Search results for: multi-temporal image classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4564

Search results for: multi-temporal image classification

2974 Best Timing for Capturing Satellite Thermal Images, Asphalt, and Concrete Objects

Authors: Toufic Abd El-Latif Sadek

Abstract:

The asphalt object represents the asphalted areas like roads, and the concrete object represents the concrete areas like concrete buildings. The efficient extraction of asphalt and concrete objects from one satellite thermal image occurred at a specific time, by preventing the gaps in times which give the close and same brightness values between asphalt and concrete, and among other objects. So that to achieve efficient extraction and then better analysis. Seven sample objects were used un this study, asphalt, concrete, metal, rock, dry soil, vegetation, and water. It has been found that, the best timing for capturing satellite thermal images to extract the two objects asphalt and concrete from one satellite thermal image, saving time and money, occurred at a specific time in different months. A table is deduced shows the optimal timing for capturing satellite thermal images to extract effectively these two objects.

Keywords: asphalt, concrete, satellite thermal images, timing

Procedia PDF Downloads 322
2973 Study of Three-Dimensional Computed Tomography of Frontoethmoidal Cells Using International Frontal Sinus Anatomy Classification

Authors: Prabesh Karki, Shyam Thapa Chettri, Bajarang Prasad Sah, Manoj Bhattarai, Sudeep Mishra

Abstract:

Introduction: Frontal sinus is frequently described as the most difficult sinus to access surgically due to its proximity to the cribriform plate, orbit, and anterior ethmoid artery. Frontal sinus surgery requires a detailed understanding of the cellular structure and FSDP unique to each patient, making high-resolution CT scans an indispensable tool to assess the difficulty of planned sinus surgery. International Frontal Sinus Anatomy Classification (IFAC) was developed to provide a more precise nomenclature for cells in the frontal recess, classifying cells based on their anatomic origin. Objectives: To assess the proportion of frontal cell variants defined by IFAC, variation with respect to age and gender. Methods: 54 cases were enrolled after a detailed clinical history, thorough general and physical examinations, and CT a report ordered in a film. Assessment and tabulation of the presence of frontal cells according to the IFAC analyzed. The prevalence of each cell type was calculated, and data were entered in MS Excel and analyzed using Statistical Package for the Social Sciences (SPSS). Descriptive statistics and frequencies were defined for categorical and numerical variables. Frequency, percentage, the mean and standard deviation were calculated. Result: Among 54 patients, 30 (55.6%) were male and 24 (44.4%) were female. The patient enrolled ranged from 18 to 78 years. Majority33.3% (n=18) were in age group of >50 years.According to IFAC, Agger nasi cells (92.6%) were most common, whereas supraorbital ethmoidal cells were least common 16 (29.6%). Prevalence of other frontoethmoidal cells was SAC- 57.4%, SAFC- 38.9%, SBC- 74.1%, SBFC- 33.3%, FSC- 38.9% of 54 cases. Conclusion: IFAC is an international consensus document that describes an anatomically precise nomenclature for classifying frontoethmoidal cells' anatomy. This study has defined the prevalence, symmetry and reliability of frontoethmoidal cells as established by the IFAC system as in other parts of the world.

Keywords: frontal sinus, frontoethmoidal cells, international frontal sinus anatomy classification

Procedia PDF Downloads 100
2972 Radar on Bike: Coarse Classification based on Multi-Level Clustering for Cyclist Safety Enhancement

Authors: Asma Omri, Noureddine Benothman, Sofiane Sayahi, Fethi Tlili, Hichem Besbes

Abstract:

Cycling, a popular mode of transportation, can also be perilous due to cyclists' vulnerability to collisions with vehicles and obstacles. This paper presents an innovative cyclist safety system based on radar technology designed to offer real-time collision risk warnings to cyclists. The system incorporates a low-power radar sensor affixed to the bicycle and connected to a microcontroller. It leverages radar point cloud detections, a clustering algorithm, and a supervised classifier. These algorithms are optimized for efficiency to run on the TI’s AWR 1843 BOOST radar, utilizing a coarse classification approach distinguishing between cars, trucks, two-wheeled vehicles, and other objects. To enhance the performance of clustering techniques, we propose a 2-Level clustering approach. This approach builds on the state-of-the-art Density-based spatial clustering of applications with noise (DBSCAN). The objective is to first cluster objects based on their velocity, then refine the analysis by clustering based on position. The initial level identifies groups of objects with similar velocities and movement patterns. The subsequent level refines the analysis by considering the spatial distribution of these objects. The clusters obtained from the first level serve as input for the second level of clustering. Our proposed technique surpasses the classical DBSCAN algorithm in terms of geometrical metrics, including homogeneity, completeness, and V-score. Relevant cluster features are extracted and utilized to classify objects using an SVM classifier. Potential obstacles are identified based on their velocity and proximity to the cyclist. To optimize the system, we used the View of Delft dataset for hyperparameter selection and SVM classifier training. The system's performance was assessed using our collected dataset of radar point clouds synchronized with a camera on an Nvidia Jetson Nano board. The radar-based cyclist safety system is a practical solution that can be easily installed on any bicycle and connected to smartphones or other devices, offering real-time feedback and navigation assistance to cyclists. We conducted experiments to validate the system's feasibility, achieving an impressive 85% accuracy in the classification task. This system has the potential to significantly reduce the number of accidents involving cyclists and enhance their safety on the road.

Keywords: 2-level clustering, coarse classification, cyclist safety, warning system based on radar technology

Procedia PDF Downloads 80
2971 New Method to Increase Contrast of Electromicrograph of Rat Tissues Sections

Authors: Lise Paule Labéjof, Raíza Sales Pereira Bizerra, Galileu Barbosa Costa, Thaísa Barros dos Santos

Abstract:

Since the beginning of the microscopy, improving the image quality has always been a concern of its users. Especially for transmission electron microscopy (TEM), the problem is even more important due to the complexity of the sample preparation technique and the many variables that can affect the conservation of structures, proper operation of the equipment used and then the quality of the images obtained. Animal tissues being transparent it is necessary to apply a contrast agent in order to identify the elements of their ultrastructural morphology. Several methods of contrastation of tissues for TEM imaging have already been developed. The most used are the “in block” contrastation and “in situ” contrastation. This report presents an alternative technique of application of contrast agent in vivo, i.e. before sampling. By this new method the electromicrographies of the tissue sections have better contrast compared to that in situ and present no artefact of precipitation of contrast agent. Another advantage is that a small amount of contrast is needed to get a good result given that most of them are expensive and extremely toxic.

Keywords: image quality, microscopy research, staining technique, ultra thin section

Procedia PDF Downloads 433
2970 Development of a Mobile Image-Based Reminder Application to Support Tuberculosis Treatment in Africa

Authors: Haji Ali Haji, Hussein Suleman, Ulrike Rivett

Abstract:

This paper presents the design, development and evaluation of an application prototype developed to support tuberculosis (TB) patients’ treatment adherence. The system makes use of graphics and voice reminders as opposed to text messaging to encourage patients to follow their medication routine. To evaluate the effect of the prototype applications, participants were given mobile phones on which the reminder system was installed. Thirty-eight people, including TB health workers and patients from Zanzibar, Tanzania, participated in the evaluation exercises. The results indicate that the participants found the mobile graphic-based application is useful to support TB treatment. All participants understood and interpreted the intended meaning of every image correctly. The study findings revealed that the use of a mobile visual-based application may have potential benefit to support TB patients (both literate and illiterate) in their treatment processes.

Keywords: ICT4D, mobile technology, tuberculosis, visual-based reminder

Procedia PDF Downloads 430
2969 Deep Learning-Based Liver 3D Slicer for Image-Guided Therapy: Segmentation and Needle Aspiration

Authors: Ahmedou Moulaye Idriss, Tfeil Yahya, Tamas Ungi, Gabor Fichtinger

Abstract:

Image-guided therapy (IGT) plays a crucial role in minimally invasive procedures for liver interventions. Accurate segmentation of the liver and precise needle placement is essential for successful interventions such as needle aspiration. In this study, we propose a deep learning-based liver 3D slicer designed to enhance segmentation accuracy and facilitate needle aspiration procedures. The developed 3D slicer leverages state-of-the-art convolutional neural networks (CNNs) for automatic liver segmentation in medical images. The CNN model is trained on a diverse dataset of liver images obtained from various imaging modalities, including computed tomography (CT) and magnetic resonance imaging (MRI). The trained model demonstrates robust performance in accurately delineating liver boundaries, even in cases with anatomical variations and pathological conditions. Furthermore, the 3D slicer integrates advanced image registration techniques to ensure accurate alignment of preoperative images with real-time interventional imaging. This alignment enhances the precision of needle placement during aspiration procedures, minimizing the risk of complications and improving overall intervention outcomes. To validate the efficacy of the proposed deep learning-based 3D slicer, a comprehensive evaluation is conducted using a dataset of clinical cases. Quantitative metrics, including the Dice similarity coefficient and Hausdorff distance, are employed to assess the accuracy of liver segmentation. Additionally, the performance of the 3D slicer in guiding needle aspiration procedures is evaluated through simulated and clinical interventions. Preliminary results demonstrate the effectiveness of the developed 3D slicer in achieving accurate liver segmentation and guiding needle aspiration procedures with high precision. The integration of deep learning techniques into the IGT workflow shows great promise for enhancing the efficiency and safety of liver interventions, ultimately contributing to improved patient outcomes.

Keywords: deep learning, liver segmentation, 3D slicer, image guided therapy, needle aspiration

Procedia PDF Downloads 48
2968 System for Electromyography Signal Emulation Through the Use of Embedded Systems

Authors: Valentina Narvaez Gaitan, Laura Valentina Rodriguez Leguizamon, Ruben Dario Hernandez B.

Abstract:

This work describes a physiological signal emulation system that uses electromyography (EMG) signals obtained from muscle sensors in the first instance. These signals are used to extract their characteristics to model and emulate specific arm movements. The main objective of this effort is to develop a new biomedical software system capable of generating physiological signals through the use of embedded systems by establishing the characteristics of the acquired signals. The acquisition system used was Biosignals, which contains two EMG electrodes used to acquire signals from the forearm muscles placed on the extensor and flexor muscles. Processing algorithms were implemented to classify the signals generated by the arm muscles when performing specific movements such as wrist flexion extension, palmar grip, and wrist pronation-supination. Matlab software was used to condition and preprocess the signals for subsequent classification. Subsequently, the mathematical modeling of each signal is performed to be generated by the embedded system, with a validation of the accuracy of the obtained signal using the percentage of cross-correlation, obtaining a precision of 96%. The equations are then discretized to be emulated in the embedded system, obtaining a system capable of generating physiological signals according to the characteristics of medical analysis.

Keywords: classification, electromyography, embedded system, emulation, physiological signals

Procedia PDF Downloads 111
2967 Photomicrograph-Based Neuropathology Consultation in Tanzania; The Utility of Static-Image Neurotelepathology in Low- And Middle-Income Countries

Authors: Francis Zerd, Brian E. Moore, Atuganile E. Malango, Patrick W. Hosokawa, Kevin O. Lillehei, Laurence Lemery Mchome, D. Ryan Ormond

Abstract:

Introduction: Since neuropathologic diagnosis in the developing world is hampered by limitations in technical infrastructure, trained laboratory personnel, and subspecialty-trained pathologists, the use of telepathology for diagnostic support, second-opinion consultations, and ongoing training holds promise as a means of addressing these challenges. This research aims to assess the utility of static teleneuropathology in improving neuropathologic diagnoses in low- and middle-income countries. Methods: Consecutive neurosurgical biopsy and resection specimens obtained at Muhimbili National Hospital in Tanzania between July 1, 2018, and June 30, 2019, were selected for retrospective, blinded static-image neuropathologic review followed by on-site review by an expert neuropathologist. Results: A total of 75 neuropathologic cases were reviewed. The agreement of static images and on-site glass diagnosis was 71% with strict criteria and 88% with less stringent criteria. This represents an overall improvement in diagnostic accuracy from 36% by general pathologists to 71% by a neuropathologist using static telepathology (or 76% to 88% with less stringent criteria). Conclusions: Telepathology offers a suitable means of providing diagnostic support, second-opinion consultations, and ongoing training to pathologists practicing in resource-limited countries. Moreover, static digital teleneuropathology is an uncomplicated, cost-effective, and reliable way to achieve these goals.

Keywords: neuropathology, resource-limited settings, static image, Tanzania, teleneuropathology

Procedia PDF Downloads 102
2966 Multimodality in Storefront Windows: The Impact of Verbo-Visual Design on Consumer Behavior

Authors: Angela Bargenda, Erhard Lick, Dhoha Trabelsi

Abstract:

Research in retailing has identified the importance of atmospherics as an essential element in enhancing store image, store patronage intentions, and the overall shopping experience in a retail environment. However, in the area of atmospherics, store window design, which represents an essential component of external store atmospherics, remains a vastly underrepresented phenomenon in extant scholarship. This paper seeks to fill this gap by exploring the relevance of store window design as an atmospheric tool. In particular, empirical evidence of theme-based theatrical store front windows, which put emphasis on the use of verbo-visual design elements, was found in Paris and New York. The purpose of this study was to identify to what extent such multimodal window designs of high-end department stores in metropolitan cities have an impact on store entry decisions and attitudes towards the retailer’s image. As theoretical construct, the linguistic concept of multimodality and Mehrabian’s and Russell’s model in environmental psychology were applied. To answer the research question, two studies were conducted. For Study 1 a case study approach was selected to define three different types of store window designs based on different types of visual-verbal relations. Each of these types of store window design represented a different level of cognitive elaboration required for the decoding process. Study 2 consisted of an on-line survey carried out among more than 300 respondents to examine the influence of these three types of store window design on the consumer behavioral variables mentioned above. The results of this study show that the higher the cognitive elaboration needed to decode the message of the store window, the lower the store entry propensity. In contrast, the higher the cognitive elaboration, the higher the perceived image of the retailer’s image. One important conclusion is that in order to increase consumers’ propensity to enter stores with theme-based theatrical store front windows, retailers need to limit the cognitive elaboration required to decode their verbo-visual window design.

Keywords: consumer behavior, multimodality, store atmospherics, store window design

Procedia PDF Downloads 202
2965 Automatic Adult Age Estimation Using Deep Learning of the ResNeXt Model Based on CT Reconstruction Images of the Costal Cartilage

Authors: Ting Lu, Ya-Ru Diao, Fei Fan, Ye Xue, Lei Shi, Xian-e Tang, Meng-jun Zhan, Zhen-hua Deng

Abstract:

Accurate adult age estimation (AAE) is a significant and challenging task in forensic and archeology fields. Attempts have been made to explore optimal adult age metrics, and the rib is considered a potential age marker. The traditional way is to extract age-related features designed by experts from macroscopic or radiological images followed by classification or regression analysis. Those results still have not met the high-level requirements for practice, and the limitation of using feature design and manual extraction methods is loss of information since the features are likely not designed explicitly for extracting information relevant to age. Deep learning (DL) has recently garnered much interest in imaging learning and computer vision. It enables learning features that are important without a prior bias or hypothesis and could be supportive of AAE. This study aimed to develop DL models for AAE based on CT images and compare their performance to the manual visual scoring method. Chest CT data were reconstructed using volume rendering (VR). Retrospective data of 2500 patients aged 20.00-69.99 years were obtained between December 2019 and September 2021. Five-fold cross-validation was performed, and datasets were randomly split into training and validation sets in a 4:1 ratio for each fold. Before feeding the inputs into networks, all images were augmented with random rotation and vertical flip, normalized, and resized to 224×224 pixels. ResNeXt was chosen as the DL baseline due to its advantages of higher efficiency and accuracy in image classification. Mean absolute error (MAE) was the primary parameter. Independent data from 100 patients acquired between March and April 2022 were used as a test set. The manual method completely followed the prior study, which reported the lowest MAEs (5.31 in males and 6.72 in females) among similar studies. CT data and VR images were used. The radiation density of the first costal cartilage was recorded using CT data on the workstation. The osseous and calcified projections of the 1 to 7 costal cartilages were scored based on VR images using an eight-stage staging technique. According to the results of the prior study, the optimal models were the decision tree regression model in males and the stepwise multiple linear regression equation in females. Predicted ages of the test set were calculated separately using different models by sex. A total of 2600 patients (training and validation sets, mean age=45.19 years±14.20 [SD]; test set, mean age=46.57±9.66) were evaluated in this study. Of ResNeXt model training, MAEs were obtained with 3.95 in males and 3.65 in females. Based on the test set, DL achieved MAEs of 4.05 in males and 4.54 in females, which were far better than the MAEs of 8.90 and 6.42 respectively, for the manual method. Those results showed that the DL of the ResNeXt model outperformed the manual method in AAE based on CT reconstruction of the costal cartilage and the developed system may be a supportive tool for AAE.

Keywords: forensic anthropology, age determination by the skeleton, costal cartilage, CT, deep learning

Procedia PDF Downloads 73
2964 A Neural Network Classifier for Identifying Duplicate Image Entries in Real-Estate Databases

Authors: Sergey Ermolin, Olga Ermolin

Abstract:

A Deep Convolution Neural Network with Triplet Loss is used to identify duplicate images in real-estate advertisements in the presence of image artifacts such as watermarking, cropping, hue/brightness adjustment, and others. The effects of batch normalization, spatial dropout, and various convergence methodologies on the resulting detection accuracy are discussed. For comparative Return-on-Investment study (per industry request), end-2-end performance is benchmarked on both Nvidia Titan GPUs and Intel’s Xeon CPUs. A new real-estate dataset from San Francisco Bay Area is used for this work. Sufficient duplicate detection accuracy is achieved to supplement other database-grounded methods of duplicate removal. The implemented method is used in a Proof-of-Concept project in the real-estate industry.

Keywords: visual recognition, convolutional neural networks, triplet loss, spatial batch normalization with dropout, duplicate removal, advertisement technologies, performance benchmarking

Procedia PDF Downloads 338
2963 A Hybrid Watermarking Model Based on Frequency of Occurrence

Authors: Hamza A. A. Al-Sewadi, Adnan H. M. Al-Helali, Samaa A. K. Khamis

Abstract:

Ownership proofs of multimedia such as text, image, audio or video files can be achieved by the burial of watermark is them. It is achieved by introducing modifications into these files that are imperceptible to the human senses but easily recoverable by a computer program. These modifications would be in the time domain or frequency domain or both. This paper presents a procedure for watermarking by mixing amplitude modulation with frequency transformation histogram; namely a specific value is used to modulate the intensity component Y of the YIQ components of the carrier image. This scheme is referred to as histogram embedding technique (HET). Results comparison with those of other techniques such as discrete wavelet transform (DWT), discrete cosine transform (DCT) and singular value decomposition (SVD) have shown an enhance efficiency in terms of ease and performance. It has manifested a good degree of robustness against various environment effects such as resizing, rotation and different kinds of noise. This method would prove very useful technique for copyright protection and ownership judgment.

Keywords: authentication, copyright protection, information hiding, ownership, watermarking

Procedia PDF Downloads 565
2962 Healthcare-SignNet: Advanced Video Classification for Medical Sign Language Recognition Using CNN and RNN Models

Authors: Chithra A. V., Somoshree Datta, Sandeep Nithyanandan

Abstract:

Sign Language Recognition (SLR) is the process of interpreting and translating sign language into spoken or written language using technological systems. It involves recognizing hand gestures, facial expressions, and body movements that makeup sign language communication. The primary goal of SLR is to facilitate communication between hearing- and speech-impaired communities and those who do not understand sign language. Due to the increased awareness and greater recognition of the rights and needs of the hearing- and speech-impaired community, sign language recognition has gained significant importance over the past 10 years. Technological advancements in the fields of Artificial Intelligence and Machine Learning have made it more practical and feasible to create accurate SLR systems. This paper presents a distinct approach to SLR by framing it as a video classification problem using Deep Learning (DL), whereby a combination of Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) has been used. This research targets the integration of sign language recognition into healthcare settings, aiming to improve communication between medical professionals and patients with hearing impairments. The spatial features from each video frame are extracted using a CNN, which captures essential elements such as hand shapes, movements, and facial expressions. These features are then fed into an RNN network that learns the temporal dependencies and patterns inherent in sign language sequences. The INCLUDE dataset has been enhanced with more videos from the healthcare domain and the model is evaluated on the same. Our model achieves 91% accuracy, representing state-of-the-art performance in this domain. The results highlight the effectiveness of treating SLR as a video classification task with the CNN-RNN architecture. This approach not only improves recognition accuracy but also offers a scalable solution for real-time SLR applications, significantly advancing the field of accessible communication technologies.

Keywords: sign language recognition, deep learning, convolution neural network, recurrent neural network

Procedia PDF Downloads 28
2961 Object Tracking in Motion Blurred Images with Adaptive Mean Shift and Wavelet Feature

Authors: Iman Iraei, Mina Sharifi

Abstract:

A method for object tracking in motion blurred images is proposed in this article. This paper shows that object tracking could be improved with this approach. We use mean shift algorithm to track different objects as a main tracker. But, the problem is that mean shift could not track the selected object accurately in blurred scenes. So, for better tracking result, and increasing the accuracy of tracking, wavelet transform is used. We use a feature named as blur extent, which could help us to get better results in tracking. For calculating of this feature, we should use Harr wavelet. We can look at this matter from two different angles which lead to determine whether an image is blurred or not and to what extent an image is blur. In fact, this feature left an impact on the covariance matrix of mean shift algorithm and cause to better performance of tracking. This method has been concentrated mostly on motion blur parameter. transform. The results reveal the ability of our method in order to reach more accurately tracking.

Keywords: mean shift, object tracking, blur extent, wavelet transform, motion blur

Procedia PDF Downloads 211
2960 Utilizing the Principal Component Analysis on Multispectral Aerial Imagery for Identification of Underlying Structures

Authors: Marcos Bosques-Perez, Walter Izquierdo, Harold Martin, Liangdon Deng, Josue Rodriguez, Thony Yan, Mercedes Cabrerizo, Armando Barreto, Naphtali Rishe, Malek Adjouadi

Abstract:

Aerial imagery is a powerful tool when it comes to analyzing temporal changes in ecosystems and extracting valuable information from the observed scene. It allows us to identify and assess various elements such as objects, structures, textures, waterways, and shadows. To extract meaningful information, multispectral cameras capture data across different wavelength bands of the electromagnetic spectrum. In this study, the collected multispectral aerial images were subjected to principal component analysis (PCA) to identify independent and uncorrelated components or features that extend beyond the visible spectrum captured in standard RGB images. The results demonstrate that these principal components contain unique characteristics specific to certain wavebands, enabling effective object identification and image segmentation.

Keywords: big data, image processing, multispectral, principal component analysis

Procedia PDF Downloads 178
2959 An Accurate Computer-Aided Diagnosis: CAD System for Diagnosis of Aortic Enlargement by Using Convolutional Neural Networks

Authors: Mahdi Bazarganigilani

Abstract:

Aortic enlargement, also known as an aortic aneurysm, can occur when the walls of the aorta become weak. This disease can become deadly if overlooked and undiagnosed. In this paper, a computer-aided diagnosis (CAD) system was introduced to accurately diagnose aortic enlargement from chest x-ray images. An enhanced convolutional neural network (CNN) was employed and then trained by transfer learning by using three different main areas from the original images. The areas included the left lung, heart, and right lung. The accuracy of the system was then evaluated on 1001 samples by using 4-fold cross-validation. A promising accuracy of 90% was achieved in terms of the F-measure indicator. The results showed using different areas from the original image in the training phase of CNN could increase the accuracy of predictions. This encouraged the author to evaluate this method on a larger dataset and even on different CAD systems for further enhancement of this methodology.

Keywords: computer-aided diagnosis systems, aortic enlargement, chest X-ray, image processing, convolutional neural networks

Procedia PDF Downloads 162
2958 An Analysis of the Relations between Aggregates’ Shape and Mechanical Properties throughout the Railway Ballast Service Life

Authors: Daianne Fernandes Diogenes

Abstract:

Railway ballast aggregates’ shape properties and size distribution can be directly affected by several factors, such as traffic, fouling, and maintenance processes, which cause breakage and wearing, leading to the fine particles’ accumulation through the ballast layer. This research aims to analyze the influence of traffic, tamping process, and sleepers’ stiffness on aggregates' shape and mechanical properties, by using traditional and digital image processing (DIP) techniques and cyclic tests, like resilient modulus (RM) and permanent deformation (PD). Aggregates were collected in different phases of the railway service life: (i) right after the crushing process; (ii) after construction, for the aggregates positioned below the sleepers and (iii) after 5 years of operation. An increase in the percentage of cubic particles was observed for the materials (ii) and (iii), providing a better interlocking, increasing stiffness and reducing axial deformation after 5 years of service, when compared to the initial conditions.

Keywords: digital image processing, mechanical behavior, railway ballast, shape properties

Procedia PDF Downloads 122
2957 Brand Building in Higher Education: A Grounded Theory Investigation of the Impact of the ‘Positive-Visualization-Course in Brand Identity’ upon Freshmen Student's Perception

Authors: Maria Kountouridou, Dino Domic

Abstract:

Within an increasingly competitive and dynamic environment, the higher education sector is becoming more commodified, with the concept of branding to become exceedingly imperative and an inextricable ingredient for the university’s success. Branding in higher education has proven to be an effective strategy that managed to receive considerable attention in the recent few years, and a growing number of articles have begun to appear in the literature. However, a clear void in the literature confirms that the concept of students’ perceptions towards the university’s brand image has not been researched extensively. An investigation on this central concept is of paramount importance since it will facilitate the development of an inductively generated theoretical model concerning branding in higher education. This research focuses on examining the impact of the ‘positive-visualization-course in brand identity’ upon the perception of freshmen students towards a university’s brand image. A grounded theory methodology has been selected, consisting of semi-structured interviews. Forty-two students have participated in the research, among which twenty-five women and seventeen men. The identification of the sample emerged through the use of the snowball sampling technique. The participants were divided into two groups (experimental and control group) after the researcher had taken into consideration the factor ‘program of study’, to eliminate any possible interaction between the participants of each group. An experiment was carried out where a ‘positive-visualization-course in brand identity’ was conducted among the participants of the experimental group, while the participants of the control group have not been exposed to the course. For the purpose of this research, the term ‘positive-visualization-course in brand identity’ refers to a course where brand history, past achievements/recognitions/awards, its values, and its mission are presented. Prior to the course implementation, face-to-face semi-structured interviews were carried out among the participants of both groups, with the aim of examining the freshmen students’ perceptions towards the university’s brand image. One week after the course implementation, the researcher carried out semi-structured interviews with the participants of the experimental group only in order to identify whether students’ perceptions had been affected after the course completion. Four months after the course completion, semi-structured interviews were carried out among the participants of both groups. Eight months after the course completion, semi-structured interviews were conducted with the aim of identifying the freshmen students’ updated perceptions. Data has been analyzed using substantive coding (open and selective coding), theoretical coding, field memos, and constant comparative analysis. The findings strongly suggest that the ‘positive-visualization-course in brand identity’ can positively affect freshmen students’ perceptions towards a university’s brand image. Additionally, other factors conduce to the formation of perception throughout the months. This study contributes and expands upon the existing literature by presenting an inductively generated theoretical model to guide future research in the links between ‘positive-visualization-course in brand identity’ and the perception of freshmen students towards a university’s brand image.

Keywords: brand image, brand name, branding, higher education marketing, perception

Procedia PDF Downloads 178
2956 An Efficient Motion Recognition System Based on LMA Technique and a Discrete Hidden Markov Model

Authors: Insaf Ajili, Malik Mallem, Jean-Yves Didier

Abstract:

Human motion recognition has been extensively increased in recent years due to its importance in a wide range of applications, such as human-computer interaction, intelligent surveillance, augmented reality, content-based video compression and retrieval, etc. However, it is still regarded as a challenging task especially in realistic scenarios. It can be seen as a general machine learning problem which requires an effective human motion representation and an efficient learning method. In this work, we introduce a descriptor based on Laban Movement Analysis technique, a formal and universal language for human movement, to capture both quantitative and qualitative aspects of movement. We use Discrete Hidden Markov Model (DHMM) for training and classification motions. We improve the classification algorithm by proposing two DHMMs for each motion class to process the motion sequence in two different directions, forward and backward. Such modification allows avoiding the misclassification that can happen when recognizing similar motions. Two experiments are conducted. In the first one, we evaluate our method on a public dataset, the Microsoft Research Cambridge-12 Kinect gesture data set (MSRC-12) which is a widely used dataset for evaluating action/gesture recognition methods. In the second experiment, we build a dataset composed of 10 gestures(Introduce yourself, waving, Dance, move, turn left, turn right, stop, sit down, increase velocity, decrease velocity) performed by 20 persons. The evaluation of the system includes testing the efficiency of our descriptor vector based on LMA with basic DHMM method and comparing the recognition results of the modified DHMM with the original one. Experiment results demonstrate that our method outperforms most of existing methods that used the MSRC-12 dataset, and a near perfect classification rate in our dataset.

Keywords: human motion recognition, motion representation, Laban Movement Analysis, Discrete Hidden Markov Model

Procedia PDF Downloads 207
2955 Frequency of Occurrence Hybrid Watermarking Scheme

Authors: Hamza A. Ali, Adnan H. M. Al-Helali

Abstract:

Generally, a watermark is information that identifies the ownership of multimedia (text, image, audio or video files). It is achieved by introducing modifications into these files that are imperceptible to the human senses but easily recoverable by a computer program. These modifications are done according to a secret key in a descriptive model that would be either in the time domain or frequency domain or both. This paper presents a procedure for watermarking by mixing amplitude modulation with frequency transformation histogram; namely a specific value is used to modulate the intensity component Y of the YIQ components of the carrier image. This scheme is referred to as histogram embedding technique (HET). Results comparison with those of other techniques such as discrete wavelet transform (DWT), discrete cosine transform (DCT) and singular value decomposition (SVD) have shown an enhance efficiency in terms of ease and performance. It has manifested a good degree of robustness against various environment effects such as resizing, rotation and different kinds of noise. This method would prove very useful technique for copyright protection and ownership judgment.

Keywords: watermarking, ownership, copyright protection, steganography, information hiding, authentication

Procedia PDF Downloads 368
2954 Spaces of Interpretation: Personal Space

Authors: Yehuda Roth

Abstract:

In quantum theory, a system’s time evolution is predictable unless an observer performs measurement, as the measurement process can randomize the system. This randomness appears when the measuring device does not accurately describe the measured item, i.e., when the states characterizing the measuring device appear as a superposition of those being measured. When such a mismatch occurs, the measured data randomly collapse into a single eigenstate of the measuring device. This scenario resembles the interpretation process in which the observer does not experience an objective reality but interprets it based on preliminary descriptions initially ingrained into his/her mind. This distinction is the motivation for the present study in which the collapse scenario is regarded as part of the interpretation process of the observer. By adopting the formalism of the quantum theory, we present a complete mathematical approach that describes the interpretation process. We demonstrate this process by applying the proposed interpretation formalism to the ambiguous image "My wife and mother-in-law" to identify whether a woman in the picture is young or old.

Keywords: quantum-like interpretation, ambiguous image, determination, quantum-like collapse, classified representation

Procedia PDF Downloads 104
2953 Development of a Data Security Model Using Steganography

Authors: Terungwa Simon Yange, Agana Moses A.

Abstract:

This paper studied steganography and designed a simplistic approach to a steganographic tool for hiding information in image files with the view of addressing the security challenges with data by hiding data from unauthorized users to improve its security. The Structured Systems Analysis and Design Method (SSADM) was used in this work. The system was developed using Java Development Kit (JDK) 1.7.0_10 and MySQL Server as its backend. The system was tested with some hypothetical health records which proved the possibility of protecting data from unauthorized users by making it secret so that its existence cannot be easily recognized by fraudulent users. It further strengthens the confidentiality of patient records kept by medical practitioners in the health setting. In conclusion, this work was able to produce a user friendly steganography software that is very fast to install and easy to operate to ensure privacy and secrecy of sensitive data. It also produced an exact copy of the original image and the one carrying the secret message when compared with each.

Keywords: steganography, cryptography, encryption, decryption, secrecy

Procedia PDF Downloads 266
2952 High Aspect Ratio Sio2 Capillary Based On Silicon Etching and Thermal Oxidation Process for Optical Modulator

Authors: Nguyen Van Toan, Suguru Sangu, Tetsuro Saito, Naoki Inomata, Takahito Ono

Abstract:

This paper presents the design and fabrication of an optical window for an optical modulator toward image sensing applications. An optical window consists of micrometer-order SiO2 capillaries (porous solid) that can modulate transmission light intensity by moving the liquid in and out of porous solid. A high optical transmittance of the optical window can be achieved due to refractive index matching when the liquid is penetrated into the porous solid. Otherwise, its light transmittance is lower because of light reflection and scattering by air holes and capillary walls. Silicon capillaries fabricated by deep reactive ion etching (DRIE) process are completely oxidized to form the SiO2 capillaries. Therefore, high aspect ratio SiO2 capillaries can be achieved based on silicon capillaries formed by DRIE technique. Large compressive stress of the oxide causes bending of the capillary structure, which is reduced by optimizing the design of device structure. The large stress of the optical window can be released via thin supporting beams. A 7.2 mm x 9.6 mm optical window area toward a fully integrated with the image sensor format is successfully fabricated and its optical transmittance is evaluated with and without inserting liquids (ethanol and matching oil). The achieved modulation range is approximately 20% to 35% with and without liquid penetration in visible region (wavelength range from 450 nm to 650 nm).

Keywords: thermal oxidation process, SiO2 capillaries, optical window, light transmittance, image sensor, liquid penetration

Procedia PDF Downloads 493
2951 Factor to Elicit Spatial Presence: Calmness

Authors: Nadia Diyana Mohd Muhaiyuddin, Dayang Rohaya Awang Rambli

Abstract:

The aim of our work is to identify whether user’s calmness can be a factor to elicit user’s spatial presence experience. Hence, a systematic mental model technique called repertory grid was selected to collect data because users can freely give their opinions in this approach. Three image-based virtual reality (IBVR) environments were created to satisfy the requirement of the repertory grid. Different virtual environments were necessary to allow users to compare and give feedback. Result was analyzed by using descriptive analysis through the SPSS software. The result revealed that ‘users feel calm’ is accepted as one of the factors that can elicit spatial presence. Users also highlighted five IBVR characteristics that could elicit spatial presence, namely, calm sound, calm content, calm color, calm story line, and the calm feeling of the user.

Keywords: spatial presence, presence, virtual reality, image-based virtual reality, human-computer interaction

Procedia PDF Downloads 286
2950 The Mediating Effects of Student Satisfaction on the Relationship Between Organisational Image, Service Quality and Students’ Loyalty in Higher Education Institutions in Kano State, Nigeria

Authors: Ado Ismail Sabo

Abstract:

Statement of the Problem: The global trend in tertiary education institutions today is changing and moving towards engagement, promotion and marketing. The reason is to upscale reputation and impact positioning. More prominently, existing rivalry today seeks to draw-in the best and brightest students. A university or college is no longer just an institution of higher learning, but one adapting additional business nomenclature. Therefore, huge financial resources are invested by educational institutions to polish their image and improve their global and national ranking. In Nigeria, which boasts of a vast population of over 180 million people, some of whose patronage can bolster its education sector; standard of education continues to decline. Today, some Nigerian tertiary education institutions are shadows of their pasts, in terms of academic excellence. Quality has been relinquished because of the unquenchable quest by government officials, some civil servants, school heads and educators to amass wealth. It is very difficult to gain student satisfaction and their loyalty. Some of the student’s loyalties factor towards public higher educational institutions might be confusing. It is difficult to understand the extent to which students are satisfy on many needs. Some students might feel satisfy with the academic lecturers only, whereas others may want everything, and others will never satisfy. Due to these problems, this research aims to uncover the crucial factors influencing student loyalty and to examine if students’ satisfaction might impact mediate the relationship between service quality, organisational image and students’ loyalty towards public higher education institutions in Kano State, Nigeria. The significance of the current study is underscored by the paucity of similar research in the subject area and public tertiary education in a developing country like Nigeria as shown in existing literature. Methodology: The current study was undertaken by quantitative research methodology. Sample of 600 valid responses were obtained within the study population comprising six selected public higher education institutions in Kano State, Nigeria. These include: North West University Kano, Bayero University Kano, School of Management Studies Kano, School of Technology Kano, Sa’adatu Rimi College Kano and Federal College of Education (FCE) Kano. Four main hypotheses were formulated and tested using structural equation modeling techniques with Analysis of Moment Structure (AMOS Version 22.0). Results: Analysis of the data provided support for the main issue of this study, and the following findings are established: “Student Satisfaction mediates the relationship between Service Quality and Student Loyalty”, “Student Satisfaction mediates the relationship between Organizational Image and Student Loyalty” respectively. The findings of this study contributed to the theoretical implication which proposed a structural model that examined the relationships among overall Organizational image, service quality, student satisfaction and student loyalty. Conclusion: In addition, the findings offered a better insight to the managerial (higher institution of learning service providers) by focusing on portraying the image of service quality with student satisfaction in improving the quality of student loyalty.

Keywords: student loyalty, service quality, student satisfaction, organizational image

Procedia PDF Downloads 69
2949 The Impacts of Negative Moral Characters on Health: An Article Review

Authors: Mansoor Aslamzai, Delaqa Del, Sayed Azam Sajid

Abstract:

Introduction: Though moral disorders have a high burden, there is no separate topic regarding this problem in the International Classification of Diseases (ICD). Along with the modification of WHO ICD-11, spirituality can prevent the rapid progress of such derangement as well. Objective: This study evaluated the effects of bad moral characters on health, as well as carried out the role of spirituality in the improvement of immorality. Method: This narrative article review was accomplished in 2020-2021 and the articles were searched through the Web of Science, PubMed, BMC, and Google scholar. Results: Based on the current review, most experimental and observational studies revealed significant negative effects of unwell moral characters on the overall aspects of health and well-being. Nowadays, a lot of studies established the positive role of spirituality in the improvement of health and moral disorder. The studies concluded, facilities must be available within schools, universities, and communities for everyone to learn the knowledge of spirituality and improve their unwell moral character world. Conclusion: Considering the negative relationship between unwell moral characters and well-being, the current study proposes the addition of moral disorder as a separate topic in the WHO International Classification of Diseases. Based on this literature review, spirituality will improve moral disorder and establish excellent moral traits.

Keywords: bad moral characters, effect, health, spirituality and well-being

Procedia PDF Downloads 184
2948 Electrocardiogram-Based Heartbeat Classification Using Convolutional Neural Networks

Authors: Jacqueline Rose T. Alipo-on, Francesca Isabelle F. Escobar, Myles Joshua T. Tan, Hezerul Abdul Karim, Nouar Al Dahoul

Abstract:

Electrocardiogram (ECG) signal analysis and processing are crucial in the diagnosis of cardiovascular diseases, which are considered one of the leading causes of mortality worldwide. However, the traditional rule-based analysis of large volumes of ECG data is time-consuming, labor-intensive, and prone to human errors. With the advancement of the programming paradigm, algorithms such as machine learning have been increasingly used to perform an analysis of ECG signals. In this paper, various deep learning algorithms were adapted to classify five classes of heartbeat types. The dataset used in this work is the synthetic MIT-BIH Arrhythmia dataset produced from generative adversarial networks (GANs). Various deep learning models such as ResNet-50 convolutional neural network (CNN), 1-D CNN, and long short-term memory (LSTM) were evaluated and compared. ResNet-50 was found to outperform other models in terms of recall and F1 score using a five-fold average score of 98.88% and 98.87%, respectively. 1-D CNN, on the other hand, was found to have the highest average precision of 98.93%.

Keywords: heartbeat classification, convolutional neural network, electrocardiogram signals, generative adversarial networks, long short-term memory, ResNet-50

Procedia PDF Downloads 128
2947 Investigation of Detectability of Orbital Objects/Debris in Geostationary Earth Orbit by Microwave Kinetic Inductance Detectors

Authors: Saeed Vahedikamal, Ian Hepburn

Abstract:

Microwave Kinetic Inductance Detectors (MKIDs) are considered as one of the most promising photon detectors of the future in many Astronomical applications such as exoplanet detections. The MKID advantages stem from their single photon sensitivity (ranging from UV to optical and near infrared), photon energy resolution and high temporal capability (~microseconds). There has been substantial progress in the development of these detectors and MKIDs with Megapixel arrays is now possible. The unique capability of recording an incident photon and its energy (or wavelength) while also registering its time of arrival to within a microsecond enables an array of MKIDs to produce a four-dimensional data block of x, y, z and t comprising x, y spatial, z axis per pixel spectral and t axis per pixel which is temporal. This offers the possibility that the spectrum and brightness variation for any detected piece of space debris as a function of time might offer a unique identifier or fingerprint. Such a fingerprint signal from any object identified in multiple detections by different observers has the potential to determine the orbital features of the object and be used for their tracking. Modelling performed so far shows that with a 20 cm telescope located at an Astronomical observatory (e.g. La Palma, Canary Islands) we could detect sub cm objects at GEO. By considering a Lambertian sphere with a 10 % reflectivity (albedo of the Moon) we anticipate the following for a GEO object: 10 cm object imaged in a 1 second image capture; 1.2 cm object for a 70 second image integration or 0.65 cm object for a 4 minute image integration. We present details of our modelling and the potential instrument for a dedicated GEO surveillance system.

Keywords: space debris, orbital debris, detection system, observation, microwave kinetic inductance detectors, MKID

Procedia PDF Downloads 98
2946 Research on the Overall Protection of Historical Cities Based on the 'City Image' in Ancient Maps: Take the Ancient City of Shipu, Zhejiang, China as an Example

Authors: Xiaoya Yi, Yi He, Zhao Lu, Yang Zhang

Abstract:

In the process of rapid urbanization, many historical cities have undergone excessive demolition and construction under the protection and renewal mechanism. The original pattern of the city has been changed, the urban context has been cut off, and historical features have gradually been lost. The historical city gradually changed into the form of decentralization and fragmentation. The understanding of the ancient city includes two levels. The first one refers to the ancient city on the physical space, which defined an ancient city by its historic walls. The second refers to the public perception of the image, which is derived from people's spatial identification of the ancient city. In ancient China, people draw maps to show their way of understanding the city. Starting from ancient maps and exploring the spatial characteristics of traditional Chinese cities from the perspective of urban imagery is a key clue to understanding the spatial characteristics of historical cities on an overall level. The spatial characteristics of the urban image presented by the ancient map are summarized into two levels by typology. The first is the spatial pattern composed of the center, axis and boundary. The second is the space element that contains the city, street, and sign system. Taking the ancient city of Shipu as a typical case, the "city image" in the ancient map is analyzed as a prototype, and it is projected into the current urban space. The research found that after a long period of evolution, the historical spatial pattern of the ancient city has changed from “dominant” to “recessive control”, and the historical spatial elements are non-centralized and fragmented. The wall that serves as the boundary of the ancient city is transformed into “fragmentary remains”, the streets and lanes that serve as the axis of the ancient city are transformed into “structural remains”, and the symbols of the ancient city center are transformed into “site remains”. Based on this, the paper proposed the methods of controlling the protection of land boundaries, the protecting of the streets and lanes, and the selective restoring of the city wall system and the sign system by accurate assessment. In addition, this paper emphasizes the continuity of the ancient city's traditional spatial pattern and attempts to explore a holistic conservation method of the ancient city in the modern context.

Keywords: ancient city protection, ancient maps, Shipu ancient city, urban intention

Procedia PDF Downloads 128
2945 2D Convolutional Networks for Automatic Segmentation of Knee Cartilage in 3D MRI

Authors: Ananya Ananya, Karthik Rao

Abstract:

Accurate segmentation of knee cartilage in 3-D magnetic resonance (MR) images for quantitative assessment of volume is crucial for studying and diagnosing osteoarthritis (OA) of the knee, one of the major causes of disability in elderly people. Radiologists generally perform this task in slice-by-slice manner taking 15-20 minutes per 3D image, and lead to high inter and intra observer variability. Hence automatic methods for knee cartilage segmentation are desirable and are an active field of research. This paper presents design and experimental evaluation of 2D convolutional neural networks based fully automated methods for knee cartilage segmentation in 3D MRI. The architectures are validated based on 40 test images and 60 training images from SKI10 dataset. The proposed methods segment 2D slices one by one, which are then combined to give segmentation for whole 3D images. Proposed methods are modified versions of U-net and dilated convolutions, consisting of a single step that segments the given image to 5 labels: background, femoral cartilage, tibia cartilage, femoral bone and tibia bone; cartilages being the primary components of interest. U-net consists of a contracting path and an expanding path, to capture context and localization respectively. Dilated convolutions lead to an exponential expansion of receptive field with only a linear increase in a number of parameters. A combination of modified U-net and dilated convolutions has also been explored. These architectures segment one 3D image in 8 – 10 seconds giving average volumetric Dice Score Coefficients (DSC) of 0.950 - 0.962 for femoral cartilage and 0.951 - 0.966 for tibia cartilage, reference being the manual segmentation.

Keywords: convolutional neural networks, dilated convolutions, 3 dimensional, fully automated, knee cartilage, MRI, segmentation, U-net

Procedia PDF Downloads 261