Search results for: laser processing of fiber-reinforced plastics (FRP)
3084 The Hall Coefficient and Magnetoresistance in Rectangular Quantum Wires with Infinitely High Potential under the Influence of a Laser Radiation
Authors: Nguyen Thu Huong, Nguyen Quang Bau
Abstract:
The Hall Coefficient (HC) and the Magnetoresistance (MR) have been studied in two-dimensional systems. The HC and the MR in Rectangular Quantum Wire (RQW) subjected to a crossed DC electric field and magnetic field in the presence of a Strong Electromagnetic Wave (EMW) characterized by electric field are studied in this work. Using the quantum kinetic equation for electrons interacting with optical phonons, we obtain the analytic expressions for the HC and the MR with a dependence on magnetic field, EMW frequency, temperatures of systems and the length characteristic parameters of RQW. These expressions are different from those obtained for bulk semiconductors and cylindrical quantum wires. The analytical results are applied to GaAs/GaAs/Al. For this material, MR depends on the ratio of the EMW frequency to the cyclotron frequency. Indeed, MR reaches a minimum at the ratio 5/4, and when this ratio increases, it tends towards a saturation value. The HC can take negative or positive values. Each curve has one maximum and one minimum. When magnetic field increases, the HC is negative, achieves a minimum value and then increases suddenly to a maximum with a positive value. This phenomenon differs from the one observed in cylindrical quantum wire, which does not have maximum and minimum values.Keywords: hall coefficient, rectangular quantum wires, electron-optical phonon interaction, quantum kinetic equation
Procedia PDF Downloads 4883083 Microfluidic Plasmonic Device for the Sensitive Dual LSPR-Thermal Detection of the Cardiac Troponin Biomarker in Laminal Flow
Authors: Andreea Campu, Ilinica Muresan, Simona Cainap, Simion Astilean, Monica Focsan
Abstract:
Acute myocardial infarction (AMI) is the most severe cardiovascular disease, which has threatened human lives for decades, thus a continuous interest is directed towards the detection of cardiac biomarkers such as cardiac troponin I (cTnI) in order to predict risk and, implicitly, fulfill the early diagnosis requirements in AMI settings. Microfluidics is a major technology involved in the development of efficient sensing devices with real-time fast responses and on-site applicability. Microfluidic devices have gathered a lot of attention recently due to their advantageous features such as high sensitivity and specificity, miniaturization and portability, ease-of-use, low-cost, facile fabrication, and reduced sample manipulation. The integration of gold nanoparticles into the structure of microfluidic sensors has led to the development of highly effective detection systems, considering the unique properties of the metallic nanostructures, specifically the Localized Surface Plasmon Resonance (LSPR), which makes them highly sensitive to their microenvironment. In this scientific context, herein, we propose the implementation of a novel detection device, which successfully combines the efficiency of gold bipyramids (AuBPs) as signal transducers and thermal generators with the sample-driven advantages of the microfluidic channels into a miniaturized, portable, low-cost, specific, and sensitive test for the dual LSPR-thermographic cTnI detection. Specifically, AuBPs with longitudinal LSPR response at 830 nm were chemically synthesized using the seed-mediated growth approach and characterized in terms of optical and morphological properties. Further, the colloidal AuBPs were deposited onto pre-treated silanized glass substrates thus, a uniform nanoparticle coverage of the substrate was obtained and confirmed by extinction measurements showing a 43 nm blue-shift of the LSPR response as a consequence of the refractive index change. The as-obtained plasmonic substrate was then integrated into a microfluidic “Y”-shaped polydimethylsiloxane (PDMS) channel, fabricated using a Laser Cutter system. Both plasmonic and microfluidic elements were plasma treated in order to achieve a permanent bond. The as-developed microfluidic plasmonic chip was further coupled to an automated syringe pump system. The proposed biosensing protocol implicates the successive injection inside the microfluidic channel as follows: p-aminothiophenol and glutaraldehyde, to achieve a covalent bond between the metallic surface and cTnI antibody, anti-cTnI, as a recognition element, and target cTnI biomarker. The successful functionalization and capture of cTnI was monitored by LSPR detection thus, after each step, a red-shift of the optical response was recorded. Furthermore, as an innovative detection technique, thermal determinations were made after each injection by exposing the microfluidic plasmonic chip to 785 nm laser excitation, considering that the AuBPs exhibit high light-to-heat conversion performances. By the analysis of the thermographic images, thermal curves were obtained, showing a decrease in the thermal efficiency after the anti-cTnI-cTnI reaction was realized. Thus, we developed a microfluidic plasmonic chip able to operate as both LSPR and thermal sensor for the detection of the cardiac troponin I biomarker, leading thus to the progress of diagnostic devices.Keywords: gold nanobipyramids, microfluidic device, localized surface plasmon resonance detection, thermographic detection
Procedia PDF Downloads 1293082 Preparation of Carbon Nanofiber Reinforced HDPE Using Dialkylimidazolium as a Dispersing Agent: Effect on Thermal and Rheological Properties
Authors: J. Samuel, S. Al-Enezi, A. Al-Banna
Abstract:
High-density polyethylene reinforced with carbon nanofibers (HDPE/CNF) have been prepared via melt processing using dialkylimidazolium tetrafluoroborate (ionic liquid) as a dispersion agent. The prepared samples were characterized by thermogravimetric (TGA) and differential scanning calorimetric (DSC) analyses. The samples blended with imidazolium ionic liquid exhibit higher thermal stability. DSC analysis showed clear miscibility of ionic liquid in the HDPE matrix and showed single endothermic peak. The melt rheological analysis of HDPE/CNF composites was performed using an oscillatory rheometer. The influence of CNF and ionic liquid concentration (ranging from 0, 0.5, and 1 wt%) on the viscoelastic parameters was investigated at 200 °C with an angular frequency range of 0.1 to 100 rad/s. The rheological analysis shows the shear-thinning behavior for the composites. An improvement in the viscoelastic properties was observed as the nanofiber concentration increases. The progress in the modulus values was attributed to the structural rigidity imparted by the high aspect ratio CNF. The modulus values and complex viscosity of the composites increased significantly at low frequencies. Composites blended with ionic liquid exhibit slightly lower values of complex viscosity and modulus over the corresponding HDPE/CNF compositions. Therefore, reduction in melt viscosity is an additional benefit for polymer composite processing as a result of wetting effect by polymer-ionic liquid combinations.Keywords: high-density polyethylene, carbon nanofibers, ionic liquid, complex viscosity
Procedia PDF Downloads 1273081 Task Scheduling and Resource Allocation in Cloud-based on AHP Method
Authors: Zahra Ahmadi, Fazlollah Adibnia
Abstract:
Scheduling of tasks and the optimal allocation of resources in the cloud are based on the dynamic nature of tasks and the heterogeneity of resources. Applications that are based on the scientific workflow are among the most widely used applications in this field, which are characterized by high processing power and storage capacity. In order to increase their efficiency, it is necessary to plan the tasks properly and select the best virtual machine in the cloud. The goals of the system are effective factors in scheduling tasks and resource selection, which depend on various criteria such as time, cost, current workload and processing power. Multi-criteria decision-making methods are a good choice in this field. In this research, a new method of work planning and resource allocation in a heterogeneous environment based on the modified AHP algorithm is proposed. In this method, the scheduling of input tasks is based on two criteria of execution time and size. Resource allocation is also a combination of the AHP algorithm and the first-input method of the first client. Resource prioritization is done with the criteria of main memory size, processor speed and bandwidth. What is considered in this system to modify the AHP algorithm Linear Max-Min and Linear Max normalization methods are the best choice for the mentioned algorithm, which have a great impact on the ranking. The simulation results show a decrease in the average response time, return time and execution time of input tasks in the proposed method compared to similar methods (basic methods).Keywords: hierarchical analytical process, work prioritization, normalization, heterogeneous resource allocation, scientific workflow
Procedia PDF Downloads 1453080 New Method for Determining the Distribution of Birefringence and Linear Dichroism in Polymer Materials Based on Polarization-Holographic Grating
Authors: Barbara Kilosanidze, George Kakauridze, Levan Nadareishvili, Yuri Mshvenieradze
Abstract:
A new method for determining the distribution of birefringence and linear dichroism in optical polymer materials is presented. The method is based on the use of polarization-holographic diffraction grating that forms an orthogonal circular basis in the process of diffraction of probing laser beam on the grating. The intensities ratio of the orders of diffraction on this grating enables the value of birefringence and linear dichroism in the sample to be determined. The distribution of birefringence in the sample is determined by scanning with a circularly polarized beam with a wavelength far from the absorption band of the material. If the scanning is carried out by probing beam with the wavelength near to a maximum of the absorption band of the chromophore then the distribution of linear dichroism can be determined. An appropriate theoretical model of this method is presented. A laboratory setup was created for the proposed method. An optical scheme of the laboratory setup is presented. The results of measurement in polymer films with two-dimensional gradient distribution of birefringence and linear dichroism are discussed.Keywords: birefringence, linear dichroism, graded oriented polymers, optical polymers, optical anisotropy, polarization-holographic grating
Procedia PDF Downloads 4323079 Towards Law Data Labelling Using Topic Modelling
Authors: Daniel Pinheiro Da Silva Junior, Aline Paes, Daniel De Oliveira, Christiano Lacerda Ghuerren, Marcio Duran
Abstract:
The Courts of Accounts are institutions responsible for overseeing and point out irregularities of Public Administration expenses. They have a high demand for processes to be analyzed, whose decisions must be grounded on severity laws. Despite the existing large amount of processes, there are several cases reporting similar subjects. Thus, previous decisions on already analyzed processes can be a precedent for current processes that refer to similar topics. Identifying similar topics is an open, yet essential task for identifying similarities between several processes. Since the actual amount of topics is considerably large, it is tedious and error-prone to identify topics using a pure manual approach. This paper presents a tool based on Machine Learning and Natural Language Processing to assists in building a labeled dataset. The tool relies on Topic Modelling with Latent Dirichlet Allocation to find the topics underlying a document followed by Jensen Shannon distance metric to generate a probability of similarity between documents pairs. Furthermore, in a case study with a corpus of decisions of the Rio de Janeiro State Court of Accounts, it was noted that data pre-processing plays an essential role in modeling relevant topics. Also, the combination of topic modeling and a calculated distance metric over document represented among generated topics has been proved useful in helping to construct a labeled base of similar and non-similar document pairs.Keywords: courts of accounts, data labelling, document similarity, topic modeling
Procedia PDF Downloads 1793078 Selection of Landscape Plant Species: A Experiment of Noise Reduction by Vibration of Plant Leaves
Authors: Li Mengmeng, Kang Jian
Abstract:
With the rapid development of the city, the noise pollution becomes more and more serious. Noise has seriously affected people's normal life, study and work. In addition, noise has seriously affected the city's ecological environment and the migration of birds. Therefore, it is urgent to control the noise. As one of natural noise-reducing materials, plants have been paid more and more attention. In urban landscape design, it is very important to choose plant species with good noise reduction effect to the sustainable development of urban ecology. The aim of this paper is to find out the characteristics of the plant with good noise reduction effect and apply it in urban landscape design. This study investigated the vibration of leaves of six plant species in a sound field using a Keyence (IG-1000/CCD) Laser Micrometer. The results of the experiments showed that the vibration speed of plant leaves increased obviously after being stimulated by sound source, about 5-10 times. In addition, when driven by the same sound, the speed of all leaves varied with the difference of leaf thickness, leaf size and leaf mass. The speed of all leaves would increase with the increase of leaf size and leaf mass, while those would decrease with the increase of leaf thickness.Keywords: landscape design, leaf vibration , noise attenuation, plants configuration
Procedia PDF Downloads 2283077 Spatiotemporal Evaluation of Climate Bulk Materials Production in Atmospheric Aerosol Loading
Authors: Mehri Sadat Alavinasab Ashgezari, Gholam Reza Nabi Bidhendi, Fatemeh Sadat Alavinasab Ashkezari
Abstract:
Atmospheric aerosol loading (AAL) from anthropogenic sources is an evidence in industrial development. The accelerated trends in material consumption at the global scale in recent years demonstrate consumption paradigms sensible to the planetary boundaries (PB). This paper is a statistical approach on recognizing the path of climate-relevant bulk materials production (CBMP) of steel, cement and plastics to AAL via an updated and validated spatiotemporal distribution. The methodology of statistical analysis used the most updated regional or global databases or instrumental technologies. This corresponded to a selection of processes and areas capable for tracking AAL within the last decade, analyzing the most validated data while leading to explore the behavior functions or models. The results also represented a correlation within socio economic metabolism idea between the materials specified as macronutrients of society and AAL as a PB with an unknown threshold. The selected country contributors of China, India, US and the sample country of Iran show comparable cumulative AAL values vs to the bulk materials domestic extraction and production rate in the study period of 2012 to 2022. Generally, there is a tendency towards gradual descend in the worldwide and regional aerosol concentration after 2015. As of our evaluation, a considerable share of human role, equivalent 20% from CBMP, is for the main anthropogenic species of aerosols, including sulfate, black carbon and organic particulate matters too. This study, in an innovative approach, also explores the potential role of AAL control mechanisms from the economy sectors where ordered and smoothing loading trends are accredited through the disordered phenomena of CBMP and aerosol precursor emissions. The equilibrium states envisioned is an approval to the well-established theory of Spin Glasses applicable in physical system like the Earth and here to AAL.Keywords: atmospheric aeroso loading, material flows, climate bulk materials, industrial ecology
Procedia PDF Downloads 803076 Survey of Selected Pathogenic Bacteria in Chickens from Rural Households in Limpopo Province
Authors: M. Lizzy Madiwani, Ignatious Ncube, Evelyn Madoroba
Abstract:
This study was designed to determine the distribution of pathogenic bacteria in household raised chickens and study their virulence and antibiotic profiles. For this purpose, 40 chickens were purchased from families in the Capricorn district and sacrificed for sampling. Tissues were cultured on different bacteriological media followed by biotyping using Matrix-assisted Laser Desorption Ionization-time of Flight (MALDI-TOF). Disk diffusion test was performed to determine the antibiotic susceptibility profiles of these bacteria. Out of a total of 160 tissue samples evaluated, E. coli and Salmonella were detected in these tissues. Furthermore, determination of the pathogenic E. coli and Salmonella strains at species level using primer sets that target selected genes of interest in the polymerase chain reaction (PCR) assay was employed. The invA gene, a confirmatory gene of Salmonella was detected in all the Salmonella isolates. The study revealed that there is a high distribution of Salmonella and pathogenic E. coli in these chickens. Therefore, further studies on identification at the species level are highly recommended to provide management and sanitation practices to lower this prevalence. The antimicrobial susceptibly data generated from this study can be a valuable reference to veterinarians for treating bacterial diseases in poultry.Keywords: antimicrobial, Escherichia coli, pathogens, Salmonella
Procedia PDF Downloads 1283075 Cyclic NGR Peptide Anchored Block Co-Polymeric Nanoparticles as Dual Targeting Drug Delivery System for Solid Tumor Therapy
Authors: Madhu Gupta, G. P. Agrawa, Suresh P. Vyas
Abstract:
Certain tumor cells overexpress a membrane-spanning molecule aminopeptidase N (CD13) isoform, which is the receptor for peptides containing the NGR motif. NGR-modified Docetaxel (DTX)-loaded PEG-b-PLGA polymeric nanoparticles (cNGR-DNB-NPs) were developed and evaluated for their in vitro potential in HT-1080 cell line. The cNGR-DNB-NPs containing particles were about 148 nm in diameter with spherical shape and high encapsulation efficiency. Cellular uptake was confirmed both qualitatively and quantitatively by Confocal Laser Scanning Microscopy (CLSM) and flow cytometry. Both quantitatively and qualitatively results confirmed the NGR conjugated nanoparticles revealed the higher uptake of nanoparticles by CD13-overexpressed tumor cells. Free NGR inhibited the cellular uptake of cNGR-DNB-NPs, revealing the mechanism of receptor mediated endocytosis. In vitro cytotoxicity studies demonstrated that cNGR-DNB-NPs, formulation was more cytotoxic than unconjugated one, which were consistent well with the observation of cellular uptake. Hence, the selective delivery of cNGR-DNB-NPs formulation in CD13-overexpressing tumors represents a potential approach for the design of nanocarrier-based dual targeted delivery systems for targeting the tumor cells and vasculature.Keywords: solid Tumor, docetaxel, targeting, NGR ligand
Procedia PDF Downloads 4823074 The Reasons for Food Losses and Waste and the Trends of Their Management in Basic Vegetal Production in Poland
Authors: Krystian Szczepanski, Sylwia Łaba
Abstract:
Production of fruit and vegetables, food cereals or oilseeds affects the natural environment via intake of nutrients being contained in the soil, use of the resources of water, fertilizers and food protection products, and energy. The limitation of the mentioned effects requires the introduction of techniques and methods for cultivation being friendly to the environment and counteracting losses and waste of agricultural raw materials as well as the appropriate management of food waste in every stage of the agri-food supply chain. The link to basic production includes obtaining a vegetal raw material and its storage in agricultural farm and transport to a collecting point. When the plants are ready to be harvested is the initial point; the stage before harvesting is not considered in the system of measuring and monitoring the food losses. The moment at which the raw material enters the stage of processing, i.e., its receipt at the gate of the processing plant, is considered as a final point of basic production. According to the Regulation (EC) No 178/2002 of the European Parliament and of the Council of 28 January 2002, Art. 2, “food” means any substance or product, intended to be, or reasonably expected to be consumed by humans. For the needs of the studies and their analysis, it was determined when raw material is considered as food – the plants (fruit, vegetables, cereals, oilseeds), after being harvested, arrive at storehouses. The aim of the studies was to determine the reasons for loss generation and to analyze the directions of their management in basic vegetal production in Poland in the years 2017 and 2018. The studies on food losses and waste in basic vegetal production were carried out in three sectors – fruit and vegetables, cereals and oilseeds. The studies of the basic production were conducted during the period of March-May 2019 at the territory of the whole country on a representative trail of 250 farms in each sector. The surveys were carried out using the questionnaires by the PAP method; the pollsters conducted the direct questionnaire interviews. From the conducted studies, it is followed that in 19% of the examined farms, any losses were not recorded during preparation, loading, and transport of the raw material to the manufacturing plant. In the farms, where the losses were indicated, the main reason in production of fruit and vegetables was rotting and it constituted more than 20% of the reported reasons, while in the case of cereals and oilseeds’ production, the respondents identified damages, moisture and pests as the most frequent reason. The losses and waste, generated in vegetal production as well as in processing and trade of fruit and vegetables, or cereal products should be appropriately managed or recovered. The respondents indicated composting (more than 60%) as the main direction of waste management in all categories. Animal feed and landfill sites were the other indicated directions of management. Prevention and minimization of loss generation are important in every stage of production as well as in basic production. When possessing the knowledge on the reasons for loss generation, we may introduce the preventive measures, mainly connected with the appropriate conditions and methods of the storage. Production of fruit and vegetables, food cereals or oilseeds affects the natural environment via intake of nutrients being contained in the soil, use of the resources of water, fertilizers and food protection products, and energy. The limitation of the mentioned effects requires the introduction of techniques and methods for cultivation being friendly to the environment and counteracting losses and waste of agricultural raw materials as well as the appropriate management of food waste in every stage of the agri-food supply chain. The link to basic production includes obtaining a vegetal raw material and its storage in agricultural farm and transport to a collecting point. The starting point is when the plants are ready to be harvested; the stage before harvesting is not considered in the system of measuring and monitoring the food losses. The successive stage is the transport of the collected crops to the collecting point or its storage and transport. The moment, at which the raw material enters the stage of processing, i.e. its receipt at the gate of the processing plant, is considered as a final point of basic production. Processing is understood as the change of the raw material into food products. According to the Regulation (EC) No 178/2002 of the European Parliament and of the Council of 28 January 2002, Art. 2, “food” means any substance or product, intended to be, or reasonably expected to be consumed by humans. It was determined (for the needs of the present studies) when raw material is considered as a food; it is the moment when the plants (fruit, vegetables, cereals, oilseeds), after being harvested, arrive at storehouses. The aim of the studies was to determine the reasons for loss generation and to analyze the directions of their management in basic vegetal production in Poland in the years 2017 and 2018. The studies on food losses and waste in basic vegetal production were carried out in three sectors – fruit and vegetables, cereals and oilseeds. The studies of the basic production were conducted during the period of March-May 2019 at the territory of the whole country on a representative trail of 250 farms in each sector. The surveys were carried out using the questionnaires by the PAPI (Paper & Pen Personal Interview) method; the pollsters conducted the direct questionnaire interviews. From the conducted studies, it is followed that in 19% of the examined farms, any losses were not recorded during preparation, loading, and transport of the raw material to the manufacturing plant. In the farms, where the losses were indicated, the main reason in production of fruit and vegetables was rotting and it constituted more than 20% of the reported reasons, while in the case of cereals and oilseeds’ production, the respondents identified damages, moisture, and pests as the most frequent reason. The losses and waste, generated in vegetal production as well as in processing and trade of fruit and vegetables, or cereal products should be appropriately managed or recovered. The respondents indicated composting (more than 60%) as the main direction of waste management in all categories. Animal feed and landfill sites were the other indicated directions of management. Prevention and minimization of loss generation are important in every stage of production as well as in basic production. When possessing the knowledge on the reasons for loss generation, we may introduce the preventive measures, mainly connected with the appropriate conditions and methods of the storage. ACKNOWLEDGEMENT The article was prepared within the project: "Development of a waste food monitoring system and an effective program to rationalize losses and reduce food waste", acronym PROM implemented under the STRATEGIC SCIENTIFIC AND LEARNING PROGRAM - GOSPOSTRATEG financed by the National Center for Research and Development in accordance with the provisions of Gospostrateg1 / 385753/1/2018Keywords: food losses, food waste, PAP method, vegetal production
Procedia PDF Downloads 1153073 Control of a Plane Jet Spread by Tabs at the Nozzle Exit
Authors: Makito Sakai, Takahiro Kiwata, Takumi Awa, Hiroshi Teramoto, Takaaki Kono, Kuniaki Toyoda
Abstract:
Using experimental and numerical results, this paper describes the effects of tabs on the flow characteristics of a plane jet at comparatively low Reynolds numbers while focusing on the velocity field and the vortical structure. The flow visualization and velocity measurements were respectively carried out using laser Doppler velocimetry (LDV) and particle image velocimetry (PIV). In addition, three-dimensional (3D) plane jet numerical simulations were performed using ANSYS Fluent, a commercially available computational fluid dynamics (CFD) software application. We found that the spreads of jets perturbed by large delta tabs and round tabs were larger than those produced by the other tabs tested. Additionally, it was determined that a plane jet with square tabs had the smallest jet spread downstream, and the jet’s centerline velocity was larger than those of jets perturbed by the other tabs tested. It was also observed that the spanwise vortical structure of a plane jet with tabs disappeared completely. Good agreement was found between the experimental and numerical simulation velocity profiles in the area near the nozzle exit when the laminar flow model was used. However, we also found that large eddy simulation (LES) is better at predicting the developing flow field of a plane jet than the laminar and the standard k-ε turbulent models.Keywords: plane jet, flow control, tab, flow measurement, numerical simulation
Procedia PDF Downloads 3343072 Estimation of Cholesterol Level in Different Brands of Vegetable Oils in Iraq
Authors: Mohammed Idaan Hassan Al-Majidi
Abstract:
An analysis of twenty one assorted brands of vegetable oils in Babylon Iraq, reveals varying levels of cholesterol content. Cholesterol was found to be present in most of the oil brands sampled using three standard methods. Cholesterol was detected in seventeen of the vegetable oil brands with concentration of less than 1 mg/ml while seven of the oil brands had cholesterol concentrations ranging between 1-4 mg/ml. Low iodine values were obtained in four of the vegetable oil brands and three of them had high acid values. High performance liquid chromatography (HPLC) confirmed the presence of cholesterol at varying concentrations in all the oil brands and gave the lowest detectable cholesterol values in all the oil brands. The Laser brand made from rapeseed had the highest cholesterol concentration of 3.2 mg/ml while Grand brand made from groundnuts had the least concentration (0.12 mg/ml) of cholesterol using HPLC analysis. Leibermann-Burchard method showed that Gino brand from palm kernel had the least concentration of cholesterol (3.86 mg/ml ±0.032) and the highest concentration of 3.996 mg/ml ±0.0404 was obtained in Sesame seed oil brand. This report is important in view of health implications of cholesterol in our diets. Consequently, we have been able to show that there is no cholesterol free oil in the market as shown on the vegetable oil brand labels. Therefore, companies producing and marketing vegetable oils are enjoined to desist from misleading the public by labeling their products as “cholesterol free”. They should indicate the amount of cholesterol present in the vegetable oil, no matter how small the quantity may be.Keywords: vegetable oils, heart diseases, leibermann-burchard, cholesterol
Procedia PDF Downloads 2593071 Quantification of E-Waste: A Case Study in Federal University of Espírito Santo, Brazil
Authors: Andressa S. T. Gomes, Luiza A. Souza, Luciana H. Yamane, Renato R. Siman
Abstract:
The segregation of waste of electrical and electronic equipment (WEEE) in the generating source, its characterization (quali-quantitative) and identification of origin, besides being integral parts of classification reports, are crucial steps to the success of its integrated management. The aim of this paper was to count WEEE generation at the Federal University of Espírito Santo (UFES), Brazil, as well as to define sources, temporary storage sites, main transportations routes and destinations, the most generated WEEE and its recycling potential. Quantification of WEEE generated at the University in the years between 2010 and 2015 was performed using data analysis provided by UFES’s sector of assets management. EEE and WEEE flow in the campuses information were obtained through questionnaires applied to the University workers. It was recorded 6028 WEEEs units of data processing equipment disposed by the university between 2010 and 2015. Among these waste, the most generated were CRT screens, desktops, keyboards and printers. Furthermore, it was observed that these WEEEs are temporarily stored in inappropriate places at the University campuses. In general, these WEEE units are donated to NGOs of the city, or sold through auctions (2010 and 2013). As for recycling potential, from the primary processing and further sale of printed circuit boards (PCB) from the computers, the amount collected could reach U$ 27,839.23. The results highlight the importance of a WEEE management policy at the University.Keywords: solid waste, waste of electrical and electronic equipment, waste management, institutional solid waste generation
Procedia PDF Downloads 2603070 Opinion Mining to Extract Community Emotions on Covid-19 Immunization Possible Side Effects
Authors: Yahya Almurtadha, Mukhtar Ghaleb, Ahmed M. Shamsan Saleh
Abstract:
The world witnessed a fierce attack from the Covid-19 virus, which affected public life socially, economically, healthily and psychologically. The world's governments tried to confront the pandemic by imposing a number of precautionary measures such as general closure, curfews and social distancing. Scientists have also made strenuous efforts to develop an effective vaccine to train the immune system to develop antibodies to combat the virus, thus reducing its symptoms and limiting its spread. Artificial intelligence, along with researchers and medical authorities, has accelerated the vaccine development process through big data processing and simulation. On the other hand, one of the most important negatives of the impact of Covid 19 was the state of anxiety and fear due to the blowout of rumors through social media, which prompted governments to try to reassure the public with the available means. This study aims to proposed using Sentiment Analysis (AKA Opinion Mining) and deep learning as efficient artificial intelligence techniques to work on retrieving the tweets of the public from Twitter and then analyze it automatically to extract their opinions, expression and feelings, negatively or positively, about the symptoms they may feel after vaccination. Sentiment analysis is characterized by its ability to access what the public post in social media within a record time and at a lower cost than traditional means such as questionnaires and interviews, not to mention the accuracy of the information as it comes from what the public expresses voluntarily.Keywords: deep learning, opinion mining, natural language processing, sentiment analysis
Procedia PDF Downloads 1713069 Architecture - Performance Relationship in GPU Computing - Composite Process Flow Modeling and Simulations
Authors: Ram Mohan, Richard Haney, Ajit Kelkar
Abstract:
Current developments in computing have shown the advantage of using one or more Graphic Processing Units (GPU) to boost the performance of many computationally intensive applications but there are still limits to these GPU-enhanced systems. The major factors that contribute to the limitations of GPU(s) for High Performance Computing (HPC) can be categorized as hardware and software oriented in nature. Understanding how these factors affect performance is essential to develop efficient and robust applications codes that employ one or more GPU devices as powerful co-processors for HPC computational modeling. This research and technical presentation will focus on the analysis and understanding of the intrinsic interrelationship of both hardware and software categories on computational performance for single and multiple GPU-enhanced systems using a computationally intensive application that is representative of a large portion of challenges confronting modern HPC. The representative application uses unstructured finite element computations for transient composite resin infusion process flow modeling as the computational core, characteristics and results of which reflect many other HPC applications via the sparse matrix system used for the solution of linear system of equations. This work describes these various software and hardware factors and how they interact to affect performance of computationally intensive applications enabling more efficient development and porting of High Performance Computing applications that includes current, legacy, and future large scale computational modeling applications in various engineering and scientific disciplines.Keywords: graphical processing unit, software development and engineering, performance analysis, system architecture and software performance
Procedia PDF Downloads 3633068 Microfiber Release During Laundry Under Different Rinsing Parameters
Authors: Fulya Asena Uluç, Ehsan Tuzcuoğlu, Songül Bayraktar, Burak Koca, Alper Gürarslan
Abstract:
Microplastics are contaminants that are widely distributed in the environment with a detrimental ecological effect. Besides this, recent research has proved the existence of microplastics in human blood and organs. Microplastics in the environment can be divided into two main categories: primary and secondary microplastics. Primary microplastics are plastics that are released into the environment as microscopic particles. On the other hand, secondary microplastics are the smaller particles that are shed as a result of the consumption of synthetic materials in textile products as well as other products. Textiles are the main source of microplastic contamination in aquatic ecosystems. Laundry of synthetic textiles (34.8%) accounts for an average annual discharge of 3.2 million tons of primary microplastics into the environment. Recently, microfiber shedding from laundry research has gained traction. However, no comprehensive study was conducted from the standpoint of rinsing parameters during laundry to analyze microfiber shedding. The purpose of the present study is to quantify microfiber shedding from fabric under different rinsing conditions and determine the effective rinsing parameters on microfiber release in a laundry environment. In this regard, a parametric study is carried out to investigate the key factors affecting the microfiber release from a front-load washing machine. These parameters are the amount of water used during the rinsing step and the spinning speed at the end of the washing cycle. Minitab statistical program is used to create a design of the experiment (DOE) and analyze the experimental results. Tests are repeated twice and besides the controlled parameters, other washing parameters are kept constant in the washing algorithm. At the end of each cycle, released microfibers are collected via a custom-made filtration system and weighted with precision balance. The results showed that by increasing the water amount during the rinsing step, the amount of microplastic released from the washing machine increased drastically. Also, the parametric study revealed that increasing the spinning speed results in an increase in the microfiber release from textiles.Keywords: front load, laundry, microfiber, microfiber release, microfiber shedding, microplastic, pollution, rinsing parameters, sustainability, washing parameters, washing machine
Procedia PDF Downloads 983067 A Novel Computer-Generated Hologram (CGH) Achieved Scheme Generated from Point Cloud by Using a Lens Array
Authors: Wei-Na Li, Mei-Lan Piao, Nam Kim
Abstract:
We proposed a novel computer-generated hologram (CGH) achieved scheme, wherein the CGH is generated from a point cloud which is transformed by a mapping relationship of a series of elemental images captured from a real three-dimensional (3D) object by using a lens array. This scheme is composed of three procedures: mapping from elemental images to point cloud, hologram generation, and hologram display. A mapping method is figured out to achieve a virtual volume date (point cloud) from a series of elemental images. This mapping method consists of two steps. Firstly, the coordinate (x, y) pairs and its appearing number are calculated from the series of sub-images, which are generated from the elemental images. Secondly, a series of corresponding coordinates (x, y, z) are calculated from the elemental images. Then a hologram is generated from the volume data that is calculated by the previous two steps. Eventually, a spatial light modulator (SLM) and a green laser beam are utilized to display this hologram and reconstruct the original 3D object. In this paper, in order to show a more auto stereoscopic display of a real 3D object, we successfully obtained the actual depth data of every discrete point of the real 3D object, and overcame the inherent drawbacks of the depth camera by obtaining point cloud from the elemental images.Keywords: elemental image, point cloud, computer-generated hologram (CGH), autostereoscopic display
Procedia PDF Downloads 5843066 Processing Methods for Increasing the Yield, Nutritional Value and Stability of Coconut Milk
Authors: Archana G. Lamdande, Shyam R. Garud, K. S. M. S. Raghavarao
Abstract:
Coconut has two edible parts, that is, a white kernel (solid endosperm) and coconut water (liquid endosperm). The white kernel is generally used in fresh or dried form for culinary purposes. Coconut testa, is the brown skin, covering the coconut kernel. It is removed by paring of wet coconut and obtained as a by-product in coconut processing industries during the production of products such as desiccated coconut, coconut milk, whole coconut milk powder and virgin coconut oil. At present, it is used as animal feed component after drying and recovering the residual oil (by expelling). Experiments were carried out on expelling of coconut milk for shredded coconut with and without testa removal, in order to explore the possibility of increasing the milk yield and value addition in terms of increased polyphenol content. The color characteristics of coconut milk obtained from the grating without removal of testa were observed to be L* 82.79, a* 0.0125, b* 6.245, while that obtained from grating with removal of testa were L* 83.24, a* -0.7925, b* 3.1. A significant increase was observed in total phenol content of coconut milk obtained from the grating with testa (833.8 µl/ml) when compared to that from without testa (521.3 µl/ml). However, significant difference was not observed in protein content of coconut milk obtained from the grating with and without testa (4.9 and 5.0% w/w, respectively). Coconut milk obtained from grating without removal of testa showed higher milk yield (62% w/w) when compared to that obtained from grating with removal of testa (60% w/w). The fat content in coconut milk was observed to be 32% (w/w), and it is unstable due to such a high fat content. Therefore, several experiments were carried out for examining its stability by adjusting the fat content at different levels (32, 28, 24, and 20% w/w). It was found that the coconut milk was more stable with a fat content of 24 % (w/w). Homogenization and ultrasonication and their combinations were used for exploring the possibility of increasing the stability of coconut milk. The microscopic study was carried out for analyzing the size of fat globules and the degree of their uniform distribution.Keywords: coconut milk, homogenization, stability, testa, ultrasonication
Procedia PDF Downloads 3143065 Managing Data from One Hundred Thousand Internet of Things Devices Globally for Mining Insights
Authors: Julian Wise
Abstract:
Newcrest Mining is one of the world’s top five gold and rare earth mining organizations by production, reserves and market capitalization in the world. This paper elaborates on the data acquisition processes employed by Newcrest in collaboration with Fortune 500 listed organization, Insight Enterprises, to standardize machine learning solutions which process data from over a hundred thousand distributed Internet of Things (IoT) devices located at mine sites globally. Through the utilization of software architecture cloud technologies and edge computing, the technological developments enable for standardized processes of machine learning applications to influence the strategic optimization of mineral processing. Target objectives of the machine learning optimizations include time savings on mineral processing, production efficiencies, risk identification, and increased production throughput. The data acquired and utilized for predictive modelling is processed through edge computing by resources collectively stored within a data lake. Being involved in the digital transformation has necessitated the standardization software architecture to manage the machine learning models submitted by vendors, to ensure effective automation and continuous improvements to the mineral process models. Operating at scale, the system processes hundreds of gigabytes of data per day from distributed mine sites across the globe, for the purposes of increased improved worker safety, and production efficiency through big data applications.Keywords: mineral technology, big data, machine learning operations, data lake
Procedia PDF Downloads 1123064 Co-Synthesis of Exopolysaccharides and Polyhydroxyalkanoates Using Waste Streams: Solid-State Fermentation as an Alternative Approach
Authors: Laura Mejias, Sandra Monteagudo, Oscar Martinez-Avila, Sergio Ponsa
Abstract:
Bioplastics are gaining attention as potential substitutes of conventional fossil-derived plastics and new components of specialized applications in different industries. Besides, these constitute a sustainable alternative since they are biodegradable and can be obtained starting from renewable sources. Thus, agro-industrial wastes appear as potential substrates for bioplastics production using microorganisms, considering they are a suitable source for nutrients, low-cost, and available worldwide. Therefore, this approach contributes to the biorefinery and circular economy paradigm. The present study assesses the solid-state fermentation (SSF) technology for the co-synthesis of exopolysaccharides (EPS) and polyhydroxyalkanoates (PHA), two attractive biodegradable bioplastics, using the leftover of the brewery industry brewer's spent grain (BSG). After an initial screening of diverse PHA-producer bacteria, it was found that Burkholderia cepacia presented the highest EPS and PHA production potential via SSF of BSG. Thus, B. cepacia served to identify the most relevant aspects affecting the EPS+PHA co-synthesis at a lab-scale (100g). Since these are growth-dependent processes, they were monitored online through oxygen consumption using a dynamic respirometric system, but also quantifying the biomass production (gravimetric) and the obtained products (EtOH precipitation for EPS and solid-liquid extraction coupled with GC-FID for PHA). Results showed that B. cepacia has grown up to 81 mg per gram of dry BSG (gDM) at 30°C after 96 h, representing up to 618 times higher than the other tested strains' findings. Hence, the crude EPS production was 53 mg g-1DM (2% carbohydrates), but purity reached 98% after a dialysis purification step. Simultaneously, B. cepacia accumulated up to 36% (dry basis) of the produced biomass as PHA, mainly composed of polyhydroxybutyrate (P3HB). The maximum PHA production was reached after 48 h with 12.1 mg g⁻¹DM, representing threefold the levels previously reported using SSF. Moisture content and aeration strategy resulted in the most significant variables affecting the simultaneous production. Results show the potential of co-synthesis via SSF as an attractive alternative to enhance bioprocess feasibility for obtaining these bioplastics in residue-based systems.Keywords: bioplastics, brewer’s spent grain, circular economy, solid-state fermentation, waste to product
Procedia PDF Downloads 1443063 Contribution of Spatial Teledetection to the Geological Mapping of the Imiter Buttonhole: Application to the Mineralized Structures of the Principal Corps B3 (CPB3) of the Imiter Mine (Anti-atlas, Morocco)
Authors: Bouayachi Ali, Alikouss Saida, Baroudi Zouhir, Zerhouni Youssef, Zouhair Mohammed, El Idrissi Assia, Essalhi Mourad
Abstract:
The world-class Imiter silver deposit is located on the northern flank of the Precambrian Imiter buttonhole. This deposit is formed by epithermal veins hosted in the sandstone-pelite formations of the lower complex and in the basic conglomerates of the upper complex, these veins are controlled by a regional scale fault cluster, oriented N70°E to N90°E. The present work on the contribution of remote sensing on the geological mapping of the Imiter buttonhole and application to the mineralized structures of the Principal Corps B3. Mapping on satellite images is a very important tool in mineral prospecting. It allows the localization of the zones of interest in order to orientate the field missions by helping the localization of the major structures which facilitates the interpretation, the programming and the orientation of the mining works. The predictive map also allows for the correction of field mapping work, especially the direction and dimensions of structures such as dykes, corridors or scrapings. The use of a series of processing such as SAM, PCA, MNF and unsupervised and supervised classification on a Landsat 8 satellite image of the study area allowed us to highlight the main facies of the Imite area. To improve the exploration research, we used another processing that allows to realize a spatial distribution of the alteration mineral indices, and the application of several filters on the different bands to have lineament maps.Keywords: principal corps B3, teledetection, Landsat 8, Imiter II, silver mineralization, lineaments
Procedia PDF Downloads 953062 Integrating Optuna And Synthetic Data Generation For Optimized Medical Transcript Classification Using BioBERT
Authors: Sachi Nandan Mohanty, Shreya Sinha, Sweeti Sah, Shweta Sharma
Abstract:
The advancement of natural language processing has majorly influenced the field of medical transcript classification, providing a robust framework for enhancing the accuracy of clinical data processing. It has enormous potential to transform healthcare and improve people's livelihoods. This research focuses on improving the accuracy of medical transcript categorization using Bidirectional Encoder Representations from Transformers (BERT) and its specialized variants, including BioBERT, ClinicalBERT, SciBERT, and BlueBERT. The experimental work employs Optuna, an optimization framework, for hyperparameter tuning to identify the most effective variant, concluding that BioBERT yields the best performance. Furthermore, various optimizers, including Adam, RMSprop, and Layerwise adaptive large batch optimization (LAMB), were evaluated alongside BERT's default AdamW optimizer. The findings show that the LAMB optimizer achieves equally good performance as AdamW. Synthetic data generation techniques from Gretel were utilized to augment the dataset, expanding the original dataset from 5,000 to 10,000 rows. Subsequent evaluations demonstrated that the model maintained its performance with synthetic data, with the LAMB optimizer showing marginally better results. The enhanced dataset and optimized model configurations improved classification accuracy, showcasing the efficacy of the BioBERT variant and the LAMB optimizer. It resulted in an accuracy of up to 98.2% and 90.8% for the original and combined datasets, respectively.Keywords: BioBERT, clinical data, healthcare AI, transformer models
Procedia PDF Downloads 03061 Effect of Different Parameters in the Preparation of Antidiabetic Microparticules by Coacervation
Authors: Nawel Ouennoughi, Kamel Daoud
Abstract:
During recent years, new pharmaceutical dosage forms were developed in the research laboratories and which consists of encapsulating one or more active molecules in a polymeric envelope. Several techniques of encapsulation allow obtaining the microparticles or the nanoparticles containing one or several polymers. In the industry, microencapsulation is implemented to fill the following objectives: to ensure protection, the compatibility and the stabilization of an active matter in a formulation, to carry out an adapted working, to improve the presentation of a product, to mask a taste or an odor, to modify and control the profile of release of an active matter to obtain, for example, prolonged or started effect. To this end, we focus ourselves on the encapsulation of the antidiabetic. It is an oral hypoglycemic agent belonging to the second generation of sulfonylurea’s commonly employed in the treatment of type II non-insulin-dependent diabetes in order to improve profile them dissolution. Our choice was made on the technique of encapsulation by complex coacervation with two types of polymers (gelatin and the gum Arabic) which is a physicochemical process. Several parameters were studied at the time of the formulation of the microparticles and the nanoparticles: temperature, pH, ratio of polymers etc. The microparticles and the nanoparticles obtained were characterized by microscopy, laser granulometry, FTIR and UV-visible spectrophotometry. The profile of dissolution obtained for the microparticles showed an improvement of the kinetics of dissolution compared to that obtained for the active ingredient.Keywords: coacervation, gum Arabic, microencapsulation, gelatin
Procedia PDF Downloads 2693060 Numerical Simulation and Experimental Verification of Mechanical Displacements in Piezoelectric Transformer
Authors: F. Boukazouha, G. Poulin-Vittrant, M. Rguiti, M. Lethiecq
Abstract:
Since its invention, by virtue of its remarkable features, the piezoelectric transformer (PT) has drawn the attention of the scientific community. In past years, it has been extensively studied and its performances have been continuously improved. Nowadays, such devices are designed in more and more sophisticated architectures with associated models describing their behavior quite accurately. However, the different studies usually carried out on such devices mainly focus on their electrical characteristics induced by direct piezoelectric effects such as voltage gain, efficiency or supplied power. In this work, we are particularly interested in the characterization of mechanical displacements induced by the inverse piezoelectric effect in a PT in vibration. For this purpose, a detailed three-dimensional finite element analysis is proposed to examine the mechanical behavior of a Rosen-type transformer made of a single bar of soft PZT (P191) and with dimensions 22mm×2.35mm×2.5mm. At the first three modes of vibration, output voltage and mechanical displacements ux, uy and uz along the length, the width and the thickness, respectively, are calculated. The amplitude of displacements varies in a range from a few nanometers to a few hundred nanometers. The validity of the simulations was successfully confirmed by experiments carried out on a prototype using a laser interferometer. A good match was observed between simulation and experimental results, especially for us at the second mode. Such 3D simulations thus appear as a helpful tool for a better understanding of mechanical phenomena in Rosen-type PT.Keywords: piezoelectricity, gain, dispalcement, simulations
Procedia PDF Downloads 313059 A U-Net Based Architecture for Fast and Accurate Diagram Extraction
Authors: Revoti Prasad Bora, Saurabh Yadav, Nikita Katyal
Abstract:
In the context of educational data mining, the use case of extracting information from images containing both text and diagrams is of high importance. Hence, document analysis requires the extraction of diagrams from such images and processes the text and diagrams separately. To the author’s best knowledge, none among plenty of approaches for extracting tables, figures, etc., suffice the need for real-time processing with high accuracy as needed in multiple applications. In the education domain, diagrams can be of varied characteristics viz. line-based i.e. geometric diagrams, chemical bonds, mathematical formulas, etc. There are two broad categories of approaches that try to solve similar problems viz. traditional computer vision based approaches and deep learning approaches. The traditional computer vision based approaches mainly leverage connected components and distance transform based processing and hence perform well in very limited scenarios. The existing deep learning approaches either leverage YOLO or faster-RCNN architectures. These approaches suffer from a performance-accuracy tradeoff. This paper proposes a U-Net based architecture that formulates the diagram extraction as a segmentation problem. The proposed method provides similar accuracy with a much faster extraction time as compared to the mentioned state-of-the-art approaches. Further, the segmentation mask in this approach allows the extraction of diagrams of irregular shapes.Keywords: computer vision, deep-learning, educational data mining, faster-RCNN, figure extraction, image segmentation, real-time document analysis, text extraction, U-Net, YOLO
Procedia PDF Downloads 1383058 The Importance of Visual Communication in Artificial Intelligence
Authors: Manjitsingh Rajput
Abstract:
Visual communication plays an important role in artificial intelligence (AI) because it enables machines to understand and interpret visual information, similar to how humans do. This abstract explores the importance of visual communication in AI and emphasizes the importance of various applications such as computer vision, object emphasis recognition, image classification and autonomous systems. In going deeper, with deep learning techniques and neural networks that modify visual understanding, In addition to AI programming, the abstract discusses challenges facing visual interfaces for AI, such as data scarcity, domain optimization, and interpretability. Visual communication and other approaches, such as natural language processing and speech recognition, have also been explored. Overall, this abstract highlights the critical role that visual communication plays in advancing AI capabilities and enabling machines to perceive and understand the world around them. The abstract also explores the integration of visual communication with other modalities like natural language processing and speech recognition, emphasizing the critical role of visual communication in AI capabilities. This methodology explores the importance of visual communication in AI development and implementation, highlighting its potential to enhance the effectiveness and accessibility of AI systems. It provides a comprehensive approach to integrating visual elements into AI systems, making them more user-friendly and efficient. In conclusion, Visual communication is crucial in AI systems for object recognition, facial analysis, and augmented reality, but challenges like data quality, interpretability, and ethics must be addressed. Visual communication enhances user experience, decision-making, accessibility, and collaboration. Developers can integrate visual elements for efficient and accessible AI systems.Keywords: visual communication AI, computer vision, visual aid in communication, essence of visual communication.
Procedia PDF Downloads 953057 Kinetic Study of Municipal Plastic Waste
Authors: Laura Salvia Diaz Silvarrey, Anh Phan
Abstract:
Municipal Plastic Waste (MPW) comprises a mixture of thermoplastics such as high and low density polyethylene (HDPE and LDPE), polypropylene (PP), polystyrene (PS) and polyethylene terephthalate (PET). Recycling rate of these plastics is low, e.g. only 27% in 2013. The remains were incinerated or disposed in landfills. As MPW generation increases approximately 5% per annum, MPW management technologies have to be developed to comply with legislation . Pyrolysis, thermochemical decomposition, provides an excellent alternative to convert MPW into valuable resources like fuels and chemicals. Most studies on waste plastic kinetics only focused on HDPE and LDPE with a simple assumption of first order decomposition, which is not the real reaction mechanism. The aim of this study was to develop a kinetic study for each of the polymers in the MPW mixture using thermogravimetric analysis (TGA) over a range of heating rates (5, 10, 20 and 40°C/min) in N2 atmosphere and sample size of 1 – 4mm. A model-free kinetic method was applied to quantify the activation energy at each level of conversion. Kissinger–Akahira–Sunose (KAS) and Flynn–Wall–Ozawa (FWO) equations jointly with Master Plots confirmed that the activation energy was not constant along all the reaction for all the five plastic studied, showing that MPW decomposed through a complex mechanism and not by first-order kinetics. Master plots confirmed that MPW decomposed following a random scission mechanism at conversions above 40%. According to the random scission mechanism, different radicals are formed along the backbone producing the cleavage of bonds by chain scission into molecules of different lengths. The cleavage of bonds during random scission follows first-order kinetics and it is related with the conversion. When a bond is broken one part of the initial molecule becomes an unsaturated one and the other a terminal free radical. The latter can react with hydrogen from and adjacent carbon releasing another free radical and a saturated molecule or reacting with another free radical and forming an alkane. Not every time a bonds is broken a molecule is evaporated. At early stages of the reaction (conversion and temperature below 40% and 300°C), most products are not short enough to evaporate. Only at higher degrees of conversion most of cleavage of bonds releases molecules small enough to evaporate.Keywords: kinetic, municipal plastic waste, pyrolysis, random scission
Procedia PDF Downloads 3543056 Development of Mobile Application for Internship Program Management Using the Concept of Model View Controller (MVC) Pattern
Authors: Shutchapol Chopvitayakun
Abstract:
Nowadays, especially for the last 5 years, mobile devices, mobile applications and mobile users, through the deployment of wireless communication and mobile phone cellular network, all these components are growing significantly bigger and stronger. They are being integrated into each other to create multiple purposes and pervasive deployments into every business and non-business sector such as education, medicine, traveling, finance, real estate and many more. Objective of this study was to develop a mobile application for seniors or last-year students who enroll the internship program at each tertiary school (undergraduate school) and do onsite practice at real field sties, real organizations and real workspaces. During the internship session, all students as the interns are required to exercise, drilling and training onsite with specific locations and specific tasks or may be some assignments from their supervisor. Their work spaces are both private and government corporates and enterprises. This mobile application is developed under schema of a transactional processing system that enables users to keep daily work or practice log, monitor true working locations and ability to follow daily tasks of each trainee. Moreover, it provides useful guidance from each intern’s advisor, in case of emergency. Finally, it can summarize all transactional data then calculate each internship cumulated hours from the field practice session for each individual intern.Keywords: internship, mobile application, Android OS, smart phone devices, mobile transactional processing system, guidance and monitoring, tertiary education, senior students, model view controller (MVC)
Procedia PDF Downloads 3153055 Automated Multisensory Data Collection System for Continuous Monitoring of Refrigerating Appliances Recycling Plants
Authors: Georgii Emelianov, Mikhail Polikarpov, Fabian Hübner, Jochen Deuse, Jochen Schiemann
Abstract:
Recycling refrigerating appliances plays a major role in protecting the Earth's atmosphere from ozone depletion and emissions of greenhouse gases. The performance of refrigerator recycling plants in terms of material retention is the subject of strict environmental certifications and is reviewed periodically through specialized audits. The continuous collection of Refrigerator data required for the input-output analysis is still mostly manual, error-prone, and not digitalized. In this paper, we propose an automated data collection system for recycling plants in order to deduce expected material contents in individual end-of-life refrigerating appliances. The system utilizes laser scanner measurements and optical data to extract attributes of individual refrigerators by applying transfer learning with pre-trained vision models and optical character recognition. Based on Recognized features, the system automatically provides material categories and target values of contained material masses, especially foaming and cooling agents. The presented data collection system paves the way for continuous performance monitoring and efficient control of refrigerator recycling plants.Keywords: automation, data collection, performance monitoring, recycling, refrigerators
Procedia PDF Downloads 164