously, with a proposed clustering filter to enhance the anti-error ability of the system. Here we consider the scenario of multiple target environments. The ghost target removal process, which is based on the power after Doppler processing, is proposed to mitigate ghosting detections to enhance the performance of ground-based radars using a short PRF schedule in multiple target environments. Simulation results on a ground-based pulsed Doppler radar model will be presented to show the effectiveness of the proposed approach.

Keywords: ambiguity resolution, coincidence algorithm, medium PRF, ghosting removal

Procedia PDF Downloads 152
4097 Human Action Recognition Using Variational Bayesian HMM with Dirichlet Process Mixture of Gaussian Wishart Emission Model

Authors: Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park

Abstract:

In this paper, we present the human action recognition method using the variational Bayesian HMM with the Dirichlet process mixture (DPM) of the Gaussian-Wishart emission model (GWEM). First, we define the Bayesian HMM based on the Dirichlet process, which allows an infinite number of Gaussian-Wishart components to support continuous emission observations. Second, we have considered an efficient variational Bayesian inference method that can be applied to drive the posterior distribution of hidden variables and model parameters for the proposed model based on training data. And then we have derived the predictive distribution that may be used to classify new action. Third, the paper proposes a process of extracting appropriate spatial-temporal feature vectors that can be used to recognize a wide range of human behaviors from input video image. Finally, we have conducted experiments that can evaluate the performance of the proposed method. The experimental results show that the method presented is more efficient with human action recognition than existing methods.

Keywords: human action recognition, Bayesian HMM, Dirichlet process mixture model, Gaussian-Wishart emission model, Variational Bayesian inference, prior distribution and approximate posterior distribution, KTH dataset

Procedia PDF Downloads 353
4096 Hypoglossal Nerve Stimulation (Baseline vs. 12 months) for Obstructive Sleep Apnea: A Meta-Analysis

Authors: Yasmeen Jamal Alabdallat, Almutazballlah Bassam Qablan, Hamza Al-Salhi, Salameh Alarood, Ibraheem Alkhawaldeh, Obada Abunar, Adam Abdallah

Abstract:

Obstructive sleep apnea (OSA) is a disorder caused by the repeated collapse of the upper airway during sleep. It is the most common cause of sleep-related breathing disorder, as OSA can cause loud snoring, daytime fatigue, or more severe problems such as high blood pressure, cardiovascular disease, coronary artery disease, insulin-resistant diabetes, and depression. The hypoglossal nerve stimulator (HNS) is an implantable medical device that reduces the occurrence of obstructive sleep apnea by electrically stimulating the hypoglossal nerve in rhythm with the patient's breathing, causing the tongue to move. This stimulation helps keep the patient's airways clear while they sleep. This systematic review and meta-analysis aimed to assess the clinical outcome of hypoglossal nerve stimulation as a treatment of obstructive sleep apnea. A computer literature search of PubMed, Scopus, Web of Science, and Cochrane Central Register of Controlled Trials was conducted from inception until August 2022. Studies assessing the following clinical outcomes (Apnea-Hypopnea Index (AHI), Epworth Sleepiness Scale (ESS), Functional Outcomes of Sleep Questionnaire (FOSQ), Oxygen Desaturation Indices (ODI), (Oxygen Saturation (SaO2)) were pooled in the meta-analysis using Review Manager Software. We assessed the quality of studies according to the Cochrane risk-of-bias tool for randomized trials (RoB2), Risk of Bias In Non-randomized Studies - of Interventions (ROBINS-I), and a modified version of NOS for the non-comparative cohort studies.13 Studies (Six Clinical Trials and Seven prospective cohort studies) with a total of 817 patients were included in the meta-analysis. The results of AHI were reported in 11 studies examining OSA 696 patients. We found that there was a significant improvement in the AHI after 12 months of HNS (MD = 18.2 with 95% CI, (16.7 to 19.7; I2 = 0%); P < 0.00001). Further, 12 studies reported the results of ESS after 12 months of intervention with a significant improvement in the range of sleepiness among the examined 757 OSA patients (MD = 5.3 with 95% CI, (4.75 to 5.86; I2 = 65%); P < 0.0001). Moreover, nine studies involving 699 participants reported the results of FOSQ after 12 months of HNS with a significant reported improvement (MD = -3.09 with 95% CI, (-3.41 to 2.77; I2 = 0%); P < 0.00001). In addition, ten studies reported the results of ODI with a significant improvement after 12 months of HNS among the 817 examined patients (MD = 14.8 with 95% CI, (13.25 to 16.32; I2 = 0%); P < 000001). The Hypoglossal Nerve Stimulation showed a significant positive impact on obstructive sleep apnea patients after 12 months of therapy in terms of apnea-hypopnea index, oxygen desaturation indices, manifestations of the behavioral morbidity associated with obstructive sleep apnea, and functional status resulting from sleepiness.

Keywords: apnea, meta-analysis, hypoglossal, stimulation

Procedia PDF Downloads 115
4095 Modification Encryption Time and Permutation in Advanced Encryption Standard Algorithm

Authors: Dalal N. Hammod, Ekhlas K. Gbashi

Abstract:

Today, cryptography is used in many applications to achieve high security in data transmission and in real-time communications. AES has long gained global acceptance and is used for securing sensitive data in various industries but has suffered from slow processing and take a large time to transfer data. This paper suggests a method to enhance Advance Encryption Standard (AES) Algorithm based on time and permutation. The suggested method (MAES) is based on modifying the SubByte and ShiftRrows in the encryption part and modification the InvSubByte and InvShiftRows in the decryption part. After the implementation of the proposal and testing the results, the Modified AES achieved good results in accomplishing the communication with high performance criteria in terms of randomness, encryption time, storage space, and avalanche effects. The proposed method has good randomness to ciphertext because this method passed NIST statistical tests against attacks; also, (MAES) reduced the encryption time by (10 %) than the time of the original AES; therefore, the modified AES is faster than the original AES. Also, the proposed method showed good results in memory utilization where the value is (54.36) for the MAES, but the value for the original AES is (66.23). Also, the avalanche effects used for calculating diffusion property are (52.08%) for the modified AES and (51.82%) percentage for the original AES.

Keywords: modified AES, randomness test, encryption time, avalanche effects

Procedia PDF Downloads 248
4094 System for the Detecting of Fake Profiles on Online Social Networks Using Machine Learning and the Bio-Inspired Algorithms

Authors: Sekkal Nawel, Mahammed Nadir

Abstract:

The proliferation of online activities on Online Social Networks (OSNs) has captured significant user attention. However, this growth has been hindered by the emergence of fraudulent accounts that do not represent real individuals and violate privacy regulations within social network communities. Consequently, it is imperative to identify and remove these profiles to enhance the security of OSN users. In recent years, researchers have turned to machine learning (ML) to develop strategies and methods to tackle this issue. Numerous studies have been conducted in this field to compare various ML-based techniques. However, the existing literature still lacks a comprehensive examination, especially considering different OSN platforms. Additionally, the utilization of bio-inspired algorithms has been largely overlooked. Our study conducts an extensive comparison analysis of various fake profile detection techniques in online social networks. The results of our study indicate that supervised models, along with other machine learning techniques, as well as unsupervised models, are effective for detecting false profiles in social media. To achieve optimal results, we have incorporated six bio-inspired algorithms to enhance the performance of fake profile identification results.

Keywords: machine learning, bio-inspired algorithm, detection, fake profile, system, social network

Procedia PDF Downloads 67
4093 Information Technology Competences for Professional Accountants in Thai Small to Medium Accounting Practice

Authors: Manirath Wongsim, Chatchawarn Srimontree, Pornpichit Phosri

Abstract:

Today, the majority of the data innovation may be currently majorly influencing business, what more accepted part of the accountant may be evolving. Information Technology elements have been appearing to be crucial in triggering changes of accountants’ roles. Thus, this study aims to investigate IT competencies among professional accountants to enhance firm performance. This research was conducted with 47 respondents at five organizations in Thailand and used quantitative research. The results indicate that the factor IT competencies for professional accountants in Thai small to medium accounting within the organizational issues defines18 factors. Specifically, these new factors, based on the research findings and the literature, then unique to IT competencies for professional accountants, include ERP software skills and accounting law and legal skills. The evidence in this study suggests that Analytical skills, teamwork skills, and accounting software were ranked as much-needed skills to be acquired by accountants while communication skills were ranked as the most required skills and delegation skills as the least required. The findings of the research’s empirical evidence suggest that organizations should understand appropriate in developing information technology influence competencies for knowledge employees in general and professional accountants in particular and provide assistance in all processes of decision making.

Keywords: IT competencies, IT competences for professional accountants, IT skills for accounting, IT skills in SMEs

Procedia PDF Downloads 231
4092 The Role of Instruction in Knowledge Construction in Online Learning

Authors: Soo Hyung Kim

Abstract:

Two different learning approaches were suggested: focusing on factual knowledge or focusing on the embedded meaning in the statements. Each way of learning has positive effects on different question categories, where factual knowledge helps more with simple fact questions, and searching for meaning in given information helps learn causal relationship and the embedded meaning. To test this belief, two groups of learners (12 male and 39 female adults aged 18-37) watched a ten-minute long Youtube video about various factual events of American history, their meaning, and the causal relations of the events. The fact group was asked to focus on factual knowledge in the video, and the meaning group was asked to focus on the embedded meaning in the video. After watching the video, both groups took multiple-choice questions, which consisted of 10 questions asking the factual knowledge addressed in the video and 10 questions asking embedded meaning in the video, such as the causal relationship between historical events and the significance of the event. From ANCOVA analysis, it was found that the factual knowledge showed higher performance on the factual questions than the meaning group, although there was no group difference on the questions about the meaning between the two groups. The finding suggests that teacher instruction plays an important role in learners constructing a different type of knowledge in online learning.

Keywords: factual knowledge, instruction, meaning-based knowledge, online learning

Procedia PDF Downloads 134
4091 A Predictive Analytics Approach to Project Management: Reducing Project Failures in Web and Software Development Projects

Authors: Tazeen Fatima

Abstract:

Use of project management in web & software development projects is very significant. It has been observed that even with the application of effective project management, projects usually do not complete their lifecycle and fail. To minimize these failures, key performance indicators have been introduced in previous studies to counter project failures. However, there are always gaps and problems in the KPIs identified. Despite of incessant efforts at technical and managerial levels, projects still fail. There is no substantial approach to identify and avoid these failures in the very beginning of the project lifecycle. In this study, we aim to answer these research problems by analyzing the concept of predictive analytics which is a specialized technology and is very easy to use in this era of computation. Project organizations can use data gathering, compute power, and modern tools to render efficient Predictions. The research aims to identify such a predictive analytics approach. The core objective of the study was to reduce failures and introduce effective implementation of project management principles. Existing predictive analytics methodologies, tools and solution providers were also analyzed. Relevant data was gathered from projects and was analyzed via predictive techniques to make predictions well advance in time to render effective project management in web & software development industry.

Keywords: project management, predictive analytics, predictive analytics methodology, project failures

Procedia PDF Downloads 348