Search results for: behavioural integration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2950

Search results for: behavioural integration

1360 South Asia as an Emerging Region of the World in the 21st Century

Authors: Shazia Shinwari

Abstract:

In the 21st century, South Asia is becoming one of the rising sub-regions of the world. In the whole of Asia, South Asia is going to be the center part of opportunities, development, and challenges. The increasing economy and its geopolitical importance are changing the landscape of South Asia. Despite intensifying the opportunities and development, the region is also facing the challenges of security, poverty, and conflicts. It is one of the most populated sub-regions and has many internal conflicts because of which the region remains for a long time a least developed region in the world. But now South Asia is transforming into the developing process and trying to utilize its potentials and to remove the hurdles in the way of development. South Asia is one of the distinctive regions of the world and could play an important role at the global level if the potentials of the region are properly utilized. South Asia is one of the most important regions of the world and assumed more importance after the British withdrawal from the region. Now South Asia is playing an important role in world politics due to its strategic and geographical location. That is why the importance of this region in the international political systems cannot be ignored. Day by day, changes have been taking place in the structure of the global economy, and South Asia could take advantage of these changes to advance as an economic region. For this, South Asia will need to look at its history, and that changes, particularly in the India and Pakistan relations, are necessary for the development of the South Asian region. Despite having challenges in the region, South Asia is also rising as the land of opportunities and development if the potentials of the region are properly utilized and smoothen the way for regional integration.

Keywords: challenges, development, opportunities, South Asia

Procedia PDF Downloads 189
1359 Slavery Transcending Borders: An Analysis of Human Trafficking in Europe and the EU’s Impact on the Issue

Authors: Santiago Martínez Hernández

Abstract:

The establishment of the European Union signified the culmination of the supra-national power addressing economic, political, legal and humanitarian matters within and above a national territory. Human rights have taken a protagonist role as one of the pressing concerns that the EU addresses, and one of the most critical problems is that of human trafficking. This multi-billion dollar criminal business represents $31.6 per year made out of 2.5 million trafficked persons worldwide, making it one of the most crucial human rights problems in the world to address. The EU has developed strategies to tackle this issue through supra-national governance, however, how have they fared? What is the impact of its development on the issue? This paper will address the direct and indirect impact of the formation of the European Union as a supranational political and economic entity on the illicit industry of human trafficking in Europe. It attempts to analyse first, the situation of human trafficking in Europe, as an attempt to understand its importance in the region, addressing its root causes and the role of the states addressed. Second, the paper will examine the impact of the EU on human breaking down its policy-making at a supranational level, the role of the economic integration of the region, and the change of migration patterns since its inception.

Keywords: human trafficking, human rights, European union, criminal business

Procedia PDF Downloads 359
1358 Energy Management System and Interactive Functions of Smart Plug for Smart Home

Authors: Win Thandar Soe, Innocent Mpawenimana, Mathieu Di Fazio, Cécile Belleudy, Aung Ze Ya

Abstract:

Intelligent electronic equipment and automation network is the brain of high-tech energy management systems in critical role of smart homes dominance. Smart home is a technology integration for greater comfort, autonomy, reduced cost, and energy saving as well. These services can be provided to home owners for managing their home appliances locally or remotely and consequently allow them to automate intelligently and responsibly their consumption by individual or collective control systems. In this study, three smart plugs are described and one of them tested on typical household appliances. This article proposes to collect the data from the wireless technology and to extract some smart data for energy management system. This smart data is to quantify for three kinds of load: intermittent load, phantom load and continuous load. Phantom load is a waste power that is one of unnoticed power of each appliance while connected or disconnected to the main. Intermittent load and continuous load take in to consideration the power and using time of home appliances. By analysing the classification of loads, this smart data will be provided to reduce the communication of wireless sensor network for energy management system.

Keywords: energy management, load profile, smart plug, wireless sensor network

Procedia PDF Downloads 273
1357 Mixed Effects Models for Short-Term Load Forecasting for the Spanish Regions: Castilla-Leon, Castilla-La Mancha and Andalucia

Authors: C. Senabre, S. Valero, M. Lopez, E. Velasco, M. Sanchez

Abstract:

This paper focuses on an application of linear mixed models to short-term load forecasting. The challenge of this research is to improve a currently working model at the Spanish Transport System Operator, programmed by us, and based on linear autoregressive techniques and neural networks. The forecasting system currently forecasts each of the regions within the Spanish grid separately, even though the behavior of the load in each region is affected by the same factors in a similar way. A load forecasting system has been verified in this work by using the real data from a utility. In this research it has been used an integration of several regions into a linear mixed model as starting point to obtain the information from other regions. Firstly, the systems to learn general behaviors present in all regions, and secondly, it is identified individual deviation in each regions. The technique can be especially useful when modeling the effect of special days with scarce information from the past. The three most relevant regions of the system have been used to test the model, focusing on special day and improving the performance of both currently working models used as benchmark. A range of comparisons with different forecasting models has been conducted. The forecasting results demonstrate the superiority of the proposed methodology.

Keywords: short-term load forecasting, mixed effects models, neural networks, mixed effects models

Procedia PDF Downloads 189
1356 Catalytic Deoxygenation of Non-Edible Oil to Renewable Fuel by Using Calcium-Based Nanocatalyst

Authors: Hwei Voon Lee, N. Asikin-Mijana, Y. H. Taufiq-Yap, J. C. Juan, N. A. Rahman

Abstract:

Cracking–Deoxygenation process is one of the important reaction pathways for the production of bio-fuel with desirable n-C17 hydrocarbon chain via removal of oxygen compounds. Calcium-based catalyst has attracted much attention in deoxygenation process due to its relatively high capacity in removing oxygenated compounds in the form of CO₂ and CO under decarboxylation and decarbonylation reaction, respectively. In the present study, deoxygenation of triolein was investigated using Ca(OH)₂ nanocatalyst derived from low cost natural waste shells. The Ca(OH)₂ nanocatalyst was prepared via integration techniques between surfactant treatment (anionic and non-ionic) and wet sonochemical effect. Results showed that sonochemically assisted surfactant treatment has successfully enhanced the physicochemical properties of Ca(OH)₂ nanocatalyst in terms of nanoparticle sizes (∼50 nm), high surface area(∼130 m²g⁻¹), large porosity (∼18.6 nm) and strong basic strength. The presence of superior properties from surfactant treated Ca(OH)₂ nanocatalysts rendered high deoxygenation degree, which is capable of producing high alkane and alkene selectivity in chain length of n-C17(high value of C17/(n-C17+ n-C18)ratio = 0.88). Furthermore, both Ca(OH)₂–EG and Ca(OH)₂–CTAB nanocatalysts showed high reactivity with 47.37% and 44.50%, respectively in total liquid hydrocarbon content of triolein conversion with high H/C and low O/C ratio.

Keywords: clamshell, cracking, decarboxylation-decarbonylation, hydrocarbon

Procedia PDF Downloads 187
1355 The Barriers That ESOL Learners Face Accessing Further Education

Authors: Jamie David Hopkin

Abstract:

This study aims to contribute uniquely to help colleges and community learning and development institutes to help aid progression within ESOL learning. The study investigates the barriers that migrant and displaced learners face accessing further education in Scotland. The study also includes a set of recommendations both for colleges and CLD institutes to help ESOL learners in their journey to further education. The research found that integration into Scottish society is one of the biggest motivators for ESOL students to learn English. It also found that the place of gender and “gender roles” contribute to the barriers that learners face in terms of progression and learning. The study also reviews all literature related to ESOL learning in Scotland and found that there are only two main policies that support ESOL learning, and both are slightly outdated in terms of supporting progression. This study aims to help bridge the gap in knowledge around the progression from informal learning to formal education. The recommendations that are made in this study are aimed to help institutes and learners on their journey to a positive destination. The main beneficiaries of this research are current and future ESOL learners in Scotland, ESOL institutes, and TESOL professionals.

Keywords: community learning and development, English for speakers of other languages, further education, higher education TESOL, teaching English as a second language

Procedia PDF Downloads 136
1354 Neuropsychiatric Outcomes of Intensive Music Therapy in Stroke Rehabilitation A Premilitary Investigation

Authors: Honey Bryant, Elvina Chu

Abstract:

Stroke is the leading cause of disability in adults in Canada and directly related to depression, anxiety, and sleep disorders; with an estimated annual cost of $50 billion in health care. Strokes not only impact the individual but society as a whole. Current stroke rehabilitation does not include Music Therapy, although it has success in clinical research in the use of stroke rehabilitation. This study examines the use of neurologic music therapy (NMT) in conjunction with stroke rehabilitation to improve sleep quality, reduce stress levels, and promote neurogenesis. Existing research on NMT in stroke is limited, which means any conclusive information gathered during this study will be significant. My novel hypotheses are a.) stroke patients will become less depressed and less anxious with improved sleep following NMT. b.) NMT will reduce stress levels and promote neurogenesis in stroke patients admitted for rehabilitation. c.) Beneficial effects of NMT will be sustained at least short-term following treatment. Participants were recruited from the in-patient stroke rehabilitation program at Providence Care Hospital in Kingston, Ontario, Canada. All participants-maintained stroke rehabilitation treatment as normal. The study was spilt into two groups, the first being Passive Music Listening (PML) and the second Neurologic Music Therapy (NMT). Each group underwent 10 sessions of intensive music therapy lasting 45 minutes for 10 consecutive days, excluding weekends. Psychiatric Assessments, Epworth Sleepiness Scale (ESS), Hospital Anxiety & Depression Rating Scale (HADS), and Music Engagement Questionnaire (MusEQ), were completed, followed by a general feedback interview. Physiological markers of stress were measured through blood pressure measurements and heart rate variability. Serum collections reviewed neurogenesis via Brain-derived neurotrophic factor (BDNF) and stress markers of cortisol levels. As this study is still on-going, a formal analysis of data has not been fully completed, although trends are following our hypotheses. A decrease in sleepiness and anxiety is seen upon the first cohort of PML. Feedback interviews have indicated most participants subjectively felt more relaxed and thought PML was useful in their recovery. If the hypothesis is supported, larger external funding which will allow for greater investigation of the use of NMT in stroke rehabilitation. As we know, NMT is not covered under Ontario Health Insurance Plan (OHIP), so there is limited scientific data surrounding its uses as a clinical tool. This research will provide detailed findings of the treatment of neuropsychiatric aspects of stroke. Concurrently, a passive music listening study is being designed to further review the use of PML in rehabilitation as well.

Keywords: music therapy, psychotherapy, neurologic music therapy, passive music listening, neuropsychiatry, counselling, behavioural, stroke, stroke rehabilitation, rehabilitation, neuroscience

Procedia PDF Downloads 113
1353 Software Tool Design for Heavy Oil Upgrading by Hydrogen Donor Addition in a Hydrodynamic Cavitation Process

Authors: Munoz A. Tatiana, Solano R. Brandon, Montes C. Juan, Cierco G. Javier

Abstract:

The hydrodynamic cavitation is a process in which the energy that the fluids have in the phase changes is used. From this energy, local temperatures greater than 5000 °C are obtained where thermal cracking of the fluid molecules takes place. The process applied to heavy oil affects variables such as viscosity, density, and composition, which constitutes an important improvement in the quality of crude oil. In this study, the need to design a software through mathematical integration models of mixing, cavitation, kinetics, and reactor, allows modeling changes in density, viscosity, and composition of a heavy oil crude, when the fluid passes through a hydrodynamic cavitation reactor. In order to evaluate the viability of this technique in the industry, a heavy oil of 18° API gravity, was simulated using naphtha as a hydrogen donor at concentrations of 1, 2 and 5% vol, where the simulation results showed an API gravity increase to 0.77, 1.21 and 1.93° respectively and a reduction viscosity by 9.9, 12.9 and 15.8%. The obtained results allow to have a favorable panorama on this technological development, an appropriate visualization on the generation of innovative knowledge of this technique and the technical-economic opportunity that benefits the development of the hydrocarbon sector related to heavy crude oil that includes the largest world oil production.

Keywords: hydrodynamic cavitation, thermal cracking, hydrogen donor, heavy oil upgrading, simulator

Procedia PDF Downloads 150
1352 Low Light Image Enhancement with Multi-Stage Interconnected Autoencoders Integration in Pix to Pix GAN

Authors: Muhammad Atif, Cang Yan

Abstract:

The enhancement of low-light images is a significant area of study aimed at enhancing the quality of captured images in challenging lighting environments. Recently, methods based on convolutional neural networks (CNN) have gained prominence as they offer state-of-the-art performance. However, many approaches based on CNN rely on increasing the size and complexity of the neural network. In this study, we propose an alternative method for improving low-light images using an autoencoder-based multiscale knowledge transfer model. Our method leverages the power of three autoencoders, where the encoders of the first two autoencoders are directly connected to the decoder of the third autoencoder. Additionally, the decoder of the first two autoencoders is connected to the encoder of the third autoencoder. This architecture enables effective knowledge transfer, allowing the third autoencoder to learn and benefit from the enhanced knowledge extracted by the first two autoencoders. We further integrate the proposed model into the PIX to PIX GAN framework. By integrating our proposed model as the generator in the GAN framework, we aim to produce enhanced images that not only exhibit improved visual quality but also possess a more authentic and realistic appearance. These experimental results, both qualitative and quantitative, show that our method is better than the state-of-the-art methodologies.

Keywords: low light image enhancement, deep learning, convolutional neural network, image processing

Procedia PDF Downloads 81
1351 Analysis of Urban Population Using Twitter Distribution Data: Case Study of Makassar City, Indonesia

Authors: Yuyun Wabula, B. J. Dewancker

Abstract:

In the past decade, the social networking app has been growing very rapidly. Geolocation data is one of the important features of social media that can attach the user's location coordinate in the real world. This paper proposes the use of geolocation data from the Twitter social media application to gain knowledge about urban dynamics, especially on human mobility behavior. This paper aims to explore the relation between geolocation Twitter with the existence of people in the urban area. Firstly, the study will analyze the spread of people in the particular area, within the city using Twitter social media data. Secondly, we then match and categorize the existing place based on the same individuals visiting. Then, we combine the Twitter data from the tracking result and the questionnaire data to catch the Twitter user profile. To do that, we used the distribution frequency analysis to learn the visitors’ percentage. To validate the hypothesis, we compare it with the local population statistic data and land use mapping released by the city planning department of Makassar local government. The results show that there is the correlation between Twitter geolocation and questionnaire data. Thus, integration the Twitter data and survey data can reveal the profile of the social media users.

Keywords: geolocation, Twitter, distribution analysis, human mobility

Procedia PDF Downloads 314
1350 Supplemental VisCo-friction Damping for Dynamical Structural Systems

Authors: Sharad Singh, Ajay Kumar Sinha

Abstract:

Coupled dampers like viscoelastic-frictional dampers for supplemental damping are a newer technique. In this paper, innovative Visco-frictional damping models have been presented and investigated. This paper attempts to couple frictional and fluid viscous dampers into a single unit of supplemental dampers. Visco-frictional damping model is developed by series and parallel coupling of frictional and fluid viscous dampers using Maxwell and Kelvin-Voigat models. The time analysis has been performed using numerical simulation on an SDOF system with varying fundamental periods, subject to a set of 12 ground motions. The simulation was performed using the direct time integration method. MATLAB programming tool was used to carry out the numerical simulation. The response behavior has been analyzed for the varying time period and added damping. This paper compares the response reduction behavior of the two modes of coupling. This paper highlights the performance efficiency of the suggested damping models. It also presents a mathematical modeling approach to visco-frictional dampers and simultaneously suggests the suitable mode of coupling between the two sub-units.

Keywords: hysteretic damping, Kelvin model, Maxwell model, parallel coupling, series coupling, viscous damping

Procedia PDF Downloads 158
1349 Hybrid Structure Learning Approach for Assessing the Phosphate Laundries Impact

Authors: Emna Benmohamed, Hela Ltifi, Mounir Ben Ayed

Abstract:

Bayesian Network (BN) is one of the most efficient classification methods. It is widely used in several fields (i.e., medical diagnostics, risk analysis, bioinformatics research). The BN is defined as a probabilistic graphical model that represents a formalism for reasoning under uncertainty. This classification method has a high-performance rate in the extraction of new knowledge from data. The construction of this model consists of two phases for structure learning and parameter learning. For solving this problem, the K2 algorithm is one of the representative data-driven algorithms, which is based on score and search approach. In addition, the integration of the expert's knowledge in the structure learning process allows the obtainment of the highest accuracy. In this paper, we propose a hybrid approach combining the improvement of the K2 algorithm called K2 algorithm for Parents and Children search (K2PC) and the expert-driven method for learning the structure of BN. The evaluation of the experimental results, using the well-known benchmarks, proves that our K2PC algorithm has better performance in terms of correct structure detection. The real application of our model shows its efficiency in the analysis of the phosphate laundry effluents' impact on the watershed in the Gafsa area (southwestern Tunisia).

Keywords: Bayesian network, classification, expert knowledge, structure learning, surface water analysis

Procedia PDF Downloads 128
1348 Sustainable Design through up-Cycling Crafts in the Mainstream Fashion Industry of India

Authors: Avani Chhajlani

Abstract:

Fashion is considered to be the most destructive industry, second only to the oil rigging industry, which has a greater impact on the environment. While fashion today banks upon fast fashion to generate a higher turnover of designs and patterns in apparel and related accessories, crafts push us towards a more slow and thoughtful approach with culturally identifiably unique work and slow community-centered production. Despite this strong link between indigenous crafts and sustainability, it has not been extensively researched and explored upon. In the forthcoming years, the fashion industry will have to reinvent itself to move towards a more holistic and sustainable circular model to balance the harm already caused. And closed loops of the circular economy will help the integration of indigenous craft knowledge, which is regenerative. Though sustainability and crafts of a region go hand-in-hand, the craft still have to find its standing in the mainstream fashion world; craft practices have a strong local congruence and knowledge that has been passed down generation-to-generation through oration or written materials. This paper aims to explore ways a circular economy can be created by amalgamating fashion and craft while creating a sustainable business model and how this is slowly being created today through brands like – RaasLeela, Pero, and KaSha, to name a few.

Keywords: circular economy, fashion, India, indigenous crafts, slow fashion, sustainability, up-cycling

Procedia PDF Downloads 187
1347 Convergence and Stability in Federated Learning with Adaptive Differential Privacy Preservation

Authors: Rizwan Rizwan

Abstract:

This paper provides an overview of Federated Learning (FL) and its application in enhancing data security, privacy, and efficiency. FL utilizes three distinct architectures to ensure privacy is never compromised. It involves training individual edge devices and aggregating their models on a server without sharing raw data. This approach not only provides secure models without data sharing but also offers a highly efficient privacy--preserving solution with improved security and data access. Also we discusses various frameworks used in FL and its integration with machine learning, deep learning, and data mining. In order to address the challenges of multi--party collaborative modeling scenarios, a brief review FL scheme combined with an adaptive gradient descent strategy and differential privacy mechanism. The adaptive learning rate algorithm adjusts the gradient descent process to avoid issues such as model overfitting and fluctuations, thereby enhancing modeling efficiency and performance in multi-party computation scenarios. Additionally, to cater to ultra-large-scale distributed secure computing, the research introduces a differential privacy mechanism that defends against various background knowledge attacks.

Keywords: federated learning, differential privacy, gradient descent strategy, convergence, stability, threats

Procedia PDF Downloads 30
1346 The Use of Voice in Online Public Access Catalog as Faster Searching Device

Authors: Maisyatus Suadaa Irfana, Nove Eka Variant Anna, Dyah Puspitasari Sri Rahayu

Abstract:

Technological developments provide convenience to all the people. Nowadays, the communication of human with the computer is done via text. With the development of technology, human and computer communications have been conducted with a voice like communication between human beings. It provides an easy facility for many people, especially those who have special needs. Voice search technology is applied in the search of book collections in the OPAC (Online Public Access Catalog), so library visitors will find it faster and easier to find books that they need. Integration with Google is needed to convert the voice into text. To optimize the time and the results of searching, Server will download all the book data that is available in the server database. Then, the data will be converted into JSON format. In addition, the incorporation of some algorithms is conducted including Decomposition (parse) in the form of array of JSON format, the index making, analyzer to the result. It aims to make the process of searching much faster than the usual searching in OPAC because the data are directly taken to the database for every search warrant. Data Update Menu is provided with the purpose to enable users perform their own data updates and get the latest data information.

Keywords: OPAC, voice, searching, faster

Procedia PDF Downloads 344
1345 Nonstationary Increments and Casualty in the Aluminum Market

Authors: Andrew Clark

Abstract:

McCauley, Bassler, and Gunaratne show that integration I(d) processes as used in economics and finance do not necessarily produce stationary increments, which are required to determine causality in both the short term and the long term. This paper follows their lead and shows I(d) aluminum cash and futures log prices at daily and weekly intervals do not have stationary increments, which means prior causality studies using I(d) processes need to be re-examined. Wavelets based on undifferenced cash and futures log prices do have stationary increments and are used along with transfer entropy (versus cointegration) to measure causality. Wavelets exhibit causality at most daily time scales out to 1 year, and weekly time scales out to 1 year and more. To determine stationarity, localized stationary wavelets are used. LSWs have the benefit, versus other means of testing for stationarity, of using multiple hypothesis tests to determine stationarity. As informational flows exist between cash and futures at daily and weekly intervals, the aluminum market is efficient. Therefore, hedges used by producers and consumers of aluminum need not have a big concern in terms of the underestimation of hedge ratios. Questions about arbitrage given efficiency are addressed in the paper.

Keywords: transfer entropy, nonstationary increments, wavelets, localized stationary wavelets, localized stationary wavelets

Procedia PDF Downloads 202
1344 Evaluation of the Integration of a Direct Reduction Process into an Existing Steel Mill

Authors: Nils Mueller, Gregor Herz, Erik Reichelt, Matthias Jahn

Abstract:

In the context of climate change, the reduction of greenhouse gas emissions in all economic sectors is considered to be an important factor in order to meet the demands of a sustainable energy system. The steel industry as one of the large industrial CO₂ emitters is currently highly dependent on fossil resources. In order to reduce coke consumption and thereby CO₂ emissions while still being able to further utilize existing blast furnaces, the possibility of including a direct reduction process (DRP) into a fully integrated steel mill was investigated. Therefore, a blast furnace model, derived from literature data and implemented in Aspen Plus, was used to analyze the impact of DRI in the blast furnace process. Furthermore, a state-of-the-art DRP was modeled to investigate the possibility of substituting the reducing agent natural gas with hydrogen. A sensitivity analysis was carried out in order to find the boundary percentage of hydrogen as a reducing agent without penalty to the DRI quality. Lastly, the two modeled process steps were combined to form a route of producing pig iron. By varying boundary conditions of the DRP while recording the CO₂ emissions of the two process steps, the overall potential for the reduction of CO₂ emissions was estimated. Within the simulated range, a maximum reduction of CO₂ emissions of 23.5% relative to typical emissions of a blast furnace could be determined.

Keywords: blast furnace, CO₂ mitigation, DRI, hydrogen

Procedia PDF Downloads 284
1343 Fuzzy Total Factor Productivity by Credibility Theory

Authors: Shivi Agarwal, Trilok Mathur

Abstract:

This paper proposes the method to measure the total factor productivity (TFP) change by credibility theory for fuzzy input and output variables. Total factor productivity change has been widely studied with crisp input and output variables, however, in some cases, input and output data of decision-making units (DMUs) can be measured with uncertainty. These data can be represented as linguistic variable characterized by fuzzy numbers. Malmquist productivity index (MPI) is widely used to estimate the TFP change by calculating the total factor productivity of a DMU for different time periods using data envelopment analysis (DEA). The fuzzy DEA (FDEA) model is solved using the credibility theory. The results of FDEA is used to measure the TFP change for fuzzy input and output variables. Finally, numerical examples are presented to illustrate the proposed method to measure the TFP change input and output variables. The suggested methodology can be utilized for performance evaluation of DMUs and help to assess the level of integration. The methodology can also apply to rank the DMUs and can find out the DMUs that are lagging behind and make recommendations as to how they can improve their performance to bring them at par with other DMUs.

Keywords: chance-constrained programming, credibility theory, data envelopment analysis, fuzzy data, Malmquist productivity index

Procedia PDF Downloads 365
1342 Link People from Different Age Together: Attitude and Behavior Changes in Inter-Generational Interaction Program

Authors: Qian Sun, Dannie Dai, Vivian Lou

Abstract:

Background: Changes in population structure and modernization have left traditional channels of achieving intergenerational solidarity in crisis. Policies and projects purposefully structuring intergenerational interaction are regarded as effective ways to enhance positive attitude changes between generations. However, few inter-generational interaction program has put equal emphasis on promoting positive changes on both attitude and behavior across generational groups. Objective: This study evaluated the effectiveness of an intergenerational interaction program which aims to facilitate positive attitude and behavioral interaction between both young and old individuals in Hong Kong. Method: A quasi-experimental design was adopted with the sample of 150 older participants and 161 young participants. Among 73 older and 78 young participants belong to experiment groups while 77 older participants and 84 young participants belong to control groups. The Age Group Evaluation and Description scale (AGED) was adopted to measure attitude toward young people by older participants and the Chinese version of Kogan’s Attitude towards Older People (KAOP) as well as Polizzi’s refined version of the Ageing Semantic Differential Scale (ASD) were used to measure attitude toward older people by the younger generation. The interpersonal behaviour of participants was assessed using Beglgrave’s behavioural observation tool. Six primary verbal or non-verbal interpersonal behaviours including smiles, looks, touches, encourages, initiated conversations and assists were identified and observed. Findings Effectiveness of attitude and behavior changes on both younger and older participants was confirmed in results. Compared with participants from the control group, experimental participants of elderly showed significant positive changes of attitudes toward the younger generation as assessed by AGED (F=138.34, p < .001). Moreover, older participants showed significant positive changes on three out of six behaviours (visual attention: t=2.26, p<0.05; initiate conversation: t=3.42, p<0.01; and touch: t=2.28, p<0.05). For younger participants, participants from experimental group showed significant positive changes in attitude toward older people (with F-score of 47.22 for KAOP and 72.75 for ASD, p<.001). Young participants also showed significant positive changes in two out of six behaviours (visual attention: t=3.70, p<0.01; initiate conversation: t=2.04, p<0.001). There is no significant relationship between attitude change and behaviour change in both older (p=0.86) and younger (p=0.22) groups. Conclusion: This study has brought practical implications for social work. The effective model of this program could assist social workers and allied professionals to design relevant projects for nurture intergenerational solidarity. Furthermore, insignificant results between attitude and behavior changes revealed that attitude change was not a strong predictor for behavior change, hence, intergenerational programs against age-stereotype should put equal emphasis on both attitudinal and behavioral aspects.

Keywords: attitude and behaviour changes, intergenerational interaction, intergenerational solidarity, program design

Procedia PDF Downloads 243
1341 Loan Repayment Prediction Using Machine Learning: Model Development, Django Web Integration and Cloud Deployment

Authors: Seun Mayowa Sunday

Abstract:

Loan prediction is one of the most significant and recognised fields of research in the banking, insurance, and the financial security industries. Some prediction systems on the market include the construction of static software. However, due to the fact that static software only operates with strictly regulated rules, they cannot aid customers beyond these limitations. Application of many machine learning (ML) techniques are required for loan prediction. Four separate machine learning models, random forest (RF), decision tree (DT), k-nearest neighbour (KNN), and logistic regression, are used to create the loan prediction model. Using the anaconda navigator and the required machine learning (ML) libraries, models are created and evaluated using the appropriate measuring metrics. From the finding, the random forest performs with the highest accuracy of 80.17% which was later implemented into the Django framework. For real-time testing, the web application is deployed on the Alibabacloud which is among the top 4 biggest cloud computing provider. Hence, to the best of our knowledge, this research will serve as the first academic paper which combines the model development and the Django framework, with the deployment into the Alibaba cloud computing application.

Keywords: k-nearest neighbor, random forest, logistic regression, decision tree, django, cloud computing, alibaba cloud

Procedia PDF Downloads 136
1340 Advances in Fiber Optic Technology for High-Speed Data Transmission

Authors: Salim Yusif

Abstract:

Fiber optic technology has revolutionized telecommunications and data transmission, providing unmatched speed, bandwidth, and reliability. This paper presents the latest advancements in fiber optic technology, focusing on innovations in fiber materials, transmission techniques, and network architectures that enhance the performance of high-speed data transmission systems. Key advancements include the development of ultra-low-loss optical fibers, multi-core fibers, advanced modulation formats, and the integration of fiber optics into next-generation network architectures such as Software-Defined Networking (SDN) and Network Function Virtualization (NFV). Additionally, recent developments in fiber optic sensors are discussed, extending the utility of optical fibers beyond data transmission. Through comprehensive analysis and experimental validation, this research offers valuable insights into the future directions of fiber optic technology, highlighting its potential to drive innovation across various industries.

Keywords: fiber optics, high-speed data transmission, ultra-low-loss optical fibers, multi-core fibers, modulation formats, coherent detection, software-defined networking, network function virtualization, fiber optic sensors

Procedia PDF Downloads 61
1339 An Investigation of Interdisciplinary Techniques for Assessment of Water Quality in an Industrial Area

Authors: Priti Saha, Biswajit Paul

Abstract:

Rapid urbanization and industrialization have increased the demand of groundwater. However, the present era has evident an enormous level of groundwater pollution. Therefore, water quality assessment is paramount importance to evaluate its suitability for drinking, irrigation and industrial use. This study focus to evaluate the groundwater quality of an industrial city in eastern India through interdisciplinary techniques. The multi-purpose Water Quality Index (WQI) assess the suitability for drinking as well as irrigation of forty sampling locations, where 2.5% and 15% of sampling locations have excellent water quality (WQI:0-25) as well as 15% and 40% have good quality (WQI:25-50), which represents its suitability for drinking and irrigation respectively. However, the industrial water quality was assessed through Ryznar Stability Index (LSI), which affirmed that only 2.5% of sampling locations have neither corrosive nor scale forming properties (RSI: 6.2-6.8). These techniques with the integration of geographical information system (GIS) for spatial assessment indorsed its effectiveness to identify the regions where the water bodies are suitable to use for drinking, irrigation as well as industrial activities. Further, the sources of these contaminants were identified through factor analysis (FA), which revealed that both the geogenic as well as anthropogenic sources were responsible for groundwater pollution. This research demonstrates the effectiveness of statistical and GIS techniques for the analysis of environmental contaminants.

Keywords: groundwater, water quality analysis, water quality index, WQI, factor analysis, FA, spatial assessment

Procedia PDF Downloads 194
1338 Effects on Spiritual Intelligence on Young Adult Muslim Female: Integration of Planned Behaviour Theory in Predicting Consumer Attitude towards Halal Cosmetic

Authors: Azreen Jihan Che Mohd Hashim, Rosidah Musa

Abstract:

Although 'Spiritual Intelligence' (SI) is hard to measure, it is impossible without a noble value that may affect the attitude in purchasing behavior process, so this paper aims to report on a pilot study analysis results in order to evaluate the degree of SI towards consumers’ attitude in purchasing halal cosmetics and, in turn, to reaffirm intention to purchase by using Theory Planned Behaviour (TPB). It is a descriptive cross-sectional study among the Muslim women as the subjects, working and staying in Klang valley area in Malaysia. The purpose of the study is to develop a new measurement scale to unravel and decompose the underlying dimensions of SI from the perspective of the Muslim deemed imperative. About 200 respondents of users and non-users of halal cosmetics are selected. The structure equation modeling (SEM) was conducted to examine the relationships among god, society and self, which are the dimensions of SI. A finding indicates that, in influencing attitude, those who obligate high spiritual intelligence have a good relationship with god, society and self which may influence them to purchase halal cosmetic product. This study offers important findings and implications for future research as it presents a framework on the importance of SI.

Keywords: spiritual intelligence, god, society, self, young adult Muslim female

Procedia PDF Downloads 369
1337 Multi-Tooled Robotic Hand for Tele-Operation of Explosive Devices

Authors: Faik Derya Ince, Ugur Topgul, Alp Gunay, Can Bayoglu, Dante J. Dorantes-Gonzalez

Abstract:

Explosive attacks are arguably the most lethal threat that may occur in terrorist attacks. In order to counteract this issue, explosive ordnance disposal operators put their lives on the line to dispose of a possible improvised explosive device. Robots can make the disposal process more accurately and saving human lives. For this purpose, there is a demand for more accurate and dexterous manipulating robotic hands that can be teleoperated from a distance. The aim of this project is to design a robotic hand that contains two active and two passive DOF for each finger, as well as a minimum set of tools for mechanical cutting and screw driving within the same robotic hand. Both hand and toolset, are teleoperated from a distance from a haptic robotic glove in order to manipulate dangerous objects such as improvised explosive devices. SolidWorks® Computer-Aided Design, computerized dynamic simulation, and MATLAB® kinematic and static analysis were used for the robotic hand and toolset design. Novel, dexterous and robust solutions for the fingers were obtained, and six servo motors are used in total to remotely control the multi-tooled robotic hand. This project is still undergoing and presents currents results. Future research steps are also presented.

Keywords: Explosive Manipulation, Robotic Hand, Tele-Operation, Tool Integration

Procedia PDF Downloads 142
1336 Recycled Asphalt Pavement with Warm Mix Additive for Sustainable Road Construction

Authors: Meor Othman Hamzah, Lillian Gungat, Nur Izzi Md. Yusoff, Jan Valentin

Abstract:

The recent hike in raw materials costs and the quest for preservation of the environment has prompted asphalt industries to adopt greener road construction technology. This paper presents a study on such technology by means of asphalt recycling and use of warm mix asphalt (WMA) additive. It evaluates the effects of a WMA named RH-WMA on binder rheological properties and asphalt mixture performance. The recycled asphalt, obtained from local roads, was processed, fractionated, and incorporated with virgin aggregate and binder. For binder testing, the recycled asphalt was extracted and blended with virgin binder. The binder and mixtures specimen containing 30 % and 50 % recycled asphalt contents were mixed with 3 % RH-WMA. The rheological properties of the binder were evaluated based on fundamental, viscosity, and frequency sweep tests. Indirect tensile strength and resilient modulus tests were carried out to assess the mixture’s performances. The rheological properties and strength performance results showed that the addition of RH-WMA slightly reduced the binder and mixtures stiffness. The percentage of recycled asphalt increased the stiffness of binder and mixture, and thus improves the resistance to rutting. Therefore, the integration of recycled asphalt and RH-WMA can be an alternative material for road sustainable construction for countries in the tropics.

Keywords: recycled asphalt, warm mix additive, rheological, mixture performance

Procedia PDF Downloads 516
1335 Conformal Noble Metal High-Entropy Alloy Nanofilms by Atomic Layer Deposition for Enhanced Hydrogen Evolution Reaction/Oxygen Evolution Reaction Electrocatalysis Applications

Authors: Jing Lin, Zou Yiming, Goei Ronn, Li Yun, Amanda Ong Jiamin, Alfred Tok Iing Yoong

Abstract:

High-entropy alloy (HEA) coatings comprise multiple (five or more) principal elements that give superior mechanical, electrical, and thermal properties. However, the current synthesis methods of HEA coating still face huge challenges in facile and controllable preparation, as well as conformal integration, which seriously restricts their potential applications. Herein, we report a controllable synthesis of conformal quinary HEA coating consisting of noble metals (Rh, Ru, Ir, Pt, and Pd) by using the atomic layer deposition (ALD) with a post-annealing approach. This approach realizes low temperature (below 200 °C), precise control (nanoscale), and conformal synthesis (over complex substrates) of HEA coating. Furthermore, the resulting quinary HEA coating shows promising potential as a platform for catalysis, exhibiting substantially enhanced electrocatalytic hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) performances as compared to other noble metal-based structures such as single metal coating or multi-layered metal composites.

Keywords: high-entropy alloy, thin-film, catalysis, water splitting, atomic layer deposition

Procedia PDF Downloads 126
1334 Integrating Building Information Modeling into Facilities Management Operations

Authors: Mojtaba Valinejadshoubi, Azin Shakibabarough, Ashutosh Bagchi

Abstract:

Facilities such as residential buildings, office buildings, and hospitals house large density of occupants. Therefore, a low-cost facility management program (FMP) should be used to provide a satisfactory built environment for these occupants. Facility management (FM) has been recently used in building projects as a critical task. It has been effective in reducing operation and maintenance cost of these facilities. Issues of information integration and visualization capabilities are critical for reducing the complexity and cost of FM. Building information modeling (BIM) can be used as a strong visual modeling tool and database in FM. The main objective of this study is to examine the applicability of BIM in the FM process during a building’s operational phase. For this purpose, a seven-storey office building is modeled Autodesk Revit software. Authors integrated the cloud-based environment using a visual programming tool, Dynamo, for the purpose of having a real-time cloud-based communication between the facility managers and the participants involved in the project. An appropriate and effective integrated data source and visual model such as BIM can reduce a building’s operational and maintenance costs by managing the building life cycle properly.

Keywords: building information modeling, facility management, operational phase, building life cycle

Procedia PDF Downloads 155
1333 A Comparative Study between FEM and Meshless Methods

Authors: Jay N. Vyas, Sachin Daxini

Abstract:

Numerical simulation techniques are widely used now in product development and testing instead of expensive, time-consuming and sometimes dangerous laboratory experiments. Numerous numerical methods are available for performing simulation of physical problems of different engineering fields. Grid based methods, like Finite Element Method, are extensively used in performing various kinds of static, dynamic, structural and non-structural analysis during product development phase. Drawbacks of grid based methods in terms of discontinuous secondary field variable, dealing fracture mechanics and large deformation problems led to development of a relatively a new class of numerical simulation techniques in last few years, which are popular as Meshless methods or Meshfree Methods. Meshless Methods are expected to be more adaptive and flexible than Finite Element Method because domain descretization in Meshless Method requires only nodes. Present paper introduces Meshless Methods and differentiates it with Finite Element Method in terms of following aspects: Shape functions used, role of weight function, techniques to impose essential boundary conditions, integration techniques for discrete system equations, convergence rate, accuracy of solution and computational effort. Capabilities, benefits and limitations of Meshless Methods are discussed and concluded at the end of paper.

Keywords: numerical simulation, Grid-based methods, Finite Element Method, Meshless Methods

Procedia PDF Downloads 389
1332 Transformative Digital Trends in Supply Chain Management: The Role of Artificial Intelligence

Authors: Srinivas Vangari

Abstract:

With the technological advancements around the globe, artificial intelligence (AI) has boosted supply chain management (SCM) by improving efficiency, sensitivity, and promptness. Artificial intelligence-based SCM provides comprehensive perceptions of consumer behavior in dynamic market situations and trends, foreseeing the accurate demand. It reduces overproduction and stockouts while optimizing production planning and streamlining operations. Consequently, the AI-driven SCM produces a customer-centric supply with resilient and robust operations. Intending to delve into the transformative significance of AI in SCM, this study focuses on improving efficiency in SCM with the integration of AI, understanding the production demand, accurate forecasting, and particular production planning. The study employs a mixed-method approach and expert survey insights to explore the challenges and benefits of AI applications in SCM. Further, a case analysis is incorporated to identify the best practices and potential challenges with the critical success features in AI-driven SCM. Key findings of the study indicate the significant advantages of the AI-integrated SCM, including optimized inventory management, improved transportation and logistics management, cost optimization, and advanced decision-making, positioning AI as a pivotal force in the future of supply chain management.

Keywords: artificial intelligence, supply chain management, accurate forecast, accurate planning of production, understanding demand

Procedia PDF Downloads 22
1331 Agricultural Biotechnology Crop Improvement

Authors: Mohsen Rezaei Aghdam

Abstract:

Recombinant DNA technology has meaningfully augmented the conventional crop improvement and has a great possibility to contribution plant breeders to encounter the augmented food request foretold for the 21st century. Predictable changes in weather and its erraticism, chiefly extreme fevers and vicissitudes in rainfall are expected to brand crop upgrading even more vital for food manufacture. Tissue attitude has been downtrodden to create genetic erraticism from which harvest plants can be better, to improve the state of health of the recognized physical and to upsurge the number of wanted germplasms obtainable to the plant breeder. This appraisal delivers an impression of the chances obtainable by the integration of vegetable biotechnology into plant development efforts and increases some of the social subjects that need to be considered in their application. Public-private companies offer chances to catalyze new approaches and investment while accelerating integrated research and development and commercial supply chain-based solutions. Novel varieties derivative by encouraged mutatgenesis are used commonly: rice in Thailand. These paper combinations obtainable data about the influence of change breeding-derived crop changes around the world, traveler magnetism the possibility of mutation upbringing as a flexible and feasible approach appropriate to any crop if that suitable objectives and selection approaches are used.

Keywords: crop, improve, genetic, agricultural

Procedia PDF Downloads 167