Search results for: drone images
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2491

Search results for: drone images

901 On the Implementation of The Pulse Coupled Neural Network (PCNN) in the Vision of Cognitive Systems

Authors: Hala Zaghloul, Taymoor Nazmy

Abstract:

One of the great challenges of the 21st century is to build a robot that can perceive and act within its environment and communicate with people, while also exhibiting the cognitive capabilities that lead to performance like that of people. The Pulse Coupled Neural Network, PCNN, is a relative new ANN model that derived from a neural mammal model with a great potential in the area of image processing as well as target recognition, feature extraction, speech recognition, combinatorial optimization, compressed encoding. PCNN has unique feature among other types of neural network, which make it a candid to be an important approach for perceiving in cognitive systems. This work show and emphasis on the potentials of PCNN to perform different tasks related to image processing. The main drawback or the obstacle that prevent the direct implementation of such technique, is the need to find away to control the PCNN parameters toward perform a specific task. This paper will evaluate the performance of PCNN standard model for processing images with different properties, and select the important parameters that give a significant result, also, the approaches towards find a way for the adaptation of the PCNN parameters to perform a specific task.

Keywords: cognitive system, image processing, segmentation, PCNN kernels

Procedia PDF Downloads 280
900 Correlation Mapping for Measuring Platelet Adhesion

Authors: Eunseop Yeom

Abstract:

Platelets can be activated by the surrounding blood flows where a blood vessel is narrowed as a result of atherosclerosis. Numerous studies have been conducted to identify the relation between platelets activation and thrombus formation. To measure platelet adhesion, this study proposes an image analysis technique. Blood samples are delivered in the microfluidic channel, and then platelets are activated by a stenotic micro-channel with 90% severity. By applying proposed correlation mapping, which visualizes decorrelation of the streaming blood flow, the area of adhered platelets (APlatelet) was estimated without labeling platelets. In order to evaluate the performance of correlation mapping on the detection of platelet adhesion, the effect of tile size was investigated by calculating 2D correlation coefficients with binary images obtained by manual labeling and the correlation mapping method with different sizes of the square tile ranging from 3 to 50 pixels. The maximum 2D correlation coefficient is observed with the optimum tile size of 5×5 pixels. As the area of the platelet adhesion increases, the platelets plug the channel and there is only a small amount of blood flows. This image analysis could provide new insights for better understanding of the interactions between platelet aggregation and blood flows in various physiological conditions.

Keywords: platelet activation, correlation coefficient, image analysis, shear rate

Procedia PDF Downloads 335
899 The Impact of Upward Social Media Comparisons on Body Image and the Role of Physical Appearance Perfectionism and Cognitive Coping

Authors: Lauren Currell, Gemma Hurst

Abstract:

Introduction: The present study experimentally investigated the impact of attractive Instagram images on female’s body image. It also examined whether physical appearance perfectionism and cognitive coping predicted body image following upward comparisons to idealised bodies on Instagram. Methods: One-hundred and fifty-eight females (mean age 24.35 years) were randomly assigned to an experimental (where they compared their bodies to those of Instagram models) or control condition (where they critiqued landscape painting). All participants completed measures on physical appearance perfectionism, cognitive coping, and pre- and post-measures of body image. Results: Comparing one’s body to idealised bodies on Instagram resulted in increased appearance and weight dissatisfaction and decreased confidence, compared to the control condition. Physical appearance perfectionism and cognitive coping both predicted body image outcomes for the experimental condition. Discussion: Clinical implications, such as the prevention and treatment of body dissatisfaction, are discussed. Strengths and limitations of the current study are also noted, and suggestions for future research are provided.

Keywords: perfectionism, cognitive coping, body image, social media

Procedia PDF Downloads 96
898 A Novel Breast Cancer Detection Algorithm Using Point Region Growing Segmentation and Pseudo-Zernike Moments

Authors: Aileen F. Wang

Abstract:

Mammography has been one of the most reliable methods for early detection and diagnosis of breast cancer. However, mammography misses about 17% and up to 30% of breast cancers due to the subtle and unstable appearances of breast cancer in their early stages. Recent computer-aided diagnosis (CADx) technology using Zernike moments has improved detection accuracy. However, it has several drawbacks: it uses manual segmentation, Zernike moments are not robust, and it still has a relatively high false negative rate (FNR)–17.6%. This project will focus on the development of a novel breast cancer detection algorithm to automatically segment the breast mass and further reduce FNR. The algorithm consists of automatic segmentation of a single breast mass using Point Region Growing Segmentation, reconstruction of the segmented breast mass using Pseudo-Zernike moments, and classification of the breast mass using the root mean square (RMS). A comparative study among the various algorithms on the segmentation and reconstruction of breast masses was performed on randomly selected mammographic images. The results demonstrated that the newly developed algorithm is the best in terms of accuracy and cost effectiveness. More importantly, the new classifier RMS has the lowest FNR–6%.

Keywords: computer aided diagnosis, mammography, point region growing segmentation, pseudo-zernike moments, root mean square

Procedia PDF Downloads 453
897 Heavy Metal Contamination in Soils: Detection and Assessment Using Machine Learning Algorithms Based on Hyperspectral Images

Authors: Reem El Chakik

Abstract:

The levels of heavy metals in agricultural lands in Lebanon have been witnessing a noticeable increase in the past few years, due to increased anthropogenic pollution sources. Heavy metals pose a serious threat to the environment for being non-biodegradable and persistent, accumulating thus to dangerous levels in the soil. Besides the traditional laboratory and chemical analysis methods, Hyperspectral Imaging (HSI) has proven its efficiency in the rapid detection of HMs contamination. In Lebanon, a continuous environmental monitoring, including the monitoring of levels of HMs in agricultural soils, is lacking. This is due in part to the high cost of analysis. Hence, this proposed research aims at defining the current national status of HMs contamination in agricultural soil, and to evaluate the effectiveness of using HSI in the detection of HM in contaminated agricultural fields. To achieve the two main objectives of this study, soil samples were collected from different areas throughout the country and were analyzed for HMs using Atomic Absorption Spectrophotometry (AAS). The results were compared to those obtained from the HSI technique that was applied using Hyspex SWIR-384 camera. The results showed that the Lebanese agricultural soils contain high contamination levels of Zn, and that the more clayey the soil is, the lower reflectance it has.

Keywords: agricultural soils in Lebanon, atomic absorption spectrophotometer, hyperspectral imaging., heavy metals contamination

Procedia PDF Downloads 112
896 Change Detection of Vegetative Areas Using Land Use Land Cover Derived from NDVI of Desert Encroached Areas

Authors: T. Garba, T. O. Quddus, Y. Y. Babanyara, M. A. Modibbo

Abstract:

Desertification is define as the changing of productive land into a desert as the result of ruination of land by man-induced soil erosion, which forces famers in the affected areas to move migrate or encourage into reserved areas in search of a fertile land for their farming activities. This study therefore used remote sensing imageries to determine the level of changes in the vegetative areas. To achieve that Normalized Difference of the Vegetative Index (NDVI), classified imageries and image slicing derived from landsat TM 1986, land sat ETM 1999 and Nigeria sat 1 2007 were used to determine changes in vegetations. From the Classified imageries it was discovered that there a more natural vegetation in classified images of 1986 than that of 1999 and 2007. This finding is also future in the three NDVI imageries, it was discovered that there is increased in high positive pixel value from 0.04 in 1986 to 0.22 in 1999 and to 0.32 in 2007. The figures in the three histogram also indicted that there is increased in vegetative areas from 29.15 Km2 in 1986, to 60.58 Km2 in 1999 and then to 109 Km2 in 2007. The study recommends among other things that there is need to restore natural vegetation through discouraging of farming activities in and around the natural vegetation in the study area.

Keywords: vegetative index, classified imageries, change detection, landsat, vegetation

Procedia PDF Downloads 360
895 A Monopole Intravascular Antenna with Three Parasitic Elements Optimized for Higher Tesla MRI Systems

Authors: Mohammad Mohammadzadeh, Alireza Ghasempour

Abstract:

In this paper, a new design of monopole antenna has been proposed that increases the contrast of intravascular magnetic resonance images through increasing the homogeneity of the intrinsic signal-to-noise ratio (ISNR) distribution around the antenna. The antenna is made of a coaxial cable with three parasitic elements. Lengths and positions of the elements are optimized by the improved genetic algorithm (IGA) for 1.5, 3, 4.7, and 7Tesla MRI systems based on a defined cost function. Simulations were also conducted to verify the performance of the designed antenna. Our simulation results show that each time IGA is executed different values for the parasitic elements are obtained so that the cost functions of those antennas are high. According to the obtained results, IGA can also find the best values for the parasitic elements (regarding cost function) in the next executions. Additionally, two dimensional and one-dimensional maps of ISNR were drawn for the proposed antenna and compared to the previously published monopole antenna with one parasitic element at the frequency of 64MHz inside a saline phantom. Results verified that in spite of ISNR decreasing, there is a considerable improvement in the homogeneity of ISNR distribution of the proposed antenna so that their multiplication increases.

Keywords: intravascular MR antenna, monopole antenna, parasitic elements, signal-to-noise ratio (SNR), genetic algorithm

Procedia PDF Downloads 299
894 Runoff Estimation Using NRCS-CN Method

Authors: E. K. Naseela, B. M. Dodamani, Chaithra Chandran

Abstract:

The GIS and remote sensing techniques facilitate accurate estimation of surface runoff from watershed. In the present study an attempt has been made to evaluate the applicability of Natural Resources Service Curve Number method using GIS and Remote sensing technique in the upper Krishna basin (69,425 Sq.km). Landsat 7 (with resolution 30 m) satellite data for the year 2012 has been used for the preparation of land use land cover (LU/LC) map. The hydrologic soil group is mapped using GIS platform. The weighted curve numbers (CN) for all the 5 subcatchments calculated on the basis of LU/LC type and hydrologic soil class in the area by considering antecedent moisture condition. Monthly rainfall data was available for 58 raingauge stations. Overlay technique is adopted for generating weighted curve number. Results of the study show that land use changes determined from satellite images are useful in studying the runoff response of the basin. The results showed that there is no significant difference between observed and estimated runoff depths. For each subcatchment, statistically positive correlations were detected between observed and estimated runoff depth (0.6Keywords: curve number, GIS, remote sensing, runoff

Procedia PDF Downloads 540
893 Graph Codes - 2D Projections of Multimedia Feature Graphs for Fast and Effective Retrieval

Authors: Stefan Wagenpfeil, Felix Engel, Paul McKevitt, Matthias Hemmje

Abstract:

Multimedia Indexing and Retrieval is generally designed and implemented by employing feature graphs. These graphs typically contain a significant number of nodes and edges to reflect the level of detail in feature detection. A higher level of detail increases the effectiveness of the results but also leads to more complex graph structures. However, graph-traversal-based algorithms for similarity are quite inefficient and computation intensive, especially for large data structures. To deliver fast and effective retrieval, an efficient similarity algorithm, particularly for large graphs, is mandatory. Hence, in this paper, we define a graph-projection into a 2D space (Graph Code) as well as the corresponding algorithms for indexing and retrieval. We show that calculations in this space can be performed more efficiently than graph-traversals due to a simpler processing model and a high level of parallelization. In consequence, we prove that the effectiveness of retrieval also increases substantially, as Graph Codes facilitate more levels of detail in feature fusion. Thus, Graph Codes provide a significant increase in efficiency and effectiveness (especially for Multimedia indexing and retrieval) and can be applied to images, videos, audio, and text information.

Keywords: indexing, retrieval, multimedia, graph algorithm, graph code

Procedia PDF Downloads 161
892 TiO2 Formation after Nanotubes Growth on Ti-15Mo Alloy Surface for Different Annealing Temperatures

Authors: A. L. R. Rangel, J. A. M. Chaves, A. P. R. Alves Claro

Abstract:

Surface modification of titanium and its alloys using TiO2 nanotube growth has been widely studied for biomedical field due to excellent interaction between implant and biological environment. The success of this treatment is directly related to anatase phase formation (TiO2 phase) which affects the cells growth. The aim of this study was to evaluate the phases formed in the nanotubes growth on the Ti-15Mo surface. Nanotubes were grown by electrochemical anodization of the alloy in ammonium fluoride based glycerol electrolyte for 24 hours at 20V. Then, the samples were annealed at 200°,400°, 450°, 500°, 600°, and 800° C for 1 hour. Contact angles measurements, scanning electron microscopy images and X rays diffraction analysis (XRD) were carried out for all samples. Raman Spectroscopy was used to evaluate TiO2 phases transformation in nanotubes samples as well. The results of XRD showed anatase formation for lower temperatures, while at 800 ° C the rutile phase was observed all over the surface. Raman spectra indicate that this phase transition occurs between 500 and 600 °C. The different phases formed have influenced the nanotubes morphologies, since higher annealing temperatures induced agglutination of the TiO2 layer, disrupting the tubular structure. On the other hand, the nanotubes drastically reduced the contact angle, regardless the annealing temperature.

Keywords: nanotubes, TiO2, titanium alloys, Ti-15Mo

Procedia PDF Downloads 384
891 Analysis of Particulate Matter Concentration, EC, OC Emission and Elemental Composition for Biodiesel-Fuelled Diesel Engine

Authors: A. M. Ashraful, H .H. Masjuki, M. A. Kalam

Abstract:

Comparative investigations were performed on the particles matter emitted from a DI diesel engine utilizing palm biodiesel. In this experiment, palm biodiesel PB10 (90% diesel and 10% palm biodiesel), PB20 (80% diesel, 20% palm biodiesel) and diesel fuel samples exhaust were investigated at different working condition (25% and 50% load at 1500 rpm constant speed). Observation of this experiment it clearly seen that at low load condition particle matter concentration of palm biodiesel exhaust were de-creased than that of diesel fuel. At no load and 25% load condition PB10 biodiesel blend exhibited 2.2 times lower PM concentration than that of diesel fuel. On the other hand, elemental carbon (EC) and organic emission for PB10 showed decreases trend as varies 4.2% to 6.6% and 32 to 39% respectively, while elemental carbon percentage increased by 0.85 to 10% respectively. Similarly, metal composition of PB10 biodiesel blend increased by 4.8 to 26.5% respectively. SEM images for B10 and B20 demonstrated granular structure particulates with greater grain sizes compared with diesel fuel. Finally, the experimental outcomes showed that the blend composition and degree of unsaturation of the methyl ester present in biodiesel influence on the particulate matter formation.

Keywords: particulate matter, elemental carbon, organic carbon, biodiesel

Procedia PDF Downloads 391
890 A Survey and Theory of the Effects of Various Hamlet Videos on Viewers’ Brains

Authors: Mark Pizzato

Abstract:

How do ideas, images, and emotions in stage-plays and videos affect us? Do they evoke a greater awareness (or cognitive reappraisal of emotions) through possible shifts between left-cortical, right-cortical, and subcortical networks? To address these questions, this presentation summarizes the research of various neuroscientists, especially Bernard Baars and others involved in Global Workspace Theory, Matthew Lieberman in social neuroscience, Iain McGilchrist on left and right cortical functions, and Jaak Panksepp on the subcortical circuits of primal emotions. Through such research, this presentation offers an ‘inner theatre’ model of the brain, regarding major hubs of neural networks and our animal ancestry. It also considers recent experiments, by Mario Beauregard, on the cognitive reappraisal of sad, erotic, and aversive film clips. Finally, it applies the inner-theatre model and related research to survey results of theatre students who read and then watched the ‘To be or not to be’ speech in 8 different video versions (from stage and screen productions) of William Shakespeare’s Hamlet. Findings show that students become aware of left-cortical, right-cortical, and subcortical brain functions—and shifts between them—through staging and movie-making choices in each of the different videos.

Keywords: cognitive reappraisal, Hamlet, neuroscience, Shakespeare, theatre

Procedia PDF Downloads 315
889 Kindergarten Children’s Reactions to the COVID-19 Pandemic: Creating a Sense of Coherence

Authors: Bilha Paryente, Roni Gez Langerman

Abstract:

Background and Objectives: The current study focused on how kindergarten children have experienced the COVID-19 pandemic. The main goals were understanding children’s emotions, coping strategies, and thoughts regarding the presence of the COVID-19 virus in their daily lives, using the salute genic approach to study their sense of coherence, and to promote relevant professional instruction. Design and Method: Semistructured in-depth interviews were held with 130 five- to six-year-old children, with an equal number of boys and girls. All of the children were recruited from kindergartens affiliated with the state's secular education system. Results: Data were structured into three themes: 1) the child’s pandemic perception as manageable through meaningful accompanying and missing figures; 2) the child’s comprehension of the virus as dangerous, age differentiating, and contagious. 3) the child’s emotional processing of the pandemic as arousing fear of death and, through images, as thorny and as a monster. Conclusions: Results demonstrate the young children’s sense of coherence, characterized as extrapersonal perception, interpersonal coping, and intrapersonal emotional processing, and the need for greater acknowledgement of child-parent educators' informed interventions that could give children a partial feeling of the adult’s awareness of their needs.

Keywords: kindergarten children, continuous stress, COVID-19, salutogenic approach

Procedia PDF Downloads 177
888 Investigation of Glacier Activity Using Optical and Radar Data in Zardkooh

Authors: Mehrnoosh Ghadimi, Golnoush Ghadimi

Abstract:

Precise monitoring of glacier velocity is critical in determining glacier-related hazards. Zardkooh Mountain was studied in terms of glacial activity rate in Zagros Mountainous region in Iran. In this study, we assessed the ability of optical and radar imagery to derive glacier-surface velocities in mountainous terrain. We processed Landsat 8 for optical data and Sentinel-1a for radar data. We used methods that are commonly used to measure glacier surface movements, such as cross correlation of optical and radar satellite images, SAR tracking techniques, and multiple aperture InSAR (MAI). We also assessed time series glacier surface displacement using our modified method, Enhanced Small Baseline Subset (ESBAS). The ESBAS has been implemented in StaMPS software, with several aspects of the processing chain modified, including filtering prior to phase unwrapping, topographic correction within three-dimensional phase unwrapping, reducing atmospheric noise, and removing the ramp caused by ionosphere turbulence and/or orbit errors. Our findings indicate an average surface velocity rate of 32 mm/yr in the Zardkooh mountainous areas.

Keywords: active rock glaciers, landsat 8, sentinel-1a, zagros mountainous region

Procedia PDF Downloads 77
887 An Analysis of the Temporal Aspects of Visual Attention Processing Using Rapid Series Visual Processing (RSVP) Data

Authors: Shreya Borthakur, Aastha Vartak

Abstract:

This Electroencephalogram (EEG) project on Rapid Visual Serial Processing (RSVP) paradigm explores the temporal dynamics of visual attention processing in response to rapidly presented visual stimuli. The study builds upon previous research that used real-world images in RSVP tasks to understand the emergence of object representations in the human brain. The objectives of the research include investigating the differences in accuracy and reaction times between 5 Hz and 20 Hz presentation rates, as well as examining the prominent brain waves, particularly alpha and beta waves, associated with the attention task. The pre-processing and data analysis involves filtering EEG data, creating epochs for target stimuli, and conducting statistical tests using MATLAB, EEGLAB, Chronux toolboxes, and R. The results support the hypotheses, revealing higher accuracy at a slower presentation rate, faster reaction times for less complex targets, and the involvement of alpha and beta waves in attention and cognitive processing. This research sheds light on how short-term memory and cognitive control affect visual processing and could have practical implications in fields like education.

Keywords: RSVP, attention, visual processing, attentional blink, EEG

Procedia PDF Downloads 69
886 "Black Book": Dutch Prototype or Jewish Outsider

Authors: Eyal Boers

Abstract:

This paper shall demonstrate how films can offer a valuable and innovative approach to the study of images, stereotypes, and national identity. "Black Book" ("Zwartboek", 2006), a World War Two film directed by Paul Verhoeven, tells the story of Rachel Stein, a young Jewish woman who becomes a member of a resistance group in the Netherlands. The main hypothesis in this paper maintains that Rachel's character possesses both features of the Dutch prototype (a white, secular, sexual, freedom-loving individualist who seems "Dutch" enough to be accepted into a Dutch resistance group and even infiltrate the local Nazi headquarters) and features which can be defined as specifically Jewish (a black-haired victim persecuted by the Nazis, transforming herself into a gentile, while remaining loyal to her fellow Jews and ultimately immigrating to Israel and becoming a Hebrew teacher in a Kibbutz). Finally, this paper claims that Rachel's "Dutchness" is symptomatic of Dutch nostalgia in the 21st century for the Jews as "others" who blend into dominant Dutch culture, while Rachel's "Jewish Otherness" reflects a transnational identity – one that is always shifting and traverses cultural and national boundaries. In this sense, a film about Dutch Jews in the Second World War reflects on issues of identity in the 21st Century.

Keywords: Dutch, film, stereotypes, identity

Procedia PDF Downloads 128
885 Deep Supervision Based-Unet to Detect Buildings Changes from VHR Aerial Imagery

Authors: Shimaa Holail, Tamer Saleh, Xiongwu Xiao

Abstract:

Building change detection (BCD) from satellite imagery is an essential topic in urbanization monitoring, agricultural land management, and updating geospatial databases. Recently, methods for detecting changes based on deep learning have made significant progress and impressive results. However, it has the problem of being insensitive to changes in buildings with complex spectral differences, and the features being extracted are not discriminatory enough, resulting in incomplete buildings and irregular boundaries. To overcome these problems, we propose a dual Siamese network based on the Unet model with the addition of a deep supervision strategy (DS) in this paper. This network consists of a backbone (encoder) based on ImageNet pre-training, a fusion block, and feature pyramid networks (FPN) to enhance the step-by-step information of the changing regions and obtain a more accurate BCD map. To train the proposed method, we created a new dataset (EGY-BCD) of high-resolution and multi-temporal aerial images captured over New Cairo in Egypt to detect building changes for this purpose. The experimental results showed that the proposed method is effective and performs well with the EGY-BCD dataset regarding the overall accuracy, F1-score, and mIoU, which were 91.6 %, 80.1 %, and 73.5 %, respectively.

Keywords: building change detection, deep supervision, semantic segmentation, EGY-BCD dataset

Procedia PDF Downloads 120
884 SAMRA: Dataset in Al-Soudani Arabic Maghrebi Script for Recognition of Arabic Ancient Words Handwritten

Authors: Sidi Ahmed Maouloud, Cheikh Ba

Abstract:

Much of West Africa’s cultural heritage is written in the Al-Soudani Arabic script, which was widely used in West Africa before the time of European colonization. This Al-Soudani Arabic script is an African version of the Maghrebi script, in particular, the Al-Mebssout script. However, the local African qualities were incorporated into the Al-Soudani script in a way that gave it a unique African diversity and character. Despite the existence of several Arabic datasets in Oriental script, allowing for the analysis, layout, and recognition of texts written in these calligraphies, many Arabic scripts and written traditions remain understudied. In this paper, we present a dataset of words from Al-Soudani calligraphy scripts. This dataset consists of 100 images selected from three different manuscripts written in Al-Soudani Arabic script by different copyists. The primary source for this database was the libraries of Boston University and Cambridge University. This dataset highlights the unique characteristics of the Al-Soudani Arabic script as well as the new challenges it presents in terms of automatic word recognition of Arabic manuscripts. An HTR system based on a hybrid ANN (CRNN-CTC) is also proposed to test this dataset. SAMRA is a dataset of annotated Arabic manuscript words in the Al-Soudani script that can help researchers automatically recognize and analyze manuscript words written in this script.

Keywords: dataset, CRNN-CTC, handwritten words recognition, Al-Soudani Arabic script, HTR, manuscripts

Procedia PDF Downloads 130
883 A Morphological Analysis of Swardspeak in the Philippines

Authors: Carlo Gadingan

Abstract:

Swardspeak, as a language, highlights the exclusive identity of the Filipino gay men and the oppression they are confronted in the society. This paper presents a morphological analysis of swardspeak in the Philippines. Specifically, it aims to find out the common morphological processes involved in the construction of codes that may unmask the nature of swardspeak as a language. 30 purposively selected expert users of swardspeak from Luzon, Visayas, and Mindanao were asked to codify 30 natural words through the Facebook Messenger application. The results of the structural analysis affirm that swardspeak follows no specific rules revealing complicated combinations of clipping/stylized clipping, borrowing, connotation through images, connotation through actions, connotation through sounds, affixation, repetition, substitution, and simple reversal. Moreover, it was also found out that most of these word formation processes occur in all word classes which indicate that swardspeak is very unpredictable. Although different codes are used for the same words, there are still codes that are really common to all homosexuals and these are Chaka (ugly), Crayola (cry), and Aida (referring to a person with AIDS). Hence, the prevailing word formation processes explored may be termed as observed time-specific patterns because the codes documented in this study may turn obsolete and may be replaced with novel ones in a matter of weeks to month, knowing the creativity of homosexuals and the multiplicity of societal resources which can be used to make the codes more opaque and more confusing for non-homosexuals.

Keywords: codes, homosexuals, morphological processes, swardspeak

Procedia PDF Downloads 179
882 Medical Image Augmentation Using Spatial Transformations for Convolutional Neural Network

Authors: Trupti Chavan, Ramachandra Guda, Kameshwar Rao

Abstract:

The lack of data is a pain problem in medical image analysis using a convolutional neural network (CNN). This work uses various spatial transformation techniques to address the medical image augmentation issue for knee detection and localization using an enhanced single shot detector (SSD) network. The spatial transforms like a negative, histogram equalization, power law, sharpening, averaging, gaussian blurring, etc. help to generate more samples, serve as pre-processing methods, and highlight the features of interest. The experimentation is done on the OpenKnee dataset which is a collection of knee images from the openly available online sources. The CNN called enhanced single shot detector (SSD) is utilized for the detection and localization of the knee joint from a given X-ray image. It is an enhanced version of the famous SSD network and is modified in such a way that it will reduce the number of prediction boxes at the output side. It consists of a classification network (VGGNET) and an auxiliary detection network. The performance is measured in mean average precision (mAP), and 99.96% mAP is achieved using the proposed enhanced SSD with spatial transformations. It is also seen that the localization boundary is comparatively more refined and closer to the ground truth in spatial augmentation and gives better detection and localization of knee joints.

Keywords: data augmentation, enhanced SSD, knee detection and localization, medical image analysis, openKnee, Spatial transformations

Procedia PDF Downloads 154
881 Offline Signature Verification in Punjabi Based On SURF Features and Critical Point Matching Using HMM

Authors: Rajpal Kaur, Pooja Choudhary

Abstract:

Biometrics, which refers to identifying an individual based on his or her physiological or behavioral characteristics, has the capabilities to the reliably distinguish between an authorized person and an imposter. The Signature recognition systems can categorized as offline (static) and online (dynamic). This paper presents Surf Feature based recognition of offline signatures system that is trained with low-resolution scanned signature images. The signature of a person is an important biometric attribute of a human being which can be used to authenticate human identity. However the signatures of human can be handled as an image and recognized using computer vision and HMM techniques. With modern computers, there is need to develop fast algorithms for signature recognition. There are multiple techniques are defined to signature recognition with a lot of scope of research. In this paper, (static signature) off-line signature recognition & verification using surf feature with HMM is proposed, where the signature is captured and presented to the user in an image format. Signatures are verified depended on parameters extracted from the signature using various image processing techniques. The Off-line Signature Verification and Recognition is implemented using Mat lab platform. This work has been analyzed or tested and found suitable for its purpose or result. The proposed method performs better than the other recently proposed methods.

Keywords: offline signature verification, offline signature recognition, signatures, SURF features, HMM

Procedia PDF Downloads 384
880 Violence Detection and Tracking on Moving Surveillance Video Using Machine Learning Approach

Authors: Abe Degale D., Cheng Jian

Abstract:

When creating automated video surveillance systems, violent action recognition is crucial. In recent years, hand-crafted feature detectors have been the primary method for achieving violence detection, such as the recognition of fighting activity. Researchers have also looked into learning-based representational models. On benchmark datasets created especially for the detection of violent sequences in sports and movies, these methods produced good accuracy results. The Hockey dataset's videos with surveillance camera motion present challenges for these algorithms for learning discriminating features. Image recognition and human activity detection challenges have shown success with deep representation-based methods. For the purpose of detecting violent images and identifying aggressive human behaviours, this research suggested a deep representation-based model using the transfer learning idea. The results show that the suggested approach outperforms state-of-the-art accuracy levels by learning the most discriminating features, attaining 99.34% and 99.98% accuracy levels on the Hockey and Movies datasets, respectively.

Keywords: violence detection, faster RCNN, transfer learning and, surveillance video

Procedia PDF Downloads 108
879 Computer Aided Analysis of Breast Based Diagnostic Problems from Mammograms Using Image Processing and Deep Learning Methods

Authors: Ali Berkan Ural

Abstract:

This paper presents the analysis, evaluation, and pre-diagnosis of early stage breast based diagnostic problems (breast cancer, nodulesorlumps) by Computer Aided Diagnosing (CAD) system from mammogram radiological images. According to the statistics, the time factor is crucial to discover the disease in the patient (especially in women) as possible as early and fast. In the study, a new algorithm is developed using advanced image processing and deep learning method to detect and classify the problem at earlystagewithmoreaccuracy. This system first works with image processing methods (Image acquisition, Noiseremoval, Region Growing Segmentation, Morphological Operations, Breast BorderExtraction, Advanced Segmentation, ObtainingRegion Of Interests (ROIs), etc.) and segments the area of interest of the breast and then analyzes these partly obtained area for cancer detection/lumps in order to diagnosis the disease. After segmentation, with using the Spectrogramimages, 5 different deep learning based methods (specified Convolutional Neural Network (CNN) basedAlexNet, ResNet50, VGG16, DenseNet, Xception) are applied to classify the breast based problems.

Keywords: computer aided diagnosis, breast cancer, region growing, segmentation, deep learning

Procedia PDF Downloads 95
878 Comparative Canadian Online News Coverage Analysis of Sex Trafficking Reported Cases in Ontario, and Nova Scotia

Authors: Alisha Fisher

Abstract:

Sex trafficking is a worldwide crisis that requires trauma-informed and survivor-centered media attention to accurate disseminate information. Much of the previous literature on sex trafficking tends to focus on the frequency of incidents, intervention, and support strategies for survivors, with few of them looking to how the media is conducting their reporting on sex trafficking cases to the public. Utilizing data of reports from the media of cases of sex trafficking in the two Canadian provinces with the highest cases of sex trafficking, Ontario and Nova Scotia, the authors sought to analyze the similarities and differences of how sex trafficking cases were being reported. A total of twenty articles were examined, with ten based within the province of Ontario and the remaining ten from the province of Nova Scotia. The authors coded in two processes, first, who the article was about, and second, the framing and content inclusion. The results suggest that there is high usage and reliance of voices and images of authority, with male people of color being shown as the perpetrators and white women being shown as the survivors. These findings can aid in the expansion of trauma-informed, survivor-centered media literacy of reports of sex trafficking to provide accurate insights and further developing robust methods to intersectional approaches to reporting cases of sex trafficking.

Keywords: sex trafficking, media coverage, Canada sex trafficking, content analysis

Procedia PDF Downloads 189
877 Linguistic Devices Reflecting Violence in Border–Provinces of Southern Thailand on the Front Page of Local and National Newspapers

Authors: Chanokporn Angsuviriya

Abstract:

The objective of the study is to analyse linguistic devices reflecting the violence in the south border provinces; namely Pattani, Yala, Narathiwat and Songkla on 1,344 front pages of three local newspapers; namely ChaoTai, Focus PhakTai and Samila Time and of two national newspapers, including ThaiRath and Matichon, between 2004 and 2005, and 2011 and 2012. The study shows that there are two important linguistic devices: 1) lexical choices consisting of the use of verbs describing violence, the use of quantitative words and the use of words naming someone who committed violent acts, and 2) metaphors consisting of “a violent problem is heat”, “a victim is a leaf”, and “a terrorist is a dog”. Comparing linguistic devices between two types of newspapers, national newspapers choose to use words more violently than local newspapers do. Moreover, they create more negative images of the south of Thailand by using stative verbs. In addition, in term of metaphors “a terrorist is a fox.” is only found in national newspapers. As regards naming terrorists “southern insurgents”, this noun phrase which is collectively called by national newspapers has strongly negative meaning. Moreover, “southern insurgents” have been perceived by the Thais in the whole country while “insurgents” that are not modified have been only used by local newspapers.

Keywords: linguistic devices, local newspapers, national newspapers, violence

Procedia PDF Downloads 241
876 Developing a Secure Iris Recognition System by Using Advance Convolutional Neural Network

Authors: Kamyar Fakhr, Roozbeh Salmani

Abstract:

Alphonse Bertillon developed the first biometric security system in the 1800s. Today, many governments and giant companies are considering or have procured biometrically enabled security schemes. Iris is a kaleidoscope of patterns and colors. Each individual holds a set of irises more unique than their thumbprint. Every single day, giant companies like Google and Apple are experimenting with reliable biometric systems. Now, after almost 200 years of improvements, face ID does not work with masks, it gives access to fake 3D images, and there is no global usage of biometric recognition systems as national identity (ID) card. The goal of this paper is to demonstrate the advantages of iris recognition overall biometric recognition systems. It make two extensions: first, we illustrate how a very large amount of internet fraud and cyber abuse is happening due to bugs in face recognition systems and in a very large dataset of 3.4M people; second, we discuss how establishing a secure global network of iris recognition devices connected to authoritative convolutional neural networks could be the safest solution to this dilemma. Another aim of this study is to provide a system that will prevent system infiltration caused by cyber-attacks and will block all wireframes to the data until the main user ceases the procedure.

Keywords: biometric system, convolutional neural network, cyber-attack, secure

Procedia PDF Downloads 219
875 Design and Experimental Studies of a Centrifugal SWIRL Atomizer

Authors: Hemabushan K., Manikandan

Abstract:

In a swirl atomizer, fluid undergoes a swirling motion as a result of centrifugal force created by opposed tangential inlets in the swirl chamber. The angular momentum of fluid continually increases as it reaches the exit orifice and forms a hollow sheet. Which disintegrates to form ligaments and droplets respectively as it flows downstream. This type of atomizers used in rocket injectors and oil burner furnaces. In this present investigation a swirl atomizer with two opposed tangential inlets has been designed. Water as working fluid, experiments had been conducted for the fluid injection pressures in regime of 0.033 bar to 0.519 bar. The fluid has been pressured by a 0.5hp pump and regulated by a pressure regulator valve. Injection pressure of fluid has been measured by a U-tube mercury manometer. The spray pattern and the droplets has been captured with a high resolution camera in black background with a high intensity flash highlighting the fluid. The unprocessed images were processed in ImageJ processing software for measuring the droplet diameters and its shape characteristics along the downstream. The parameters such as mean droplet diameter and distribution, wave pattern, rupture distance and spray angle were studied for this atomizer. The above results were compared with theoretical results and also analysed for deviation with design parameters.

Keywords: swirl atomizer, injector, spray, SWIRL

Procedia PDF Downloads 490
874 Integrated ERT and Magnetic Surveys in a Mineralization Zone in Erkowit, Red Sea State, Sudan

Authors: K. M. Kheiralla, M. A. Ali, M. Y. Abdelgalil, N. E. Mohamed, G. Boutsis

Abstract:

The present study focus on integrated geophysical surveys carried out in the mineralization zone in Erkowit region, Eastern Sudan to determine the extensions of the potential ore deposits on the topographically high hilly area and under the cover of alluvium along the nearby wadi and to locate other occurrences if any. The magnetic method (MAG) and the electrical resistivity tomography (ERT) were employed for the survey. Eleven traverses were aligned approximately at right angles to the general strike of the rock formations. The disseminated sulfides are located on the alteration shear zone which is composed of granitic and dioritic highly ferruginated rock occupying the southwestern and central parts of the area, this was confirmed using thin and polished sections mineralogical analysis. The magnetic data indicates low magnetic values for wadi sedimentary deposits in its southern part of the area, and high anomalies which are suspected as gossans due to magnetite formed during wall rock alteration consequent to mineralization. The significant ERT images define low resistivity zone as traced as sheared zones which may associated with the main loci of ore deposition. The study designates that correlation of magnetic and ERT anomalies with lithology are extremely useful in mineral exploration due to variations in some specific physical properties of rocks.

Keywords: ERT, magnetic, mineralization, Red Sea, Sudan

Procedia PDF Downloads 389
873 Evaluation of a Data Fusion Algorithm for Detecting and Locating a Radioactive Source through Monte Carlo N-Particle Code Simulation and Experimental Measurement

Authors: Hadi Ardiny, Amir Mohammad Beigzadeh

Abstract:

Through the utilization of a combination of various sensors and data fusion methods, the detection of potential nuclear threats can be significantly enhanced by extracting more information from different data. In this research, an experimental and modeling approach was employed to track a radioactive source by combining a surveillance camera and a radiation detector (NaI). To run this experiment, three mobile robots were utilized, with one of them equipped with a radioactive source. An algorithm was developed in identifying the contaminated robot through correlation between camera images and camera data. The computer vision method extracts the movements of all robots in the XY plane coordinate system, and the detector system records the gamma-ray count. The position of the robots and the corresponding count of the moving source were modeled using the MCNPX simulation code while considering the experimental geometry. The results demonstrated a high level of accuracy in finding and locating the target in both the simulation model and experimental measurement. The modeling techniques prove to be valuable in designing different scenarios and intelligent systems before initiating any experiments.

Keywords: nuclear threats, radiation detector, MCNPX simulation, modeling techniques, intelligent systems

Procedia PDF Downloads 123
872 Optimization of the Self-Recognition Direct Digital Radiology Technology by Applying the Density Detector Sensors

Authors: M. Dabirinezhad, M. Bayat Pour, A. Dabirinejad

Abstract:

In 2020, the technology was introduced to solve some of the deficiencies of direct digital radiology. SDDR is an invention that is capable of capturing dental images without human intervention, and it was invented by the authors of this paper. Adjusting the radiology wave dose is a part of the dentists, radiologists, and dental nurses’ tasks during the radiology photography process. In this paper, an improvement will be added to enable SDDR to set the suitable radiology wave dose according to the density and age of the patients automatically. The separate sensors will be included in the sensors’ package to use the ultrasonic wave to detect the density of the teeth and change the wave dose. It facilitates the process of dental photography in terms of time and enhances the accuracy of choosing the correct wave dose for each patient separately. Since the radiology waves are well known to trigger off other diseases such as cancer, choosing the most suitable wave dose can be helpful to decrease the side effect of that for human health. In other words, it decreases the exposure time for the patients. On the other hand, due to saving time, less energy will be consumed, and saving energy can be beneficial to decrease the environmental impact as well.

Keywords: dental direct digital imaging, environmental impacts, SDDR technology, wave dose

Procedia PDF Downloads 194