Search results for: dynamic panel models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10870

Search results for: dynamic panel models

9280 On Four Models of a Three Server Queue with Optional Server Vacations

Authors: Kailash C. Madan

Abstract:

We study four models of a three server queueing system with Bernoulli schedule optional server vacations. Customers arriving at the system one by one in a Poisson process are provided identical exponential service by three parallel servers according to a first-come, first served queue discipline. In model A, all three servers may be allowed a vacation at one time, in Model B at the most two of the three servers may be allowed a vacation at one time, in model C at the most one server is allowed a vacation, and in model D no server is allowed a vacation. We study steady the state behavior of the four models and obtain steady state probability generating functions for the queue size at a random point of time for all states of the system. In model D, a known result for a three server queueing system without server vacations is derived.

Keywords: a three server queue, Bernoulli schedule server vacations, queue size distribution at a random epoch, steady state

Procedia PDF Downloads 296
9279 Time Series Regression with Meta-Clusters

Authors: Monika Chuchro

Abstract:

This paper presents a preliminary attempt to apply classification of time series using meta-clusters in order to improve the quality of regression models. In this case, clustering was performed as a method to obtain a subgroups of time series data with normal distribution from inflow into waste water treatment plant data which Composed of several groups differing by mean value. Two simple algorithms: K-mean and EM were chosen as a clustering method. The rand index was used to measure the similarity. After simple meta-clustering, regression model was performed for each subgroups. The final model was a sum of subgroups models. The quality of obtained model was compared with the regression model made using the same explanatory variables but with no clustering of data. Results were compared by determination coefficient (R2), measure of prediction accuracy mean absolute percentage error (MAPE) and comparison on linear chart. Preliminary results allows to foresee the potential of the presented technique.

Keywords: clustering, data analysis, data mining, predictive models

Procedia PDF Downloads 466
9278 Evaluation of Three Potato Cultivars for Processing (Crisp French Fries)

Authors: Hatim Bastawi

Abstract:

Three varieties of potatoes, namely Agria, Alpha and Diamant were evaluated for their suitability for industrial production of French fries. The evaluation was under taken after testing quality parameters of specific gravity, dry matter, peeling ratio, and defect after frying and panel test. The variety Agria ranked the best followed by Alpha with regard to the parameters tested. On the other hand, Diamant showed significantly higher defect percentage than the other cultivars. Also, it was significantly judged of low acceptance by panelists.

Keywords: cultivars, crisps, French fries

Procedia PDF Downloads 261
9277 Shock and Particle Velocity Determination from Microwave Interrogation

Authors: Benoit Rougier, Alexandre Lefrancois, Herve Aubert

Abstract:

Microwave interrogation in the range 10-100 GHz is identified as an advanced technique to investigate simultaneously shock and particle velocity measurements. However, it requires the understanding of electromagnetic wave propagation in a multi-layered moving media. The existing models limit their approach to wave guides or evaluate the velocities with a fitting method, restricting therefore the domain of validity and the precision of the results. Moreover, few data of permittivity on high explosives at these frequencies under dynamic compression have been reported. In this paper, shock and particle velocities are computed concurrently for steady and unsteady shocks for various inert and reactive materials, via a propagation model based on Doppler shifts and signal amplitude. Refractive index of the material under compression is also calculated. From experimental data processing, it is demonstrated that Hugoniot curve can be evaluated. The comparison with published results proves the accuracy of the proposed method. This microwave interrogation technique seems promising for shock and detonation waves studies.

Keywords: electromagnetic propagation, experimental setup, Hugoniot measurement, shock propagation

Procedia PDF Downloads 213
9276 Creation and Management of Knowledge for Organization Sustainability and Learning

Authors: Deepa Kapoor, Rajshree Singh

Abstract:

This paper appreciates the emergence and growing importance as a new production factor makes the development of technologies, methodologies and strategies for measurement, creation, and diffusion into one of the main priorities of the organizations in the knowledge society. There are many models for creation and management of knowledge and diverse and varied perspectives for study, analysis, and understanding. In this article, we will conduct a theoretical approach to the type of models for the creation and management of knowledge; we will discuss some of them and see some of the difficulties and the key factors that determine the success of the processes for the creation and management of knowledge.

Keywords: knowledge creation, knowledge management, organizational development, organization learning

Procedia PDF Downloads 345
9275 Removal of Toxic Ni++ Ions from Wastewater by Nano-Bentonite

Authors: A. M. Ahmed, Mona A. Darwish

Abstract:

Removal of Ni++ ions from aqueous solution by sorption ontoNano-bentonite was investigated. Experiments were carried out as a function amount of Nano-bentonite, pH, concentration of metal, constant time, agitation speed and temperature. The adsorption parameter of metal ions followed the Langmuir Freundlich adsorption isotherm were applied to analyze adsorption data. The adsorption process has fit pseudo-second order kinetic models. Thermodynamics parameters e.g.ΔG*, ΔS °and ΔH ° of adsorption process have also been calculated and the sorption process was found to be endothermic. The adsorption process has fit pseudo-second order kinetic models. Langmuir and Freundich adsorption isotherm models were applied to analyze adsorption data and both were found to be applicable to the adsorption process. Thermodynamic parameters, e.g., ∆G °, ∆S ° and ∆H ° of the on-going adsorption process have also been calculated and the sorption process was found to be endothermic. Finally, it can be seen that Bentonite was found to be more effective for the removal of Ni (II) same with some experimental conditions.

Keywords: waste water, nickel, bentonite, adsorption

Procedia PDF Downloads 259
9274 Machining Stability of a Milling Machine with Different Preloaded Spindle

Authors: Jui-Pin Hung, Qiao-Wen Chang, Kung-Da Wu, Yong-Run Chen

Abstract:

This study was aimed to investigate the machining stability of a spindle tool with different preloaded amount. To this end, the vibration tests were conducted on the spindle unit with different preload to assess the dynamic characteristics and machining stability of the spindle unit. Current results demonstrate that the tool tip frequency response characteristics and the machining stabilities in X and Y direction are affected to change for spindle with different preload. As can be found from the results, a high preloaded spindle tool shows higher limited cutting depth at mid position, while a spindle with low preload shows a higher limited depth. This implies that the machining stability of spindle tool system is affected to vary by the machine frame structure. Besides, such an effect is quite different and varied with the preload of the spindle.

Keywords: bearing preload, dynamic compliance, machining stability, spindle

Procedia PDF Downloads 386
9273 Exploration of Various Metrics for Partitioning of Cellular Automata Units for Efficient Reconfiguration of Field Programmable Gate Arrays (FPGAs)

Authors: Peter Tabatt, Christian Siemers

Abstract:

Using FPGA devices to improve the behavior of time-critical parts of embedded systems is a proven concept for years. With reconfigurable FPGA devices, the logical blocks can be partitioned and grouped into static and dynamic parts. The dynamic parts can be reloaded 'on demand' at runtime. This work uses cellular automata, which are constructed through compilation from (partially restricted) ANSI-C sources, to determine the suitability of various metrics for optimal partitioning. Significant metrics, in this case, are for example the area on the FPGA device for the partition, the pass count for loop constructs and communication characteristics to other partitions. With successful partitioning, it is possible to use smaller FPGA devices for the same requirements as with not reconfigurable FPGA devices or – vice versa – to use the same FPGAs for larger programs.

Keywords: reconfigurable FPGA, cellular automata, partitioning, metrics, parallel computing

Procedia PDF Downloads 272
9272 Analyzing the Performance of Machine Learning Models to Predict Alzheimer's Disease and its Stages Addressing Missing Value Problem

Authors: Carlos Theran, Yohn Parra Bautista, Victor Adankai, Richard Alo, Jimwi Liu, Clement G. Yedjou

Abstract:

Alzheimer's disease (AD) is a neurodegenerative disorder primarily characterized by deteriorating cognitive functions. AD has gained relevant attention in the last decade. An estimated 24 million people worldwide suffered from this disease by 2011. In 2016 an estimated 40 million were diagnosed with AD, and for 2050 is expected to reach 131 million people affected by AD. Therefore, detecting and confirming AD at its different stages is a priority for medical practices to provide adequate and accurate treatments. Recently, Machine Learning (ML) models have been used to study AD's stages handling missing values in multiclass, focusing on the delineation of Early Mild Cognitive Impairment (EMCI), Late Mild Cognitive Impairment (LMCI), and normal cognitive (CN). But, to our best knowledge, robust performance information of these models and the missing data analysis has not been presented in the literature. In this paper, we propose studying the performance of five different machine learning models for AD's stages multiclass prediction in terms of accuracy, precision, and F1-score. Also, the analysis of three imputation methods to handle the missing value problem is presented. A framework that integrates ML model for AD's stages multiclass prediction is proposed, performing an average accuracy of 84%.

Keywords: alzheimer's disease, missing value, machine learning, performance evaluation

Procedia PDF Downloads 252
9271 Persian Pistachio Nut (Pistacia vera L.) Dehydration in Natural and Industrial Conditions

Authors: Hamid Tavakolipour, Mohsen Mokhtarian, Ahmad Kalbasi Ashtari

Abstract:

In this study, the effect of various drying methods (sun drying, shade drying and industrial drying) on final moisture content, shell splitting degree, shrinkage and color change were studied. Sun drying resulted higher degree of pistachio nuts shell splitting on pistachio nuts relative other drying methods. The ANOVA results showed that the different drying methods did not significantly effects on color change of dried pistachio nut. The results illustrated that pistachio nut dried by industrial drying had the lowest moisture content. After the end of drying process, initially, the experimental drying data were fitted with five famous drying models namely Newton, Page, Silva et al., Peleg and Henderson and Pabis. The results indicated that Peleg and Page models gave better results compared with other models to monitor the moisture ratio’s pistachio nut in industrial drying and open sun (or shade drying) methods, respectively.

Keywords: industrial drying, pistachio, quality properties, traditional drying

Procedia PDF Downloads 335
9270 Liposome Sterile Filtration Fouling: The Impact of Transmembrane Pressure on Performance

Authors: Hercules Argyropoulos, Thomas F. Johnson, Nigel B Jackson, Kalliopi Zourna, Daniel G. Bracewell

Abstract:

Lipid encapsulation has become essential in drug delivery, notably for mRNA vaccines during the COVID-19 pandemic. However, their sterile filtration poses challenges due to the risk of deformation, filter fouling and product loss from adsorption onto the membrane. Choosing the right filtration membrane is crucial to maintain sterility and integrity while minimizing product loss. The objective of this study is to develop a rigorous analytical framework utilizing confocal microscopy and filtration blocking models to elucidate the fouling mechanisms of liposomes as a model system for this class of delivery vehicle during sterile filtration, particularly in response to variations in transmembrane pressure (TMP) during the filtration process. Experiments were conducted using fluorescent Lipoid S100 PC liposomes formulated by micro fluidization and characterized by Multi-Angle Dynamic Light Scattering. Dual-layer PES/PES and PES/PVDF membranes with 0.2 μm pores were used for filtration under constant pressure, cycling from 30 psi to 5 psi and back to 30 psi, with 5, 6, and 5-minute intervals. Cross-sectional membrane samples were prepared by microtome slicing and analyzed with confocal microscopy. Liposome characterization revealed a particle size range of 100-140 nm and an average concentration of 2.93x10¹¹ particles/mL. Goodness-of-fit analysis of flux decline data at varying TMPs identified the intermediate blocking model as most accurate at 30 psi and the cake filtration model at 5 psi. Membrane resistance analysis showed atypical behavior compared to therapeutic proteins, with resistance remaining below 1.38×10¹¹ m⁻¹ at 30 psi, increasing over fourfold at 5 psi, and then decreasing to 1-1.3-fold when pressure was returned to 30 psi. This suggests that increased flow/shear deforms liposomes enabling them to more effectively navigate membrane pores. Confocal microscopy indicated that liposome fouling mainly occurred in the upper parts of the dual-layer membrane.

Keywords: sterile filtration, membrane resistance, microfluidization, confocal microscopy, liposomes, filtration blocking models

Procedia PDF Downloads 21
9269 Virtual Prototyping of LED Chip Scale Packaging Using Computational Fluid Dynamic and Finite Element Method

Authors: R. C. Law, Shirley Kang, T. Y. Hin, M. Z. Abdullah

Abstract:

LED technology has been evolving aggressively in recent years from incandescent bulb during older days to as small as chip scale package. It will continue to stay bright in future. As such, there is tremendous pressure to stay competitive in the market by optimizing products to next level of performance and reliability with the shortest time to market. This changes the conventional way of product design and development to virtual prototyping by means of Computer Aided Engineering (CAE). It comprises of the deployment of Finite Element Method (FEM) and Computational Fluid Dynamic (CFD). FEM accelerates the investigation for early detection of failures such as crack, improve the thermal performance of system and enhance solder joint reliability. CFD helps to simulate the flow pattern of molding material as a function of different temperature, molding parameters settings to evaluate failures like voids and displacement. This paper will briefly discuss the procedures and applications of FEM in thermal stress, solder joint reliability and CFD of compression molding in LED CSP. Integration of virtual prototyping in product development had greatly reduced the time to market. Many successful achievements with minimized number of evaluation iterations required in the scope of material, process setting, and package architecture variant have been materialized with this approach.

Keywords: LED, chip scale packaging (CSP), computational fluid dynamic (CFD), virtual prototyping

Procedia PDF Downloads 287
9268 Credit Risk Evaluation Using Genetic Programming

Authors: Ines Gasmi, Salima Smiti, Makram Soui, Khaled Ghedira

Abstract:

Credit risk is considered as one of the important issues for financial institutions. It provokes great losses for banks. To this objective, numerous methods for credit risk evaluation have been proposed. Many evaluation methods are black box models that cannot adequately reveal information hidden in the data. However, several works have focused on building transparent rules-based models. For credit risk assessment, generated rules must be not only highly accurate, but also highly interpretable. In this paper, we aim to build both, an accurate and transparent credit risk evaluation model which proposes a set of classification rules. In fact, we consider the credit risk evaluation as an optimization problem which uses a genetic programming (GP) algorithm, where the goal is to maximize the accuracy of generated rules. We evaluate our proposed approach on the base of German and Australian credit datasets. We compared our finding with some existing works; the result shows that the proposed GP outperforms the other models.

Keywords: credit risk assessment, rule generation, genetic programming, feature selection

Procedia PDF Downloads 353
9267 An Infinite Mixture Model for Modelling Stutter Ratio in Forensic Data Analysis

Authors: M. A. C. S. Sampath Fernando, James M. Curran, Renate Meyer

Abstract:

Forensic DNA analysis has received much attention over the last three decades, due to its incredible usefulness in human identification. The statistical interpretation of DNA evidence is recognised as one of the most mature fields in forensic science. Peak heights in an Electropherogram (EPG) are approximately proportional to the amount of template DNA in the original sample being tested. A stutter is a minor peak in an EPG, which is not masking as an allele of a potential contributor, and considered as an artefact that is presumed to be arisen due to miscopying or slippage during the PCR. Stutter peaks are mostly analysed in terms of stutter ratio that is calculated relative to the corresponding parent allele height. Analysis of mixture profiles has always been problematic in evidence interpretation, especially with the presence of PCR artefacts like stutters. Unlike binary and semi-continuous models; continuous models assign a probability (as a continuous weight) for each possible genotype combination, and significantly enhances the use of continuous peak height information resulting in more efficient reliable interpretations. Therefore, the presence of a sound methodology to distinguish between stutters and real alleles is essential for the accuracy of the interpretation. Sensibly, any such method has to be able to focus on modelling stutter peaks. Bayesian nonparametric methods provide increased flexibility in applied statistical modelling. Mixture models are frequently employed as fundamental data analysis tools in clustering and classification of data and assume unidentified heterogeneous sources for data. In model-based clustering, each unknown source is reflected by a cluster, and the clusters are modelled using parametric models. Specifying the number of components in finite mixture models, however, is practically difficult even though the calculations are relatively simple. Infinite mixture models, in contrast, do not require the user to specify the number of components. Instead, a Dirichlet process, which is an infinite-dimensional generalization of the Dirichlet distribution, is used to deal with the problem of a number of components. Chinese restaurant process (CRP), Stick-breaking process and Pólya urn scheme are frequently used as Dirichlet priors in Bayesian mixture models. In this study, we illustrate an infinite mixture of simple linear regression models for modelling stutter ratio and introduce some modifications to overcome weaknesses associated with CRP.

Keywords: Chinese restaurant process, Dirichlet prior, infinite mixture model, PCR stutter

Procedia PDF Downloads 330
9266 Adaptive Neuro Fuzzy Inference System Model Based on Support Vector Regression for Stock Time Series Forecasting

Authors: Anita Setianingrum, Oki S. Jaya, Zuherman Rustam

Abstract:

Forecasting stock price is a challenging task due to the complex time series of the data. The complexity arises from many variables that affect the stock market. Many time series models have been proposed before, but those previous models still have some problems: 1) put the subjectivity of choosing the technical indicators, and 2) rely upon some assumptions about the variables, so it is limited to be applied to all datasets. Therefore, this paper studied a novel Adaptive Neuro-Fuzzy Inference System (ANFIS) time series model based on Support Vector Regression (SVR) for forecasting the stock market. In order to evaluate the performance of proposed models, stock market transaction data of TAIEX and HIS from January to December 2015 is collected as experimental datasets. As a result, the method has outperformed its counterparts in terms of accuracy.

Keywords: ANFIS, fuzzy time series, stock forecasting, SVR

Procedia PDF Downloads 247
9265 A Terahertz Sensor and Dynamic Switch Based on a Bilayer Toroidal Metamaterial

Authors: Angana Bhattacharya, Rakesh Sarkar, Gagan Kumar

Abstract:

Toroidal resonances, a new class of electromagnetic excitations, demonstrate exceptional properties as compared to electric and magnetic dipolar resonances. The advantage of narrow linewidth in toroidal resonance is utilized in this proposed work, where a bilayer metamaterial (MM) sensor has been designed in the terahertz frequency regime (THz). A toroidal MM geometry in a single layer is first studied. A second identical MM geometry placed on top of the first layer results in the coupling of toroidal excitations, leading to an increase in the quality factor (Q) of the resonance. The sensing capability of the resonance is studied. Further, the dynamic switching from an 'off' stage to an 'on' stage in the bilayer configuration is explored. The ardent study of such toroidal bilayer MMs could provide significant potential in the development of bio-molecular and chemical sensors, switches, and modulators.

Keywords: toroidal resonance, bilayer, metamaterial, terahertz, sensing, switching

Procedia PDF Downloads 150
9264 Joint Space Hybrid Force/Position Control of 6-DoF Robot Manipulator Using Neural Network

Authors: Habtemariam Alemu

Abstract:

It has been known that the performance of position and force control is highly affected by both robot dynamic and environment stiffness uncertainties. In this paper, joint space hybrid force and position control strategy with self-selecting matrix using artificial neural network compensator is proposed. The objective of the work is to improve controller robustness by applying a neural network technique in order to compensate the effect of uncertainties in the robot model. Simulation results for a 6 degree of freedom (6-DoF) manipulator and different types of environments showed the effectiveness of the suggested approach. 6-DoF Puma 560 family robot manipulator is chosen as industrial robot and its efficient dynamic model is designed using Matlab/SimMechanics library.

Keywords: robot manipulator, force/position control, artificial neural network, Matlab/Simulink

Procedia PDF Downloads 517
9263 A Multi-criteria Decision Support System for Migrating Legacies into Open Systems

Authors: Nasser Almonawer

Abstract:

Timely reaction to an evolving global business environment and volatile market conditions necessitates system and process flexibility, which in turn demands agile and adaptable architecture and a steady infusion of affordable new technologies. On the contrary, a large number of organizations utilize systems characterized by inflexible and obsolete legacy architectures. To effectively respond to the dynamic contemporary business environments, such architectures must be migrated to robust and modular open architectures. To this end, this paper proposes an integrated decision support system for a seamless migration to open systems. The proposed decision support system (DSS) integrates three well-established quantitative and qualitative decision-making models—namely, the Delphi method, Analytic Hierarchy Process (AHP) and Goal Programming (GP) to (1) assess risks and establish evaluation criteria; (2) formulate migration strategy and rank candidate systems; and (3) allocate resources among the selected systems.

Keywords: decision support systems, open systems architecture, analytic hierarchy process (AHP), goal programming (GP), delphi method

Procedia PDF Downloads 47
9262 The Efficacy of Government Strategies to Control COVID 19: Evidence from 22 High Covid Fatality Rated Countries

Authors: Imalka Wasana Rathnayaka, Rasheda Khanam, Mohammad Mafizur Rahman

Abstract:

TheCOVID-19 pandemic has created unprecedented challenges to both the health and economic states in countries around the world. This study aims to evaluate the effectiveness of governments' decisions to mitigate the risks of COVID-19 through proposing policy directions to reduce its magnitude. The study is motivated by the ongoing coronavirus outbreaks and comprehensive policy responses taken by countries to mitigate the spread of COVID-19 and reduce death rates. This study contributes to filling the knowledge by exploiting the long-term efficacy of extensive plans of governments. This study employs a Panel autoregressive distributed lag (ARDL) framework. The panels incorporate both a significant number of variables and fortnightly observations from22 countries. The dependent variables adopted in this study are the fortnightly death rates and the rates of the spread of COVID-19. Mortality rate and the rate of infection data were computed based on the number of deaths and the number of new cases per 10000 people.The explanatory variables are fortnightly values of indexes taken to investigate the efficacy of government interventions to control COVID-19. Overall government response index, Stringency index, Containment and health index, and Economic support index were selected as explanatory variables. The study relies on the Oxford COVID-19 Government Measure Tracker (OxCGRT). According to the procedures of ARDL, the study employs (i) the unit root test to check stationarity, (ii) panel cointegration, and (iii) PMG and ARDL estimation techniques. The study shows that the COVID-19 pandemic forced immediate responses from policymakers across the world to mitigate the risks of COVID-19. Of the four types of government policy interventions: (i) Stringency and (ii) Economic Support have been most effective and reveal that facilitating Stringency and financial measures has resulted in a reduction in infection and fatality rates, while (iii) Government responses are positively associated with deaths but negatively with infected cases. Even though this positive relationship is unexpected to some extent in the long run, social distancing norms of the governments have been broken by the public in some countries, and population age demographics would be a possible reason for that result. (iv) Containment and healthcare improvements reduce death rates but increase the infection rates, although the effect has been lower (in absolute value). The model implies that implementation of containment health practices without association with tracing and individual-level quarantine does not work well. The policy implication based on containment health measures must be applied together with targeted, aggressive, and rapid containment to extensively reduce the number of people infected with COVID 19. Furthermore, the results demonstrate that economic support for income and debt relief has been the key to suppressing the rate of COVID-19 infections and fatality rates.

Keywords: COVID-19, infection rate, deaths rate, government response, panel data

Procedia PDF Downloads 76
9261 Experiments on Weakly-Supervised Learning on Imperfect Data

Authors: Yan Cheng, Yijun Shao, James Rudolph, Charlene R. Weir, Beth Sahlmann, Qing Zeng-Treitler

Abstract:

Supervised predictive models require labeled data for training purposes. Complete and accurate labeled data, i.e., a ‘gold standard’, is not always available, and imperfectly labeled data may need to serve as an alternative. An important question is if the accuracy of the labeled data creates a performance ceiling for the trained model. In this study, we trained several models to recognize the presence of delirium in clinical documents using data with annotations that are not completely accurate (i.e., weakly-supervised learning). In the external evaluation, the support vector machine model with a linear kernel performed best, achieving an area under the curve of 89.3% and accuracy of 88%, surpassing the 80% accuracy of the training sample. We then generated a set of simulated data and carried out a series of experiments which demonstrated that models trained on imperfect data can (but do not always) outperform the accuracy of the training data, e.g., the area under the curve for some models is higher than 80% when trained on the data with an error rate of 40%. Our experiments also showed that the error resistance of linear modeling is associated with larger sample size, error type, and linearity of the data (all p-values < 0.001). In conclusion, this study sheds light on the usefulness of imperfect data in clinical research via weakly-supervised learning.

Keywords: weakly-supervised learning, support vector machine, prediction, delirium, simulation

Procedia PDF Downloads 199
9260 Development of an Optimised, Automated Multidimensional Model for Supply Chains

Authors: Safaa H. Sindi, Michael Roe

Abstract:

This project divides supply chain (SC) models into seven Eras, according to the evolution of the market’s needs throughout time. The five earliest Eras describe the emergence of supply chains, while the last two Eras are to be created. Research objectives: The aim is to generate the two latest Eras with their respective models that focus on the consumable goods. Era Six contains the Optimal Multidimensional Matrix (OMM) that incorporates most characteristics of the SC and allocates them into four quarters (Agile, Lean, Leagile, and Basic SC). This will help companies, especially (SMEs) plan their optimal SC route. Era Seven creates an Automated Multidimensional Model (AMM) which upgrades the matrix of Era six, as it accounts for all the supply chain factors (i.e. Offshoring, sourcing, risk) into an interactive system with Heuristic Learning that helps larger companies and industries to select the best SC model for their market. Methodologies: The data collection is based on a Fuzzy-Delphi study that analyses statements using Fuzzy Logic. The first round of Delphi study will contain statements (fuzzy rules) about the matrix of Era six. The second round of Delphi contains the feedback given from the first round and so on. Preliminary findings: both models are applicable, Matrix of Era six reduces the complexity of choosing the best SC model for SMEs by helping them identify the best strategy of Basic SC, Lean, Agile and Leagile SC; that’s tailored to their needs. The interactive heuristic learning in the AMM of Era seven will help mitigate error and aid large companies to identify and re-strategize the best SC model and distribution system for their market and commodity, hence increasing efficiency. Potential contributions to the literature: The problematic issue facing many companies is to decide which SC model or strategy to incorporate, due to the many models and definitions developed over the years. This research simplifies this by putting most definition in a template and most models in the Matrix of era six. This research is original as the division of SC into Eras, the Matrix of Era six (OMM) with Fuzzy-Delphi and Heuristic Learning in the AMM of Era seven provides a synergy of tools that were not combined before in the area of SC. Additionally the OMM of Era six is unique as it combines most characteristics of the SC, which is an original concept in itself.

Keywords: Leagile, automation, heuristic learning, supply chain models

Procedia PDF Downloads 389
9259 The Nonlinear Dynamic Response of a Rotor System Supported by Hydrodynamic Journal Bearings

Authors: Amira Amamou, Mnaouar Chouchane

Abstract:

This paper investigates the bifurcation and nonlinear behavior of two degrees of freedom model of a symmetrical balanced rigid rotor supported by two identical journal bearings. The fluid film hydrodynamic reactions are modeled by applying both the short and the long bearing approximation and using half Sommerfeld solution. A numerical integration of equations of the journal centre motion is presented to predict the presence and the size of stable or unstable limit cycles in the neighborhood of the stability critical speed. For their stability margins, a continuation method based on the predictor-corrector mechanism is used. The numerical results of responses show that stability and bifurcation behaviors of periodic motions depend strongly on bearing parameters and its dynamic characteristics.

Keywords: hydrodynamic journal bearing, nonlinear stability, continuation method, bifurcations

Procedia PDF Downloads 409
9258 Supply Chain Technology Adoption in Textile and Apparel Industry

Authors: Zulkifli Mohamed Udin, Lee Khai-Loon, Mohamad Ghozali Hassan

Abstract:

In today’s dynamic business environment, the competition is no longer between firms, but between supply chains to gain competitive advantages. The global manufacturing sector, especially the textile and apparel industry are essentially known for its supply chain dependency. The delicate nature of its business leads to emphasis on the smooth movement of upstream and downstream supply chain. The nature of this industry, however, result in huge dynamic flow of physical, information, and financial. The dynamic management of these flows requires adoption of supply chain technologies. Even though technology is widely implemented and studied in many industries by researchers, adoption of supply chain technologies in Malaysian textile and apparel industry is limited. There is relatively a handful academic study conducted on recent developments in Malaysian textile and apparel industry and supply chain technology adoption indicate a major gap in supply chain performance studies. Considering the importance given to Third Industrial Master Plan by the government Malaysia, it is necessary to understand the power of supply chain technology adoptions. This study aims to investigate supply chain technology adoption by textile and apparel companies in Malaysia. The result highlighted the benefits perceived by textile and apparel companies from supply chain technologies. The indifference of small and medium enterprises to operation management acts as a major inhibitor to the adoption of supply chain technologies, since they have resource limitations. This study could be used as a precursor for further detailed studies on this issue.

Keywords: supply chain technology adoption, supply chain performance, textile, apparel industry

Procedia PDF Downloads 492
9257 Numerical Investigation of Two Turbulence Models for Predicting the Temperature Separation in Conical Vortex Tube

Authors: M. Guen

Abstract:

A three-dimensional numerical study is used to analyze the behavior of the flow inside a vortex tube. The vortex tube or Ranque-Hilsch vortex tube is a simple device which is capable of dividing compressed air from the inlet nozzle tangentially into two flow with different temperatures warm and cold. This phenomenon is known from literature by temperature separation. The K ω-SST and K-ε turbulence models are used to predict the turbulent flow behaviour inside the tube. The vortex tube is an Exair 708 slpm (25 scfm) commercial tube. The cold and hot exits areas are 30.2 and 95 mm2 respectively. The vortex nozzle consists of 6 straight slots; the height and the width of each slot are 0.97 mm and 1.41 mm. The total area normal to the flow associated with six nozzles is therefore 8.15 mm 2. The present study focuses on a comparison between two turbulence models K ω-SST, K-ε by using a new configuration of vortex tube (Conical Vortex Tube). The performance curves of the temperature separation versus cold outlet mass fraction were calculated and compared with experimental and numerical study of other researchers.

Keywords: conical vortex tube, temperature separation, cold mass fraction, turbulence

Procedia PDF Downloads 249
9256 Kinetics, Equilibrium and Thermodynamics of the Adsorption of Triphenyltin onto NanoSiO₂/Fly Ash/Activated Carbon Composite

Authors: Olushola S. Ayanda, Olalekan S. Fatoki, Folahan A. Adekola, Bhekumusa J. Ximba, Cecilia O. Akintayo

Abstract:

In the present study, the kinetics, equilibrium and thermodynamics of the adsorption of triphenyltin (TPT) from TPT-contaminated water onto nanoSiO2/fly ash/activated carbon composite was investigated in batch adsorption system. Equilibrium adsorption data were analyzed using Langmuir, Freundlich, Temkin and Dubinin–Radushkevich (D-R) isotherm models. Pseudo first- and second-order, Elovich and fractional power models were applied to test the kinetic data and in order to understand the mechanism of adsorption, thermodynamic parameters such as ΔG°, ΔSo and ΔH° were also calculated. The results showed a very good compliance with pseudo second-order equation while the Freundlich and D-R models fit the experiment data. Approximately 99.999 % TPT was removed from the initial concentration of 100 mg/L TPT at 80oC, contact time of 60 min, pH 8 and a stirring speed of 200 rpm. Thus, nanoSiO2/fly ash/activated carbon composite could be used as effective adsorbent for the removal of TPT from contaminated water and wastewater.

Keywords: isotherm, kinetics, nanoSiO₂/fly ash/activated carbon composite, tributyltin

Procedia PDF Downloads 293
9255 Experimental and Numerical Study of Thermal Effects in Variable Density Turbulent Jets

Authors: DRIS Mohammed El-Amine, BOUNIF Abdelhamid

Abstract:

This paper considers an experimental and numerical investigation of variable density in axisymmetric turbulent free jets. Special attention is paid to the study of the scalar dissipation rate. In this case, dynamic field equations are coupled to scalar field equations by the density which can vary by the thermal effect (jet heating). The numerical investigation is based on the first and second order turbulence models. For the discretization of the equations system characterizing the flow, the finite volume method described by Patankar (1980) was used. The experimental study was conducted in order to evaluate dynamical characteristics of a heated axisymmetric air flow using the Laser Doppler Anemometer (LDA) which is a very accurate optical measurement method. Experimental and numerical results are compared and discussed. This comparison do not show large difference and the results obtained are in general satisfactory.

Keywords: Scalar dissipation rate, thermal effects, turbulent axisymmetric jets, second order modelling, Velocimetry Laser Doppler.

Procedia PDF Downloads 451
9254 Strategy Management of Soybean (Glycine max L.) for Dealing with Extreme Climate through the Use of Cropsyst Model

Authors: Aminah Muchdar, Nuraeni, Eddy

Abstract:

The aims of the research are: (1) to verify the cropsyst plant model of experimental data in the field of soybean plants and (2) to predict planting time and potential yield soybean plant with the use of cropsyst model. This research is divided into several stages: (1) first calibration stage which conducted in the field from June until September 2015.(2) application models stage, where the data obtained from calibration in the field will be included in cropsyst models. The required data models are climate data, ground data/soil data,also crop genetic data. The relationship between the obtained result in field with simulation cropsyst model indicated by Efficiency Index (EF) which the value is 0,939.That is showing that cropsyst model is well used. From the calculation result RRMSE which the value is 1,922%.That is showing that comparative fault prediction results from simulation with result obtained in the field is 1,92%. The conclusion has obtained that the prediction of soybean planting time cropsyst based models that have been made valid for use. and the appropriate planting time for planting soybeans mainly on rain-fed land is at the end of the rainy season, in which the above study first planting time (June 2, 2015) which gives the highest production, because at that time there was still some rain. Tanggamus varieties more resistant to slow planting time cause the percentage decrease in the yield of each decade is lower than the average of all varieties.

Keywords: soybean, Cropsyst, calibration, efficiency Index, RRMSE

Procedia PDF Downloads 180
9253 A Parallel Approach for 3D-Variational Data Assimilation on GPUs in Ocean Circulation Models

Authors: Rossella Arcucci, Luisa D'Amore, Simone Celestino, Giuseppe Scotti, Giuliano Laccetti

Abstract:

This work is the first dowel in a rather wide research activity in collaboration with Euro Mediterranean Center for Climate Changes, aimed at introducing scalable approaches in Ocean Circulation Models. We discuss designing and implementation of a parallel algorithm for solving the Variational Data Assimilation (DA) problem on Graphics Processing Units (GPUs). The algorithm is based on the fully scalable 3DVar DA model, previously proposed by the authors, which uses a Domain Decomposition approach (we refer to this model as the DD-DA model). We proceed with an incremental porting process consisting of 3 distinct stages: requirements and source code analysis, incremental development of CUDA kernels, testing and optimization. Experiments confirm the theoretic performance analysis based on the so-called scale up factor demonstrating that the DD-DA model can be suitably mapped on GPU architectures.

Keywords: data assimilation, GPU architectures, ocean models, parallel algorithm

Procedia PDF Downloads 412
9252 Kalman Filter for Bilinear Systems with Application

Authors: Abdullah E. Al-Mazrooei

Abstract:

In this paper, we present a new kind of the bilinear systems in the form of state space model. The evolution of this system depends on the product of state vector by its self. The well known Lotak Volterra and Lorenz models are special cases of this new model. We also present here a generalization of Kalman filter which is suitable to work with the new bilinear model. An application to real measurements is introduced to illustrate the efficiency of the proposed algorithm.

Keywords: bilinear systems, state space model, Kalman filter, application, models

Procedia PDF Downloads 441
9251 Diagnostic Clinical Skills in Cardiology: Improving Learning and Performance with Hybrid Simulation, Scripted Histories, Wearable Technology, and Quantitative Grading – The Assimilate Excellence Study

Authors: Daly M. J, Condron C, Mulhall C, Eppich W, O'Neill J.

Abstract:

Introduction: In contemporary clinical cardiology, comprehensive and holistic bedside evaluation including accurate cardiac auscultation is in decline despite having positive effects on patients and their outcomes. Methods: Scripted histories and scoring checklists for three clinical scenarios in cardiology were co-created and refined through iterative consensus by a panel of clinical experts; these were then paired with recordings of auscultatory findings from three actual patients with known valvular heart disease. A wearable vest with embedded pressure-sensitive panel speakers was developed to transmit these recordings when examined at the standard auscultation points. RCSI medical students volunteered for a series of three formative long case examinations in cardiology (LC1 – LC3) using this hybrid simulation. Participants were randomised into two groups: Group 1 received individual teaching from an expert trainer between LC1 and LC2; Group 2 received the same intervention between LC2 and LC3. Each participant’s long case examination performance was recorded and blindly scored by two peer participants and two RCSI examiners. Results: Sixty-eight participants were included in the study (age 27.6 ± 0.1 years; 74% female) and randomised into two groups; there were no significant differences in baseline characteristics between groups. Overall, the median total faculty examiner score was 39.8% (35.8 – 44.6%) in LC1 and increased to 63.3% (56.9 – 66.4%) in LC3, with those in Group 1 showing a greater improvement in LC2 total score than that observed in Group 2 (p < .001). Using the novel checklist, intraclass correlation coefficients (ICC) were excellent between examiners in all cases: ICC .994 – .997 (p < .001); correlation between peers and examiners improved in LC2 following peer grading of LC1 performances: ICC .857 – .867 (p < .001). Conclusion: Hybrid simulation and quantitative grading improve learning, standardisation of assessment, and direct comparisons of both performance and acumen in clinical cardiology.

Keywords: cardiology, clinical skills, long case examination, hybrid simulation, checklist

Procedia PDF Downloads 110