Search results for: drug property prediction
4066 TA6V Selective Laser Melting as an Innovative Method Produce Complex Shapes
Authors: Rafał Kamiński, Joel Rech, Philippe Bertrand, Christophe Desrayaud
Abstract:
Additive manufacturing is a hot topic for industry. Among the additive techniques, Selective Laser Melting (SLM) becomes even more popular, especially for making parts for aerospace applications, thanks to its design freedom (customized and light structures) and its reduced time to market. However, some functional surfaces have to be machined to achieve small tolerances and low surface roughness to fulfill industry specifications. The complex shapes designed for SLM (ex: titanium turbine blades) necessitate the use of ball end milling operations like in the conventional process after forging. However, the metallurgical state of TA6V is very different from the one obtained usually from forging, because of the laser sintering layer by layer. So this paper aims to investigate the influence of new TA6V metallurgies produced by SLM on the machinability in ball end milling. Machinability is considered as the property of a material to obtain easily and by a cheap way a functional surface. This means, for instance, the property to limit cutting tool wear rate and to get smooth surfaces. So as to reach this objective, SLM parts have been produced and heat treated with various conditions leading to various metallurgies that are compared with a standard equiaxed α+β wrought microstructure. The machinability is analyzed by measuring surface roughness, tool wear and cutting forces for a range of cutting conditions (depth of cut 'ap', feed per tooth 'fz', spindle speed 'N') in accordance with industrial practices. This work has revealed that TA6V produced by SLM can lead to a better machinability that standard wrought alloys.Keywords: ball milling, selective laser melting, surface roughness, titanium, wear
Procedia PDF Downloads 2814065 Formal Ontology of Quality Space. Location, Subordination and Determination
Authors: Claudio Calosi, Damiano Costa, Paolo Natali
Abstract:
Determination is the relation that holds between certain kinds of properties, determinables – such as “being colored”, and others, determinates – such as “being red”. Subordination is the relation that holds between genus properties – such as “being an animal”, and others, species properties – such as “being human”'. It is widely held that Determination and Subordination share important similarities, yet also crucial differences. But what grounds such similarities and differences? This question is hardly ever addressed. The present paper provides the first step towards filling this gap in the literature. It argues that a locational theory of instantiation, roughly the view that to have a property is to occupy a location in quality space, holds the key for such an answer. More precisely, it argues that both principles of Determination and Subordination are just examples of more general principles of location. Consider Determination. The principle that everything that has a determinate has a determinable boils down to the claim that everything that has a precise location in quality space is in quality space – an eminently reasonable principle. The principle that nothing can have two determinates (at the same level of determination) boils down to the principle that nothing can be “multilocated” in quality space. In effect, the following provides a “translation table” between principles of location and determination: LOCATION DETERMINATION Functionality At Most One Determination Focus At Most One Determination & Requisite Determination* Exactness Requisite Determination* Super-Exactness Requisite Determination Exactitude Requisite Determination Converse-Exactness Determinable Inehritance This grounds the similarity between Determination and Subordination. What about the differences? The paper argues that the differences boil down to the mereological structure of the regions that are occupied in quality space, in particular whether they are simple or complex. The key technical detail is that Determination and Subordination induce a “set-theoretic rooted tree” structure over the domain of properties. Interestingly, the analysis also provides a possible justification for the Aristotelian claim that being is not a genus property – an argument that the paper develops in some detail.Keywords: determinables/determinates, genus/species, location, Aristotle on being is not a genus
Procedia PDF Downloads 804064 Modeling Aeration of Sharp Crested Weirs by Using Support Vector Machines
Authors: Arun Goel
Abstract:
The present paper attempts to investigate the prediction of air entrainment rate and aeration efficiency of a free over-fall jets issuing from a triangular sharp crested weir by using regression based modelling. The empirical equations, support vector machine (polynomial and radial basis function) models and the linear regression techniques were applied on the triangular sharp crested weirs relating the air entrainment rate and the aeration efficiency to the input parameters namely drop height, discharge, and vertex angle. It was observed that there exists a good agreement between the measured values and the values obtained using empirical equations, support vector machine (Polynomial and rbf) models, and the linear regression techniques. The test results demonstrated that the SVM based (Poly & rbf) model also provided acceptable prediction of the measured values with reasonable accuracy along with empirical equations and linear regression techniques in modelling the air entrainment rate and the aeration efficiency of a free over-fall jets issuing from triangular sharp crested weir. Further sensitivity analysis has also been performed to study the impact of input parameter on the output in terms of air entrainment rate and aeration efficiency.Keywords: air entrainment rate, dissolved oxygen, weir, SVM, regression
Procedia PDF Downloads 4364063 Semi-Analytic Method in Fast Evaluation of Thermal Management Solution in Energy Storage System
Authors: Ya Lv
Abstract:
This article presents the application of the semi-analytic method (SAM) in the thermal management solution (TMS) of the energy storage system (ESS). The TMS studied in this work is fluid cooling. In fluid cooling, both effective heat conduction and heat convection are indispensable due to the heat transfer from solid to fluid. Correspondingly, an efficient TMS requires a design investigation of the following parameters: fluid inlet temperature, ESS initial temperature, fluid flow rate, working c rate, continuous working time, and materials properties. Their variation induces a change of thermal performance in the battery module, which is usually evaluated by numerical simulation. Compared to complicated computation resources and long computation time in simulation, the SAM is developed in this article to predict the thermal influence within a few seconds. In SAM, a fast prediction model is reckoned by combining numerical simulation with theoretical/empirical equations. The SAM can explore the thermal effect of boundary parameters in both steady-state and transient heat transfer scenarios within a short time. Therefore, the SAM developed in this work can simplify the design cycle of TMS and inspire more possibilities in TMS design.Keywords: semi-analytic method, fast prediction model, thermal influence of boundary parameters, energy storage system
Procedia PDF Downloads 1544062 Biocompatible Hydrogel Materials Containing Cytostatics for Cancer Treatment
Authors: S. Kudlacik-Kramarczyk, M. Kedzierska, B. Tyliszczak
Abstract:
Recently, the continuous development of medicine and related sciences has been observed. Particular emphasis is directed on the development of biomaterials, i.e., non-toxic, biocompatible and biodegradable materials that may improve the effectiveness of treatment as well as the comfort of patients. This is particularly important in the case of cancer treatment. Currently, there are many methods of cancer treatment based primarily on chemotherapy and the surgical removal of the tumor, but it is worth noting that these therapies also cause many side effects. Among women, the most common cancer is breast cancer. It may be completely cured, but the consequence of treatment is partial or complete breast mastectomy and radiation therapy, which results in severe skin burns. The skin of the patient after radiation therapy is very burned, and therefore requires intensive care and high frequency of dressing changes. The traditional dressing adheres to the burn wounds and does not absorb adequate amount of exudate from injuries and the patient is forced to change the dressing every 2 hours. Therefore, the main purpose was to develop an innovative combination of dressing material with drug carriers that may be used in anti-cancer therapy. The innovation of this solution is the combination of these two products into one system, i.e., a transdermal system with the possibility of a controlled release of the drug- cytostatic. Besides, the possibility of modifying the hydrogel matrix with aloe vera juice provides this material with new features favorable from the point of view of healing processes of burn wounds resulting from the radiation therapy. In this study, hydrogel materials containing protein spheres with the active substance have been obtained as a result of photopolymerization process. The reaction mixture consisting of the protein (albumin) spheres incorporated with cytostatic, chitosan, adequate crosslinking agent and photoinitiator has been subjected to the UV radiation for 2 minutes. Prepared materials have been subjected to the numerous studies including the analysis of cytotoxicity using murine fibroblasts L929. Analysis was conducted based on the mitochondrial activity test (MTT reduction assay) which involves the determining the number of cells characterized by proper metabolism. Hydrogel materials obtained using different amount of crosslinking agents have been subjected to the cytotoxicity analysis. According to the standards, tested material is defined as cytotoxic when the viability of cells after 24 h incubation with this material is lower than 70%. In the research, hydrogel polymer materials containing protein spheres incorporated with the active substance, i.e. a cytostatic, have been developed. Such a dressing may support the treatment of cancer due to the content of the anti-cancer drug - cytostatic, and may also provide a soothing effect on the healing of the burn wounds resulted from the radiation therapy due to the content of aloe vera juice in the hydrogel matrix. Based on the conducted cytotoxicity studies, it may be concluded that the obtained materials do not adversely affect the tested cell lines, therefore they can be subjected to more advanced analyzes.Keywords: hydrogel polymers, cytostatics, drug carriers, cytotoxicity
Procedia PDF Downloads 1324061 Comparative Study of Antimicrobial Activity of Bacteriocin Producing Lactic Acid Bacteria from Fermented Batter of Green Gram And Bengal Gram Against Food-Borne Pathogens
Authors: Bandi Aruna
Abstract:
The increase of multidrug-resistant pathogens and the restriction on the use of antibiotics due to its side effects have drawn attention to the search for possible alternatives. Bacteriocins are ribosomally synthesized antimicrobial peptides that are active against Gram-positive and Gram-negative bacteria. The bacteriocins from lactic acid bacteria represent an important application of these peptides as clinical drugs or as food biopreservatives. The present study describes the isolation of bacteriocin producing lactic acid bacteria (LAB) from fermented batter of green gram and bengal gram using Man, Rogosa and Sharpe (MRS) media. The bacteriocin produced by these organisms inhibited the growth of Staphylococcus aureus, Escherichia coli, Klebsiella species, Pseudomonas aeruginosa, The isolates G1, G2 were isolated from green gram; B1 and B2 were isolated from fermented bengal gram batter. G1 and G2 were identified as Lactobacillus casie and B1 and B2 were identified as Streptococcus species. Antimicrobial activity of the bacteriocin produced by these strains was studied by agar well diffusion method. Bacteriocins produced by the Lactobacillus casie and Streptococcus secies retained their antagonistic property at pH of 5 and pH of 7. Exposure of bacteriocin to UV light for 4 min showed antibacterial activity. The antagonistic property was observed even at 100°C demonstrating stability at higher temperatures of the bacteriocin. The bacteriocins were stable for a period of 15 days at 27°C. The bacteriocins of G1, G2, and B2 exhibited highest antagonistic activity at pH of 5 and B1 at pH of 7. Therefore, the bacteriocins of the isolates may find important application in controlling the food-borne pathogens.Keywords: Keywords: Antibacterial activity, Lactic acid bacteria, Bacteriocin
Procedia PDF Downloads 4024060 Prediction of Music Track Popularity: A Machine Learning Approach
Authors: Syed Atif Hassan, Luv Mehta, Syed Asif Hassan
Abstract:
Hit song science is a field of investigation wherein machine learning techniques are applied to music tracks in order to extract such features from audio signals which can capture information that could explain the popularity of respective tracks. Record companies invest huge amounts of money into recruiting fresh talents and churning out new music each year. Gaining insight into the basis of why a song becomes popular will result in tremendous benefits for the music industry. This paper aims to extract basic musical and more advanced, acoustic features from songs while also taking into account external factors that play a role in making a particular song popular. We use a dataset derived from popular Spotify playlists divided by genre. We use ten genres (blues, classical, country, disco, hip-hop, jazz, metal, pop, reggae, rock), chosen on the basis of clear to ambiguous delineation in the typical sound of their genres. We feed these features into three different classifiers, namely, SVM with RBF kernel, a deep neural network, and a recurring neural network, to build separate predictive models and choosing the best performing model at the end. Predicting song popularity is particularly important for the music industry as it would allow record companies to produce better content for the masses resulting in a more competitive market.Keywords: classifier, machine learning, music tracks, popularity, prediction
Procedia PDF Downloads 6634059 The Convention of Culture: A Comprehensive Study on Dispute Resolution Pertaining to Heritage and Related Issues
Authors: Bhargavi G. Iyer, Ojaswi Bhagat
Abstract:
In recent years, there has been a lot of discussion about ethnic imbalance and diversity in the international context. Arbitration is now subject to the hegemony of a small number of people who are constantly reappointed. When a court system becomes exclusionary, the quality of adjudication suffers significantly. In such a framework, there is a misalignment between adjudicators' preconceived views and the interests of the parties, resulting in a biased view of the proceedings. The world is currently witnessing a slew of intellectual property battles around cultural appropriation. The term "cultural appropriation" refers to the industrial west's theft of indigenous culture, usually for fashion, aesthetic, or dramatic purposes. Selena Gomez exemplifies cultural appropriation by commercially using the “bindi,” which is sacred to Hinduism, as a fashion symbol. In another case, Victoria's Secret insulted indigenous peoples' genocide by stealing native Indian headdresses. In the case of yoga, a similar process can be witnessed, with Vedic philosophy being reduced to a type of physical practice. Such a viewpoint is problematic since indigenous groups have worked hard for generations to ensure the survival of their culture, and its appropriation by the western world for purely aesthetic and theatrical purposes is upsetting to those who practise such cultures. Because such conflicts involve numerous jurisdictions, they must be resolved through international arbitration. However, these conflicts are already being litigated, and the aggrieved parties, namely developing nations, do not believe it prudent to use the World Intellectual Property Organization's (WIPO) already established arbitration procedure. This practise, it is suggested in this study, is the outcome of Europe's exclusionary arbitral system, which fails to recognise the non-legal and non-commercial nature of indigenous culture issues. This research paper proposes a more comprehensive, inclusive approach that recognises the non-legal and non-commercial aspects of IP disputes involving cultural appropriation, which can only be achieved through an ethnically balanced arbitration structure. This paper also aspires to expound upon the benefits of arbitration and other means of alternative dispute resolution (ADR) in the context of disputes pertaining to cultural issues; positing that inclusivity is a solution to the existing discord between international practices and localised cultural points of dispute. This paper also hopes to explicate measures that will facilitate ensuring inclusion and ideal practices in the domain of arbitration law, particularly pertaining to cultural heritage and indigenous expression.Keywords: arbitration law, cultural appropriation, dispute resolution, heritage, intellectual property
Procedia PDF Downloads 1444058 Antimicrobial Evaluation of Polyphenon 60 and Ciprofloxacin Loaded Nano Emulsion against Uropathogenic Escherichia coli Bacteria and Its in vivo Analysis
Authors: Atinderpal Kaur, Shweta Dang
Abstract:
Our aim is to develop a nanoemulsion-based delivery system containing polyphenon 60 (P60) and ciprofloxacin (Cipro) for intravaginal delivery to treat urinary tract infection. In the present study Polyphenon 60 (P60) and ciprofloxacin (Cipro) were loaded in a single nano emulsion (NE) system via ultra-sonication technique and characterized for particle size, in vitro release and antibacterial efficacy against Bcl-2 level Escherichia coli bacteria. To determine in vivo pharmacokinetic parameters and intravaginal transportation of NE, gamma scintigraphy and biodistribution study was conducted by radiolabelling NE with technetium pertechnetate (99mTc). The preliminary antibacterial investigation showed synergy between these compounds with FICindex of 0.42. The developed formulation showed zeta potential +55.3 and particle size of 151.7 nm, with PDI of 0.196. The in vitro release percentage of P60 at the end of 7th hours was 94.8 ± 0.9 % whereas the release for Cipro was 75.1± 0.15 % in simulated vaginal media. MBC was identified and the findings demonstrated that in both ESBL (Extended Spectrum β- lactamase) and MBL (Metallo β- lactamase) cultures the P60+Cipro NE showed inhibition of growth of all the isolates at 2 mg/ml dilutions. The percentage per gram of radiolabelled drug was found (3.50±0.26) and (3.81±0.30) in kidney and urinary bladder, respectively at 3 h. From the findings, it was concluded that the developed P60+Cipro NE was transported efficiently throughout the target organs, had long duration of action and high biocompatibility via intravaginal administration as compared to oral administration.Keywords: ciprofloxacin, gamma scintigraphy, intravaginal drug delivery, Polyphenon 60
Procedia PDF Downloads 3204057 Hybrid Graphene Based Nanomaterial as Highly Efficient Catalyst for the Electrochemical Determination of Ciprofloxacin
Authors: Tien S. H. Pham, Peter J. Mahon, Aimin Yu
Abstract:
The detection of drug molecules by voltammetry has attracted great interest over the past years. However, many drug molecules exhibit poor electrochemical signals at common electrodes which result in low sensitivity in detection. An efficient way to overcome this problem is to modify electrodes with functional materials. Since discovered in 2004, graphene (or reduced graphene oxide) has emerged as one of the most studied two-dimensional carbon materials in condensed matter physics, electrochemistry, and so on due to its exceptional physicochemical properties. Additionally, the continuous development of technology has opened the new window for the successful fabrications of many novel graphene-based nanomaterials to serve in electrochemical analysis. This research aims to synthesize and characterize gold nanoparticle coated beta-cyclodextrin functionalized reduced graphene oxide (Au NP–β-CD–RGO) nanocomposites with highly conductive and strongly electro-catalytic properties as well as excellent supramolecular recognition abilities for the modification of electrodes. The electrochemical responses of ciprofloxacin at the as-prepared nanocomposite modified electrode was effectively amplified was much higher in comparison with that at the bare electrode. The linear concentration range was from 0.01 to 120 µM, with a detection limit of 2.7 nM using differential pulse voltammetry. Thus, Au NP–β-CD–RGO nanocomposite has great potential as an ideal material to construct sensitive sensors for the electrochemical determination of ciprofloxacin or similar antibacterial drugs in the future based on its excellent stability, selectivity, and reproducibility.Keywords: Au nanoparticles, β-CD, ciprofloxacin, electrochemical determination, graphene based nanomaterials
Procedia PDF Downloads 1884056 Complete Ensemble Empirical Mode Decomposition with Adaptive Noise Temporal Convolutional Network for Remaining Useful Life Prediction of Lithium Ion Batteries
Authors: Jing Zhao, Dayong Liu, Shihao Wang, Xinghua Zhu, Delong Li
Abstract:
Uhumanned Underwater Vehicles generally operate in the deep sea, which has its own unique working conditions. Lithium-ion power batteries should have the necessary stability and endurance for use as an underwater vehicle’s power source. Therefore, it is essential to accurately forecast how long lithium-ion batteries will last in order to maintain the system’s reliability and safety. In order to model and forecast lithium battery Remaining Useful Life (RUL), this research suggests a model based on Complete Ensemble Empirical Mode Decomposition with Adaptive noise-Temporal Convolutional Net (CEEMDAN-TCN). In this study, two datasets, NASA and CALCE, which have a specific gap in capacity data fluctuation, are used to verify the model and examine the experimental results in order to demonstrate the generalizability of the concept. The experiments demonstrate the network structure’s strong universality and ability to achieve good fitting outcomes on the test set for various battery dataset types. The evaluation metrics reveal that the CEEMDAN-TCN prediction performance of TCN is 25% to 35% better than that of a single neural network, proving that feature expansion and modal decomposition can both enhance the model’s generalizability and be extremely useful in industrial settings.Keywords: lithium-ion battery, remaining useful life, complete EEMD with adaptive noise, temporal convolutional net
Procedia PDF Downloads 1544055 Prediction of Road Accidents in Qatar by 2022
Authors: M. Abou-Amouna, A. Radwan, L. Al-kuwari, A. Hammuda, K. Al-Khalifa
Abstract:
There is growing concern over increasing incidences of road accidents and consequent loss of human life in Qatar. In light to the future planned event in Qatar, World Cup 2022; Qatar should put into consideration the future deaths caused by road accidents, and past trends should be considered to give a reasonable picture of what may happen in the future. Qatar roads should be arranged and paved in a way that accommodate high capacity of the population in that time, since then there will be a huge number of visitors from the world. Qatar should also consider the risk issues of road accidents raised in that period, and plan to maintain high level to safety strategies. According to the increase in the number of road accidents in Qatar from 1995 until 2012, an analysis of elements affecting and causing road accidents will be effectively studied. This paper aims to identify and criticize the factors that have high effect on causing road accidents in the state of Qatar, and predict the total number of road accidents in Qatar 2022. Alternative methods are discussed and the most applicable ones according to the previous researches are selected for further studies. The methods that satisfy the existing case in Qatar were the multiple linear regression model (MLR) and artificial neutral network (ANN). Those methods are analyzed and their findings are compared. We conclude that by using MLR the number of accidents in 2022 will become 355,226 accidents, and by using ANN 216,264 accidents. We conclude that MLR gave better results than ANN because the artificial neutral network doesn’t fit data with large range varieties.Keywords: road safety, prediction, accident, model, Qatar
Procedia PDF Downloads 2584054 Developing a Hybrid Method to Diagnose and Predict Sports Related Concussions with Machine Learning
Authors: Melody Yin
Abstract:
Concussions impact a large amount of adolescents; they make up as much as half of the diagnosed concussions in America. This research proposes a hybrid machine learning model based on the combination of human/knowledge-based domains and computer-generated feature rankings to improve the accuracy of diagnosing sports related concussion (SRC). Using a data set of symptoms collected on the sideline post-SRC events, the symptom selection criteria method has been developed by using Google AutoML's important score function to identify the top 10 symptom features. In addition, symptom domains have been introduced as another parameter, categorizing the symptoms into physical, cognitive, sleep, and emotional domains. The hybrid machine learning model has been trained with a combination of the top 10 symptoms and 4 domains. From the results, the hybrid model was the best performer for symptom resolution time prediction in 2 and 4-week thresholds. This research is a proof of concept study in the use of domains along with machine learning in order to improve concussion prediction accuracy. It is also possible that the use of domains can make the model more efficient due to reduced training time. This research examines the use of a hybrid method in predicting sports-related concussion. This achievement is based on data preprocessing, using a hybrid method to select criteria to achieve high performance.Keywords: hybrid model, machine learning, sports related concussion, symptom resolution time
Procedia PDF Downloads 1684053 Identification and Characterization of Inhibitors of Epoxide Hydrolase from Trichoderma reesei
Authors: Gabriel S. De Oliveira, Patricia P. Adriani, Christophe Moriseau, Bruce D. Hammock, Felipe S. Chambergo
Abstract:
Epoxide hydrolases (EHs) are enzymes that are present in all living organisms and catalyze the hydrolysis of epoxides to the corresponding vicinal diols. EHs have high biotechnological interest for the drug design and chemistry transformation for industries. In this study, we describe the identification of substrates and inhibitors of epoxide hydrolase enzyme from the filamentous fungus Trichoderma reesei (TrEH), and these inhibitors showed the fungal growth inhibitory activity. We have used the cloned enzyme and expressed in E. coli to develop the screening in the library of fluorescent substrates with the objective of finding the best substrate to be used in the identification of good inhibitors for the enzyme TrEH. The substrate (3-phenyloxiranyl)-acetic acid cyano-(6-methoxy-naphthalen-2-yl)-methyl ester showed the highest specific activity and was chosen for the next steps of the study. The inhibitors screening was performed in the library with more than three thousand molecules and we could identify the 6 best inhibitors. The IC50 of these molecules were determined in nM and all the best inhibitors have urea or amide in their structure, because It has been recognized that these groups fit well in the hydrolase catalytic pocket of the epoxide hydrolases. Then the growth of T. reesei in PDA medium containing these TrEH inhibitors was tested, and fungal growth inhibition activity was demonstrated with more than 60% of inhibition of fungus growth in the assay with the TrEH inhibitor with the lowest IC50. Understanding how this EH enzyme from T. reesei responds to inhibitors may contribute for the study of fungal metabolism and drug design against pathogenic fungi.Keywords: epoxide hydrolases, fungal growth inhibition, inhibitor, Trichoderma reesei
Procedia PDF Downloads 2024052 Multi-Omics Investigation of Ferroptosis-Related Gene Expression in Ovarian Aging and the Impact of Nutritional Intervention
Authors: Chia-Jung Li, Kuan-Hao Tsui
Abstract:
As women age, the quality of their oocytes deteriorates irreversibly, leading to reduced fertility. To better understand the role of Ferroptosis-related genes in ovarian aging, we employed a multi-omics analysis approach, including spatial transcriptomics, single-cell RNA sequencing, human ovarian pathology, and clinical biopsies. Our study identified excess lipid peroxide accumulation in aging germ cells, metal ion accumulation via oxidative reduction, and the interaction between ferroptosis and cellular energy metabolism. We used multi-histological prediction of ferroptosis key genes to evaluate 75 patients with ovarian aging insufficiency and then analyzed changes in hub genes after supplementing with DHEA, Ubiquinol CoQ10, and Cleo-20 T3 for two months. Our results demonstrated a significant increase in TFRC, GPX4, NCOA4, and SLC3A2, which were consistent with our multi-component prediction. We theorized that these supplements increase the mitochondrial tricarboxylic acid cycle (TCA) or electron transport chain (ETC), thereby increasing antioxidant enzyme GPX4 levels and reducing lipid peroxide accumulation and ferroptosis. Overall, our findings suggest that supplementation intervention significantly improves IVF outcomes in senescent cells by enhancing metal ion and energy metabolism and enhancing oocyte quality in aging women.Keywords: multi-omics, nutrients, ferroptosis, ovarian aging
Procedia PDF Downloads 1034051 Early Warning System of Financial Distress Based On Credit Cycle Index
Authors: Bi-Huei Tsai
Abstract:
Previous studies on financial distress prediction choose the conventional failing and non-failing dichotomy; however, the distressed extent differs substantially among different financial distress events. To solve the problem, “non-distressed”, “slightly-distressed” and “reorganization and bankruptcy” are used in our article to approximate the continuum of corporate financial health. This paper explains different financial distress events using the two-stage method. First, this investigation adopts firm-specific financial ratios, corporate governance and market factors to measure the probability of various financial distress events based on multinomial logit models. Specifically, the bootstrapping simulation is performed to examine the difference of estimated misclassifying cost (EMC). Second, this work further applies macroeconomic factors to establish the credit cycle index and determines the distressed cut-off indicator of the two-stage models using such index. Two different models, one-stage and two-stage prediction models, are developed to forecast financial distress, and the results acquired from different models are compared with each other, and with the collected data. The findings show that the two-stage model incorporating financial ratios, corporate governance and market factors has the lowest misclassification error rate. The two-stage model is more accurate than the one-stage model as its distressed cut-off indicators are adjusted according to the macroeconomic-based credit cycle index.Keywords: Multinomial logit model, corporate governance, company failure, reorganization, bankruptcy
Procedia PDF Downloads 3774050 Wound Healing and Antioxidant Properties of 80% Methanol Leaf Extract of Verbascum sinaiticum (Scrophulariaceae), an Ethiopian Medicinal Plant
Authors: Solomon Assefa Huluka
Abstract:
Wounds account for severe morbidity, socioeconomic distress, and mortality around the globe.For several years, various herbal products are used to expediteand augment the innate wound healing process. In Ethiopian folkloricmedicine, Verbascum sinaiticum L. (V. sinaiticum) is commonlyapplied as a wound-healing agent. The present study investigated the potential wound healing and antioxidant properties of hydroalcoholic leaf extract of V. sinaiticum. The 80% methanol extract, formulated as 5% (w/w) and 10% (w/w) ointments, was evaluated in excision and incision wound models using nitrofurazone and simple ointment as positive and negative controls, respectively. Parameters such as wound contraction, period of epithelialization, and tensile strength were determined. Moreover, its in vitro antioxidant property was evaluated using a DPPH assay. In the excision model, both doses (5% and 10% w/w) of the extract showed a significant (p<0.001) wound healing efficacy compared to the negative control, as evidenced by enhanced wound contraction rate and shorter epithelialization time records. In the incision model, the lower dose (5% w/w) ointment formulation of the extract exhibited the maximum increment in tensile strength (85.6%) that was significant (p<0.001)compared to negative and untreated controls. Animals treated with 5% w/wointment, furthermore, showed a significantly (p < 0.05) higher percentage of tensile strength than nitrofurazone treated ones. Moreover, the hydroalcoholic extract of the plant showed a noticeable free radical scavenging property. The result of the present study upholds the folkloric use of V. sinaiticum in the treatment of wounds.Keywords: wound healing, antioxidant, excision wound model, incision wound model, verbascum sinaiticum
Procedia PDF Downloads 894049 Risk Assessment of Heavy Rainfall and Development of Damage Prediction Function for Gyeonggi-Do Province
Authors: Jongsung Kim, Daegun Han, Myungjin Lee, Soojun Kim, Hung Soo Kim
Abstract:
Recently, the frequency and magnitude of natural disasters are gradually increasing due to climate change. Especially in Korea, large-scale damage caused by heavy rainfall frequently occurs due to rapid urbanization. Therefore, this study proposed a Heavy rain Damage Risk Index (HDRI) using PSR (Pressure – State - Response) structure for heavy rain risk assessment. We constructed pressure index, state index, and response index for the risk assessment of each local government in Gyeonggi-do province, and the evaluation indices were determined by principal component analysis. The indices were standardized using the Z-score method then HDRIs were obtained for 31 local governments in the province. The HDRI is categorized into three classes, say, the safest class is 1st class. As the results, the local governments of the 1st class were 15, 2nd class 7, and 3rd class 9. From the study, we were able to identify the risk class due to the heavy rainfall for each local government. It will be useful to develop the heavy rainfall prediction function by risk class, and this was performed in this issue. Also, this risk class could be used for the decision making for efficient disaster management. Acknowledgements: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2017R1A2B3005695).Keywords: natural disaster, heavy rain risk assessment, HDRI, PSR
Procedia PDF Downloads 1994048 In silico Designing of Imidazo [4,5-b] Pyridine as a Probable Lead for Potent Decaprenyl Phosphoryl-β-D-Ribose 2′-Epimerase (DprE1) Inhibitors as Antitubercular Agents
Authors: Jineetkumar Gawad, Chandrakant Bonde
Abstract:
Tuberculosis (TB) is a major worldwide concern whose control has been exacerbated by HIV, the rise of multidrug-resistance (MDR-TB) and extensively drug resistance (XDR-TB) strains of Mycobacterium tuberculosis. The interest for newer and faster acting antitubercular drugs are more remarkable than any time. To search potent compounds is need and challenge for researchers. Here, we tried to design lead for inhibition of Decaprenyl phosphoryl-β-D-ribose 2′-epimerase (DprE1) enzyme. Arabinose is an essential constituent of mycobacterial cell wall. DprE1 is a flavoenzyme that converts decaprenylphosphoryl-D-ribose into decaprenylphosphoryl-2-keto-ribose, which is intermediate in biosynthetic pathway of arabinose. Latter, DprE2 converts keto-ribose into decaprenylphosphoryl-D-arabinose. We had a selection of 23 compounds from azaindole series for computational study, and they were drawn using marvisketch. Ligands were prepared using Maestro molecular modeling interface, Schrodinger, v10.5. Common pharmacophore hypotheses were developed by applying dataset thresholds to yield active and inactive set of compounds. There were 326 hypotheses were developed. On the basis of survival score, ADRRR (Survival Score: 5.453) was selected. Selected pharmacophore hypotheses were subjected to virtual screening results into 1000 hits. Hits were prepared and docked with protein 4KW5 (oxydoreductase inhibitor) was downloaded in .pdb format from RCSB Protein Data Bank. Protein was prepared using protein preparation wizard. Protein was preprocessed, the workspace was analyzed using force field OPLS 2005. Glide grid was generated by picking single atom in molecule. Prepared ligands were docked with prepared protein 4KW5 using Glide docking. After docking, on the basis of glide score top-five compounds were selected, (5223, 5812, 0661, 0662, and 2945) and the glide docking score (-8.928, -8.534, -8.412, -8.411, -8.351) respectively. There were interactions of ligand and protein, specifically HIS 132, LYS 418, TRY 230, ASN 385. Pi-pi stacking was observed in few compounds with basic Imidazo [4,5-b] pyridine ring. We had basic azaindole ring in parent compounds, but after glide docking, we received compounds with Imidazo [4,5-b] pyridine as a basic ring. That might be the new lead in the process of drug discovery.Keywords: DprE1 inhibitors, in silico drug designing, imidazo [4, 5-b] pyridine, lead, tuberculosis
Procedia PDF Downloads 1544047 Fatigue Life Evaluation of Al6061/Al2O3 and Al6061/SiC Composites under Uniaxial and Multiaxial Loading Conditions
Authors: C. E. Sutton, A. Varvani-Farahani
Abstract:
Fatigue damage and life prediction of particle metal matrix composites (PMMCs) under uniaxial and multiaxial loading conditions were investigated. Three PMM composite materials of Al6061/Al2O3/20p-T6, Al6061/Al2O3/22p-T6 and Al6061/SiC/17w-T6 tested under tensile, torsion, and combined tension-torsion fatigue cycling were evaluated with various fatigue damage models. The fatigue damage models of Smith-Watson-Topper (S. W. T.), Ellyin, Brown-Miller, Fatemi-Socie, and Varvani were compared for their capability to assess the fatigue damage of materials undergoing various loading conditions. Fatigue life predication results were then evaluated by implementing material-dependent coefficients that factored in the effects of the particle reinforcement in the earlier developed Varvani model. The critical plane-energy approach incorporated the critical plane as the plane of crack initiation and early stage of crack growth. The strain energy density was calculated on the critical plane incorporating stress and strain components acting on the plane. This approach successfully evaluated fatigue damage values versus fatigue lives within a narrower band for both uniaxial and multiaxial loading conditions as compared with other damage approaches studied in this paper.Keywords: fatigue damage, life prediction, critical plane approach, energy approach, PMM composites
Procedia PDF Downloads 4034046 Development and Validation of a Coronary Heart Disease Risk Score in Indian Type 2 Diabetes Mellitus Patients
Authors: Faiz N. K. Yusufi, Aquil Ahmed, Jamal Ahmad
Abstract:
Diabetes in India is growing at an alarming rate and the complications caused by it need to be controlled. Coronary heart disease (CHD) is one of the complications that will be discussed for prediction in this study. India has the second most number of diabetes patients in the world. To the best of our knowledge, there is no CHD risk score for Indian type 2 diabetes patients. Any form of CHD has been taken as the event of interest. A sample of 750 was determined and randomly collected from the Rajiv Gandhi Centre for Diabetes and Endocrinology, J.N.M.C., A.M.U., Aligarh, India. Collected variables include patients data such as sex, age, height, weight, body mass index (BMI), blood sugar fasting (BSF), post prandial sugar (PP), glycosylated haemoglobin (HbA1c), diastolic blood pressure (DBP), systolic blood pressure (SBP), smoking, alcohol habits, total cholesterol (TC), triglycerides (TG), high density lipoprotein (HDL), low density lipoprotein (LDL), very low density lipoprotein (VLDL), physical activity, duration of diabetes, diet control, history of antihypertensive drug treatment, family history of diabetes, waist circumference, hip circumference, medications, central obesity and history of CHD. Predictive risk scores of CHD events are designed by cox proportional hazard regression. Model calibration and discrimination is assessed from Hosmer Lemeshow and area under receiver operating characteristic (ROC) curve. Overfitting and underfitting of the model is checked by applying regularization techniques and best method is selected between ridge, lasso and elastic net regression. Youden’s index is used to choose the optimal cut off point from the scores. Five year probability of CHD is predicted by both survival function and Markov chain two state model and the better technique is concluded. The risk scores for CHD developed can be calculated by doctors and patients for self-control of diabetes. Furthermore, the five-year probabilities can be implemented as well to forecast and maintain the condition of patients.Keywords: coronary heart disease, cox proportional hazard regression, ROC curve, type 2 diabetes Mellitus
Procedia PDF Downloads 2194045 Characterization of the Lytic Bacteriophage VbɸAB-1 against Drug Resistant Acinetobacter baumannii Isolated from Hospitalized Pressure Ulcers Patients
Authors: M. Doudi, M. H. Pazandeh, L. Rahimzadeh Torabi
Abstract:
Bedsores are pressure ulcers that occur on the skin or tissue due to being immobile and lying in bed for extended periods. Bedsores have the potential to progress into open ulcers, increasing the possibility of variety of bacterial infection. Acinetobacter baumannii, a pathogen of considerable clinical importance, exhibited a significant correlation with Bedsores (pressure ulcers) infections, thereby manifesting a wide spectrum of antibiotic resistance. The emergence of drug resistance has led researchers to focus on alternative methods, particularly phage therapy, for tackling bacterial infections. Phage therapy has emerged as a novel therapeutic approach to regulate the activity of these agents. The management of bacterial infections greatly benefits from the clinical utilization of bacteriophages as a valuable antimicrobial intervention. The primary objective of this investigation consisted of isolating and discerning potent bacteriophage capable of targeting multi drug-resistant (MDR) and extensively drug-resistant (XDR) bacteria obtained from pressure ulcers. In present study, analyzed and isolated A. baumannii strains obtained from a cohort of patients suffering from pressure ulcers at Taleghani Hospital in Ahvaz, Iran. An approach that included biochemical and molecular identification techniques was used to determine the taxonomic classification of bacterial isolates at the genus and species levels. The molecular identification process was facilitated by using the 16S rRNA gene in combination with universal primers 27 F, and 1492 R. Bacteriophage was obtained through the isolation process conducted on treatment plant sewage located in Isfahan, Iran. The main goal of this study was to evaluate different characteristics of phage, such as their appearance, range of hosts they can infect, how quickly they can enter a host, their stability at varying temperatures and pH levels, their effectiveness in killing bacteria, the growth pattern of a single phage stage, mapping of enzymatic digestion, and identification of proteomics patterns. The findings demonstrated that an examination was conducted on a sample of 50 specimens, wherein 15 instances of A. baumannii were identified. These microorganisms are the predominant Gram-negative agents known to cause wound infections in individuals suffering from bedsores. The study's findings indicated a high prevalence of antibiotic resistance in the strains isolated from pressure ulcers, excluding the clinical strains that exhibited responsiveness to colistin.According to the findings obtained from assessments of host range and morphological characteristics of bacteriophage VbɸAB-1, it can be concluded that this phage possesses specificity towards A. Baumannii BAH_Glau1001 was classified as a member of the Plasmaviridae family. The bacteriophage mentioned earlier showed the strongest antibacterial effect at a temperature of 18 °C and a pH of 6.5. Through the utilization of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis on protein fragments, it was established that the bacteriophage VbɸAB-1 exhibited a size range between 50 and 75 kilodaltons (KDa). The numerous research findings on the effectiveness of phages and the safety studies conducted suggest that the phages studied in this research can be considered as a practical solution and recommended approach for controlling and treating stubborn pathogens in burn wounds among hospitalized patients.Keywords: acinetobacter baumannii, extremely drug- resistant, phage therapy, surgery wound
Procedia PDF Downloads 934044 Statistical Scientific Investigation of Popular Cultural Heritage in the Relationship between Astronomy and Weather Conditions in the State of Kuwait
Authors: Ahmed M. AlHasem
Abstract:
The Kuwaiti society has long been aware of climatic changes and their annual dates and trying to link them to astronomy in an attempt to forecast the future weather conditions. The reason for this concern is that many of the economic, social and living activities of the society depend deeply on the nature of the weather conditions directly and indirectly. In other words, Kuwaiti society, like the case of many human societies, has in the past tried to predict climatic conditions by linking them to astronomy or popular statements to indicate the timing of climate changes. Accordingly, this study was devoted to scientific investigation based on the statistical analysis of climatic data to show the accuracy and compatibility of some of the most important elements of the cultural heritage in relation to climate change and to relate it scientifically to precise climatic measurements for decades. The research has been divided into 10 topics, each topic has been focused on one legacy, whether by linking climate changes to the appearance/disappearance of star or a popular statement inherited through generations, through explain the nature and timing and thereby statistical analysis to indicate the proportion of accuracy based on official climatic data since 1962. The study's conclusion is that the relationship is weak and, in some cases, non-existent between the popular heritage and the actual climatic data. Therefore, it does not have a dependable relationship and a reliable scientific prediction between both the popular heritage and the forecast of weather conditions.Keywords: astronomy, cultural heritage, statistical analysis, weather prediction
Procedia PDF Downloads 1234043 Vulnerability and Risk Assessment, and Preparedness to Natural Disasters of Schools in Southern Leyte, Philippines
Authors: Lorifel Hinay
Abstract:
Natural disasters have increased in frequency and severity in the Philippines over the years resulting to detrimental impacts in school properties and lives of learners. The topography of the Province of Southern Leyte is a hotspot for inevitable natural disaster-causing hazards that could affect schools, cripple the educational system and cause environmental, cultural and social detrimental impacts making Disaster Risk Reduction and Management (DRRM) an indispensable platform to keep learners safe, secure and resilient. This study determined the schools’ vulnerability and risk assessment to earthquake, landslide, flood, storm surge and tsunami hazards, and its relationship to status in disaster preparedness. Descriptive-correlational research design was used where the respondents were School DRRM Coordinators/School Administrators and Municipal DRRM Officers. It was found that schools’ vulnerability and risk were high in landslide, medium in earthquake, and low in flood, storm surge and tsunami. Though schools were moderately prepared in disasters across all hazards, they were less accomplished in group organization and property security. Less planning preparation and less implementation of DRRM measures were observed in schools highly at risk of earthquake and landslide. Also, schools vulnerable to landslide and flood have very high property security. Topography and location greatly contributed to schools’ vulnerability to hazards, thus, a school-based disaster preparedness plan is hoped to help ensure that hazard-exposed schools can build a culture of safety, disaster resiliency and education continuity.Keywords: disaster risk reduction and management, earthquake, flood, landslide, storm surge, tsunami
Procedia PDF Downloads 1314042 The Effect of a Reactive Poly (2-Vinyl-2-Oxazoline) Monolayer of Carbon Fiber Surface on the Mechanical Property of Carbon Fiber/Polypropylene Composite Using Maleic Anhydride Grafted Polypropylene
Authors: Teruya Goto, Hokuto Chiba, Tatsuhiro Takahashi
Abstract:
Carbon fiber reinforced thermoplastic resin using short carbon fiber has been produced by melt mixing and the improvement of mechanical properties has been frequently reported up to now. One of the most frequently reported enhancement has been seen in carbon fiber / polypropylene (PP) composites by adding small amount of maleic anhydride grafted polypropylene (MA-g-PP) into PP matrix. However, the further enhancement of tensile strength and tensile modules has been expected for lightning the composite more. Our present research aims to improve the mechanical property by using a highly reactive monolayer polymer, which can react with both COOH of carbon fiber surface and maleic anhydride of MA-g-PP in the matrix, on carbon fiber for PP/CF composite. It has been known that oxazoline has much higher reactivity with COOH without catalysts, compared with amine group and alcohol OH group. However, oxazoline group has not been used for the interface. To achieve the purpose, poly-2-vinyl-2-oxazoline (Pvozo), having highly reactivity with COOH and maleic anhydride, has been originally synthesized through radical polymerization using 2-vinyl-2-oxazoline as a monomer, resulting in the Mw around 140,000. Monolayer Pvozo chemically reacted on CF was prepared in 1-methoxy-2-propanol solution of Pvozo by heating at 100oC for 3 hours. After this solution treatment, unreacted Pvozo was completely washed out by methanol, resulting the uniform formation of the monolayer Pvozo on CF. Monolayer Pvozo coated CF was melt mixed by with PP and a small amount of MA-g-PP for the preparation of the composite samples using a batch type melt mixer. With performing the tensile strength tests of the composites, the tensile strength of CF/MA-g-PP/PP showed 40% increase, compared to that of CF/PP. While, that of Pvozo coated CF/MA-g-PP/PP exhibited 80% increase, compared to that of CF/PP. To get deeper insight of the dramatic increase, the weight percentage of chemically grafted polymer based on CF was evaluated by dissolving and removing the matrix polymer by xylene using by thermos gravimetric analysis (TGA). The chemically grafted remained polymer was found to be 0.69wt% in CF/PP, 0.98wt% in CF/MA-g-PP/PP, 1.51wt% in Pvozo coated CF/MA-g-PP/PP, suggesting that monolayer Pvozo contributed to the increase of the grafted polymer amount. In addition, the very strong adhesion by Pvozo was confirmed by observing the fractured cross-sectional surface of the composite by scanning electron micrograph (SEM). As a conclusion, the effectiveness of a highly reactive monolayer Pvozo on CF for the enhancement of the mechanical properties of CF/PP composite was demonstrated, which can be interpreted by the clear evidence of the increase of the grafting polymer on CF.Keywords: CFRTP, interface, oxazoline, polymer graft, mechanical property
Procedia PDF Downloads 2134041 ANOVA-Based Feature Selection and Machine Learning System for IoT Anomaly Detection
Authors: Muhammad Ali
Abstract:
Cyber-attacks and anomaly detection on the Internet of Things (IoT) infrastructure is emerging concern in the domain of data-driven intrusion. Rapidly increasing IoT risk is now making headlines around the world. denial of service, malicious control, data type probing, malicious operation, DDos, scan, spying, and wrong setup are attacks and anomalies that can affect an IoT system failure. Everyone talks about cyber security, connectivity, smart devices, and real-time data extraction. IoT devices expose a wide variety of new cyber security attack vectors in network traffic. For further than IoT development, and mainly for smart and IoT applications, there is a necessity for intelligent processing and analysis of data. So, our approach is too secure. We train several machine learning models that have been compared to accurately predicting attacks and anomalies on IoT systems, considering IoT applications, with ANOVA-based feature selection with fewer prediction models to evaluate network traffic to help prevent IoT devices. The machine learning (ML) algorithms that have been used here are KNN, SVM, NB, D.T., and R.F., with the most satisfactory test accuracy with fast detection. The evaluation of ML metrics includes precision, recall, F1 score, FPR, NPV, G.M., MCC, and AUC & ROC. The Random Forest algorithm achieved the best results with less prediction time, with an accuracy of 99.98%.Keywords: machine learning, analysis of variance, Internet of Thing, network security, intrusion detection
Procedia PDF Downloads 1254040 A Dynamic Solution Approach for Heart Disease Prediction
Authors: Walid Moudani
Abstract:
The healthcare environment is generally perceived as being information rich yet knowledge poor. However, there is a lack of effective analysis tools to discover hidden relationships and trends in data. In fact, valuable knowledge can be discovered from application of data mining techniques in healthcare system. In this study, a proficient methodology for the extraction of significant patterns from the coronary heart disease warehouses for heart attack prediction, which unfortunately continues to be a leading cause of mortality in the whole world, has been presented. For this purpose, we propose to enumerate dynamically the optimal subsets of the reduced features of high interest by using rough sets technique associated to dynamic programming. Therefore, we propose to validate the classification using Random Forest (RF) decision tree to identify the risky heart disease cases. This work is based on a large amount of data collected from several clinical institutions based on the medical profile of patient. Moreover, the experts’ knowledge in this field has been taken into consideration in order to define the disease, its risk factors, and to establish significant knowledge relationships among the medical factors. A computer-aided system is developed for this purpose based on a population of 525 adults. The performance of the proposed model is analyzed and evaluated based on set of benchmark techniques applied in this classification problem.Keywords: multi-classifier decisions tree, features reduction, dynamic programming, rough sets
Procedia PDF Downloads 4104039 Identification of Hepatocellular Carcinoma Using Supervised Learning Algorithms
Authors: Sagri Sharma
Abstract:
Analysis of diseases integrating multi-factors increases the complexity of the problem and therefore, development of frameworks for the analysis of diseases is an issue that is currently a topic of intense research. Due to the inter-dependence of the various parameters, the use of traditional methodologies has not been very effective. Consequently, newer methodologies are being sought to deal with the problem. Supervised Learning Algorithms are commonly used for performing the prediction on previously unseen data. These algorithms are commonly used for applications in fields ranging from image analysis to protein structure and function prediction and they get trained using a known dataset to come up with a predictor model that generates reasonable predictions for the response to new data. Gene expression profiles generated by DNA analysis experiments can be quite complex since these experiments can involve hypotheses involving entire genomes. The application of well-known machine learning algorithm - Support Vector Machine - to analyze the expression levels of thousands of genes simultaneously in a timely, automated and cost effective way is thus used. The objectives to undertake the presented work are development of a methodology to identify genes relevant to Hepatocellular Carcinoma (HCC) from gene expression dataset utilizing supervised learning algorithms and statistical evaluations along with development of a predictive framework that can perform classification tasks on new, unseen data.Keywords: artificial intelligence, biomarker, gene expression datasets, hepatocellular carcinoma, machine learning, supervised learning algorithms, support vector machine
Procedia PDF Downloads 4294038 Information Management Approach in the Prediction of Acute Appendicitis
Authors: Ahmad Shahin, Walid Moudani, Ali Bekraki
Abstract:
This research aims at presenting a predictive data mining model to handle an accurate diagnosis of acute appendicitis with patients for the purpose of maximizing the health service quality, minimizing morbidity/mortality, and reducing cost. However, acute appendicitis is the most common disease which requires timely accurate diagnosis and needs surgical intervention. Although the treatment of acute appendicitis is simple and straightforward, its diagnosis is still difficult because no single sign, symptom, laboratory or image examination accurately confirms the diagnosis of acute appendicitis in all cases. This contributes in increasing morbidity and negative appendectomy. In this study, the authors propose to generate an accurate model in prediction of patients with acute appendicitis which is based, firstly, on the segmentation technique associated to ABC algorithm to segment the patients; secondly, on applying fuzzy logic to process the massive volume of heterogeneous and noisy data (age, sex, fever, white blood cell, neutrophilia, CRP, urine, ultrasound, CT, appendectomy, etc.) in order to express knowledge and analyze the relationships among data in a comprehensive manner; and thirdly, on applying dynamic programming technique to reduce the number of data attributes. The proposed model is evaluated based on a set of benchmark techniques and even on a set of benchmark classification problems of osteoporosis, diabetes and heart obtained from the UCI data and other data sources.Keywords: healthcare management, acute appendicitis, data mining, classification, decision tree
Procedia PDF Downloads 3514037 Virulence Phenotypes Among Multi-Drug Resistant Uropathogenic Bacteria
Authors: V. V. Lakshmi, Y. V. S. Annapurna
Abstract:
Urinary tract infection (UTI) is one of the most common infectious diseases seen in the community. Susceptible individuals experience multiple episodes, and progress to acute pyelonephritis or uro-sepsis or develop asymptomatic bacteriuria (ABU). Ability to cause extraintestinal infections depends on several virulence factors required for survival at extraintestinal sites. Presence of virulence phenotypes enhances the pathogenicity of these otherwise commensal organisms and thus augments its ability to cause extraintestinal infections, the most frequent in urinary tract infections(UTI). The present study focuses on detection of the virulence characters exhibited by the uropathogenic organism and most common factors exhibited in the local pathogens. A total of 700 isolates of E.coli and Klebsiella spp were included in the study. These were isolated from patients from local hospitals reported to be suffering with UTI over a period of three years. Isolation and identification was done based on Gram character and IMVIC reactions. Antibiotic sensitivity profile was carried out by disc diffusion method and multi drug resistant strains with MAR index of 0.7 were further selected.. Virulence features examined included their ability to produce exopolysaccharides, protease- gelatinase production, hemolysin production, haemagglutination and hydrophobicity test. Exopolysaccharide production was most predominant virulence feature among the isolates when checked by congo red method. The biofilms production examined by microtitre plates using ELISA reader confirmed that this is the major factor contributing to virulencity of the pathogens followed by hemolysin productionKeywords: Escherichia coli, Klebsiella sp, Uropathogens, Virulence features.
Procedia PDF Downloads 421