Search results for: affective-analytical decision framework
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8532

Search results for: affective-analytical decision framework

6942 Entrepreneurial Determinants Contributing to the Long Term Growth of Young Hi-Technology Start-Ups

Authors: A. Binnui, O. Kalinowska-Beszczynska, G. Shaw

Abstract:

It is postulated that innovative deployment of entrepreneurial activities leads to firm's growth. This paper draws upon the key predictions of the core theories on entrepreneurship and innovation to formulate a conceptual framework which can be used to depict the casual chain of events from which entrepreneurs can manage more innovatively and ultimately deliver higher growth which benefits of the regional and national economies. It examines the key firm-based factors extracted from the theories, namely the characteristics of entrepreneurial hi-tech firms, characteristics of innovating firms, and firm growth dynamics that lead to enhanced economic growth. The framework postulates that the key determinants extracted such as entrepreneurial demographics, firm characteristic, skills and competencies, research and development, product/service characteristics, market development, financial of the firm and internationalization might lead to the survival and long term development of high-technology startups.

Keywords: innovative entrepreneurial activities, entrepreneuship, determinants, growth, hi-technology start-upws

Procedia PDF Downloads 140
6941 Trends of Municipal Council Members in Practicing His Role on Municipality's Main Municipal Activities in the Kingdom of Saudi Arabia

Authors: Ameer Alalwan

Abstract:

Summary: The aim of this research is to identify trends of municipal council member in practicing his administrative control, decision-making, and counsultive role on municipalities' main municipal activities in the kingdom of Saudi Arabia. This research is conducted after the implementation of the new municipal system resolution no. (M\61) in 1435 in the work of municipal councils for the third session. To achieve the goal of this research, a questionnaire has been designed to obtain the opinion of municipal councils on this matter. This questionnaire has been tested for reliability and validity. The results of this research show that in general performance of municipal council is moderate after the implementation of the new municipal system resolution no. (M\61) in 1435 in the work of municipal councils for the third session. Also, extend that municipal council member practice his roles on the main municipality activities is moderate and weak. In addition, results show that municipal council member practice big role in decision-making, and moderate role in administrative control, and weaker role in giving opinion on municipality main issues. Furthermore, the results show that there is a significant difference between municipal council member's responses by the change of their Personal characteristics. Educated and appointed municipal council members practicing their role more than others do. In addition, municipal council presidents, and vice presidents, and in regional and sub-regional municipalities practice their role more than others do. Finally, this research in general recommened that muincialty council member must be empowered, so that he can practice his role on muicipality main activities. In addition, research suggest, granting municipal council member the authority, resources needed, training and appointment of qualified members, so that they will be able to practice their roles. Furthermore, this research suggest for the time being maintain certain percent of municipal council's appointed until this experience mature in the kingdom.

Keywords: municipal council, municipal council member, municipality, decision-making role

Procedia PDF Downloads 126
6940 A Multidimensional Indicator-Based Framework to Assess the Sustainability of Productive Green Roofs: A Case Study in Madrid

Authors: Francesca Maria Melucci, Marco Panettieri, Rocco Roma

Abstract:

Cities are at the forefront of achieving the sustainable development goals set out in the Sustainable Development Goals of Agenda 2030. For these reasons, increasing attention has been given to the creation of resilient, sustainable, inclusive and green cities and finding solutions to these problems is one of the greatest challenges faced by researchers today. In particular urban green infrastructures, including green roofs, play a key role in tackling environmental, social and economic problems. The starting point was an extensive literature review on 1. research developments on the benefits (environmental, economic and social) and implications of green roofs; 2. sustainability assessment and applied methodologies; 3. specific indicators to measure impacts on urban sustainability. Through this review, the appropriate qualitative and quantitative characteristics that are part of the complex 'green roof' system were identified, as studies that holistically capture its multifunctional nature are still lacking. So, this paper aims to find a method to improve community participation in green roof initiatives and support local governance processes in developing efficient proposals to achieve better sustainability and resilience of cities. To this aim, the multidimensional indicator-based framework, presented by Tapia in 2021, has been tested for the first time in the case of a green roof in the city of Madrid. The framework's set of indicators was implemented with other indicators such as those of waste management and circularity (OECD Inventory of Circular Economy indicators) and sustainability performance. The specific indicators to be used in the case study were decided after a consultation phase with relevant stakeholders. Data on the community's willingness to participate in green roof implementation initiatives were collected through interviews and online surveys with a heterogeneous sample of citizens. The results of the application of the framework suggest how the different aspects of sustainability influence the choice of a green roof and provide input on the main mechanisms involved in citizens' willingness to participate in such initiatives.

Keywords: urban agriculture, green roof, urban sustainability, indicators, multi-criteria analysis

Procedia PDF Downloads 72
6939 The Effects of Source and Timing on the Acceptance of New Product Recommendation: A Lab Experiment

Authors: Yani Shi, Jiaqi Yan

Abstract:

A new product is important for companies to extend consumers and manifest competitiveness. New product often involves new features that consumers might not be familiar with while it may also have a competitive advantage to attract consumers compared to established products. However, although most online retailers employ recommendation agents (RA) to influence consumers’ product choice decision, recommended new products are not accepted and chosen as expected. We argue that it might also be caused by providing a new product recommendation in the wrong way at the wrong time. This study seeks to discuss how new product evaluations sourced from third parties could be employed in RAs as evidence of the superiority for the new product and how the new product recommendation could be provided to a consumer at the right time so that it can be accepted and finally chosen during the consumer’s decision-making process. A 2*2 controlled laboratory experiment was conducted to understand the selection of new product recommendation sources and recommendation timing. Human subjects were randomly assigned to one of the four treatments to minimize the effects of individual differences on the results. Participants were told to make purchase choices from our product categories. We find that a new product recommended right after a similar existing product and with the source of the expert review will be more likely to be accepted. Based on this study, both theoretical and practical contributions are provided regarding new product recommendation.

Keywords: new product recommendation, recommendation timing, recommendation source, recommendation agents

Procedia PDF Downloads 154
6938 A Literature Review and a Proposed Conceptual Framework for Learning Activities in Business Process Management

Authors: Carin Lindskog

Abstract:

Introduction: Long-term success requires an organizational balance between continuity (exploitation) and change (exploration). The problem of balancing exploitation and exploration is a common issue in studies of organizational learning. In order to better face the tough competition in the face of changes, organizations need to exploit their current business and explore new business fields by developing new capabilities. The purpose of this work in progress is to develop a conceptual framework to shed light on the relevance of 'learning activities', i.e., exploitation and exploration, on different levels. The research questions that will be addressed are as follows: What sort of learning activities are found in the Business Process Management (BPM) field? How can these activities be linked to the individual level, group, level, and organizational level? In the work, a literature review will first be conducted. This review will explore the status of learning activities in the BPM field. An outcome from the literature review will be a conceptual framework of learning activities based on the included publications. The learning activities will be categorized to focus on the categories exploitation, exploration or both and into the levels of individual, group, and organization. The proposed conceptual framework will be a valuable tool for analyzing the research field as well as identification of future research directions. Related Work: BPM has increased in popularity as a way of working to strengthen the quality of the work and meet the demands of efficiency. Due to the increase in BPM popularity, more and more organizations reporting on BPM failure. One reason for this is the lack of knowledge about the extended scope of BPM to other business contexts that include, for example, more creative business fields. Yet another reason for the failures are the fact of the employees’ are resistant to changes. The learning process in an organization is an ongoing cycle of reflection and action and is a process that can be initiated, developed and practiced. Furthermore, organizational learning is multilevel; therefore the theory of organizational learning needs to consider the individual, the group, and the organization level. Learning happens over time and across levels, but it also creates a tension between incorporating new learning (feed-forward) and exploiting or using what has already been learned (feedback). Through feed-forward processes, new ideas and actions move from the individual to the group to the organization level. At the same time, what has already been learned feeds back from the organization to a group to an individual and has an impact on how people act and think.

Keywords: business process management, exploitation, exploration, learning activities

Procedia PDF Downloads 124
6937 The Image of Future Spouse in Indonesian Folktale: Man's Acceptance of Woman and vice Versa

Authors: Titik Wahyuningsih

Abstract:

The folktale to discuss is Ande-Ande Lumut, a story that is believed to be a history of two kingdoms in East Java, Indonesia. The title refers to the main male character in the story. This research is a library research which aims to know the patriarchal values in Indonesia. The data for the research is the song in the story that is actually the conversation between Ande-Ande Lumut and a mom who adopts him. It is told in the lines that many beautiful girls come to propose Ande-Ande Lumut but he does not want to accept them and keeps on staying in his upstairs room. Finally, he says yes for Klething Kuning to whom his mom describes as a girl with ugly face. Ande-Ande Lumut's decision is taken as Klething Kuning is the only girl who doesn't let Yuyu Kangkang help her. Yuyu Kangkang is described as a very big crab that helps the girls to cross the river but ask them to kiss him. Through the lense of feminist approach, Ande-Ande Lumut shows the men’s preference and dominance to make final decision over women. Even though the girls are actively propose their future husband, but they do it without giving any requirements. Meanwhile, the future husband chooses a girl with a criterion that no male has ever touched her, although the male is a crab.

Keywords: future spouse, Indonesian folktale, acceptance, patriarchal

Procedia PDF Downloads 295
6936 The Potential Impact of Big Data Analytics on Pharmaceutical Supply Chain Management

Authors: Maryam Ziaee, Himanshu Shee, Amrik Sohal

Abstract:

Big Data Analytics (BDA) in supply chain management has recently drawn the attention of academics and practitioners. Big data refers to a massive amount of data from different sources, in different formats, generated at high speed through transactions in business environments and supply chain networks. Traditional statistical tools and techniques find it difficult to analyse this massive data. BDA can assist organisations to capture, store, and analyse data specifically in the field of supply chain. Currently, there is a paucity of research on BDA in the pharmaceutical supply chain context. In this research, the Australian pharmaceutical supply chain was selected as the case study. This industry is highly significant since the right medicine must reach the right patients, at the right time, in right quantity, in good condition, and at the right price to save lives. However, drug shortages remain a substantial problem for hospitals across Australia with implications on patient care, staff resourcing, and expenditure. Furthermore, a massive volume and variety of data is generated at fast speed from multiple sources in pharmaceutical supply chain, which needs to be captured and analysed to benefit operational decisions at every stage of supply chain processes. As the pharmaceutical industry lags behind other industries in using BDA, it raises the question of whether the use of BDA can improve transparency among pharmaceutical supply chain by enabling the partners to make informed-decisions across their operational activities. This presentation explores the impacts of BDA on supply chain management. An exploratory qualitative approach was adopted to analyse data collected through interviews. This study also explores the BDA potential in the whole pharmaceutical supply chain rather than focusing on a single entity. Twenty semi-structured interviews were undertaken with top managers in fifteen organisations (five pharmaceutical manufacturers, five wholesalers/distributors, and five public hospital pharmacies) to investigate their views on the use of BDA. The findings revealed that BDA can enable pharmaceutical entities to have improved visibility over the whole supply chain and also the market; it enables entities, especially manufacturers, to monitor consumption and the demand rate in real-time and make accurate demand forecasts which reduce drug shortages. Timely and precise decision-making can allow the entities to source and manage their stocks more effectively. This can likely address the drug demand at hospitals and respond to unanticipated issues such as drug shortages. Earlier studies explore BDA in the context of clinical healthcare; however, this presentation investigates the benefits of BDA in the Australian pharmaceutical supply chain. Furthermore, this research enhances managers’ insight into the potentials of BDA at every stage of supply chain processes and helps to improve decision-making in their supply chain operations. The findings will turn the rhetoric of data-driven decision into a reality where the managers may opt for analytics for improved decision-making in the supply chain processes.

Keywords: big data analytics, data-driven decision, pharmaceutical industry, supply chain management

Procedia PDF Downloads 106
6935 The Effect of Framework Structure on N2O Formation over Cu-Based Zeolites during NH3-SCR Reactions

Authors: Ghodsieh Isapour Toutizad, Aiyong Wang, Joonsoo Han, Derek Creaser, Louise Olsson, Magnus Skoglundh, Hanna HaRelind

Abstract:

Nitrous oxide (N2O), which is generally formed as a byproduct of industrial chemical processes and fossil fuel combustion, has attracted considerable attention due to its destructive role in global warming and ozone layer depletion. From various developed technologies used for lean NOx reduction, the selective catalytic reduction (SCR) of NOx with ammonia is presently the most applied method. Therefore, the development of catalysts for efficient lean NOx reduction without forming N2O in the process, or only forming it to a very small extent from the exhaust gases is of crucial significance. One type of catalysts that nowadays are used for this aim are zeolite-based catalysts. It is owing to their remarkable catalytic performance under practical reaction conditions such as high thermal stability and high N2 selectivity. Among all zeolites, copper ion-exchanged zeolites, with CHA, MFI, and BEA framework structure (like SSZ-13, ZSM-5 and Beta, respectively), represent higher hydrothermal stability, high activity and N2 selectivity. This work aims at investigating the effect of the zeolite framework structure on the formation of N2O during NH3-SCR reaction conditions over three Cu-based zeolites ranging from small-pore to large-pore framework structure. In the zeolite framework, Cu exists in two cationic forms, that can catalyze the SCR reaction by activating NO to form NO+ and/or surface nitrate species. The nitrate species can thereafter react with NH3 to form another intermediate, ammonium nitrate, which seems to be one source for N2O formation at low temperatures. The results from in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) indicate that during the NO oxidation step, mainly NO+ and nitrate species are formed on the surface of the catalysts. The intensity of the absorption peak attributed to NO+ species is higher for the Cu-CHA sample compared to the other two samples, indicating a higher stability of this species in small cages. Furthermore, upon the addition of NH3, through the standard SCR reaction conditions, absorption peaks assigned to N-H stretching and bending vibrations are building up. At the same time, negative peaks are evolving in the O-H stretching region, indicating blocking/replacement of surface OH-groups by NH3 and NH4+. By removing NH3 and adding NO2 to the inlet gas composition, the peaks in the N-H stretching and bending vibration regions show a decreasing trend in intensity, with the decrease being more pronounced for increasing pore size. It can probably be owing to the higher accumulation of ammonia species in the small-pore size zeolite compared to the other two samples. Furthermore, it is worth noting that the ammonia surface species are strongly bonded to the CHA zeolite structure, which makes it more difficult to react with NO2. To conclude, the framework structure of the zeolite seems to play an important role in the formation and reactivity of surface species relevant for the SCR process. Here we intend to discuss the connection between the zeolite structure, the surface species, and the formation of N2O during ammonia-SCR.

Keywords: fast SCR, nitrous oxide, NOx, standard SCR, zeolites

Procedia PDF Downloads 236
6934 Modeling Child Development Factors for the Early Introduction of ICTs in Schools

Authors: K. E. Oyetade, S. D. Eyono Obono

Abstract:

One of the fundamental characteristics of Information and Communication Technology (ICT) has been the ever-changing nature of continuous release and models of ICTs with its impact on the academic, social, and psychological benefits of its introduction in schools. However, there seems to be a growing concern about its negative impact on students when introduced early in schools for teaching and learning. This study aims to design a model of child development factors affecting the early introduction of ICTs in schools in an attempt to improve the understanding of child development and introduction of ICTs in schools. The proposed model is based on a sound theoretical framework. It was designed following a literature review of child development theories and child development factors. The child development theoretical framework that fitted to the best of all child development factors was then chosen as the basis for the proposed model. This study hence found that the Jean Piaget cognitive developmental theory is the most adequate theoretical frameworks for modeling child development factors for ICT introduction in schools.

Keywords: child development factors, child development theories, ICTs, theory

Procedia PDF Downloads 413
6933 Analogical Reasoning on Preschoolers’ Linguistic Performance

Authors: Yenie Norambuena

Abstract:

Analogical reasoning is a cognitive process that consists of structured comparisons of mental representations and scheme construction. Because of its heuristic function, it is ubiquitous in cognition and could play an important role in language development. The use of analogies is expressed early in children and this behavior is also reflected in language, suggesting a possible way to understand the complex links between thought and language. The current research examines factors of verbal and non-verbal reasoning that should be taken into consideration in the study of language development for their relations and predictive value. The study was conducted with 48 Chilean preschoolers (Spanish speakers) from 4 to 6-year-old. We assessed children’s verbal analogical reasoning, non-verbal analogical reasoning and linguistics skills (Listening Comprehension, Phonemic awareness, Alphabetic principle, Syllabification, Lexical repetition and Lexical decision). The results evidenced significant correlations between analogical reasoning factors and linguistic skills and they can predict linguistic performance mainly on oral comprehension, lexical decision and phonological skills. These findings suggest a fundamental interrelationship between analogical reasoning and linguistic performance on children’s and points to the need to consider this cognitive process in comprehensive theories of children's language development.

Keywords: verbal analogical reasoning, non-verbal analogical reasoning, linguistic skills, language development

Procedia PDF Downloads 267
6932 Location Management in Wireless Sensor Networks with Mobility

Authors: Amrita Anil Agashe, Sumant Tapas, Ajay Verma Yogesh Sonavane, Sourabh Yeravar

Abstract:

Due to advancement in MEMS technology today wireless sensors network has gained a lot of importance. The wide range of its applications includes environmental and habitat monitoring, object localization, target tracking, security surveillance etc. Wireless sensor networks consist of tiny sensor devices called as motes. The constrained computation power, battery power, storage capacity and communication bandwidth of the tiny motes pose challenging problems in the design and deployment of such systems. In this paper, we propose a ubiquitous framework for Real-Time Tracking, Sensing and Management System using IITH motes. Also, we explain the algorithm that we have developed for location management in wireless sensor networks with the aspect of mobility. Our developed framework and algorithm can be used to detect emergency events and safety threats and provides warning signals to handle the emergency.

Keywords: mobility management, motes, multihop, wireless sensor networks

Procedia PDF Downloads 419
6931 A Real-Time Bayesian Decision-Support System for Predicting Suspect Vehicle’s Intended Target Using a Sparse Camera Network

Authors: Payam Mousavi, Andrew L. Stewart, Huiwen You, Aryeh F. G. Fayerman

Abstract:

We present a decision-support tool to assist an operator in the detection and tracking of a suspect vehicle traveling to an unknown target destination. Multiple data sources, such as traffic cameras, traffic information, weather, etc., are integrated and processed in real-time to infer a suspect’s intended destination chosen from a list of pre-determined high-value targets. Previously, we presented our work in the detection and tracking of vehicles using traffic and airborne cameras. Here, we focus on the fusion and processing of that information to predict a suspect’s behavior. The network of cameras is represented by a directional graph, where the edges correspond to direct road connections between the nodes and the edge weights are proportional to the average time it takes to travel from one node to another. For our experiments, we construct our graph based on the greater Los Angeles subset of the Caltrans’s “Performance Measurement System” (PeMS) dataset. We propose a Bayesian approach where a posterior probability for each target is continuously updated based on detections of the suspect in the live video feeds. Additionally, we introduce the concept of ‘soft interventions’, inspired by the field of Causal Inference. Soft interventions are herein defined as interventions that do not immediately interfere with the suspect’s movements; rather, a soft intervention may induce the suspect into making a new decision, ultimately making their intent more transparent. For example, a soft intervention could be temporarily closing a road a few blocks from the suspect’s current location, which may require the suspect to change their current course. The objective of these interventions is to gain the maximum amount of information about the suspect’s intent in the shortest possible time. Our system currently operates in a human-on-the-loop mode where at each step, a set of recommendations are presented to the operator to aid in decision-making. In principle, the system could operate autonomously, only prompting the operator for critical decisions, allowing the system to significantly scale up to larger areas and multiple suspects. Once the intended target is identified with sufficient confidence, the vehicle is reported to the authorities to take further action. Other recommendations include a selection of road closures, i.e., soft interventions, or to continue monitoring. We evaluate the performance of the proposed system using simulated scenarios where the suspect, starting at random locations, takes a noisy shortest path to their intended target. In all scenarios, the suspect’s intended target is unknown to our system. The decision thresholds are selected to maximize the chances of determining the suspect’s intended target in the minimum amount of time and with the smallest number of interventions. We conclude by discussing the limitations of our current approach to motivate a machine learning approach, based on reinforcement learning in order to relax some of the current limiting assumptions.

Keywords: autonomous surveillance, Bayesian reasoning, decision support, interventions, patterns of life, predictive analytics, predictive insights

Procedia PDF Downloads 115
6930 Analytical Downlink Effective SINR Evaluation in LTE Networks

Authors: Marwane Ben Hcine, Ridha Bouallegue

Abstract:

The aim of this work is to provide an original analytical framework for downlink effective SINR evaluation in LTE networks. The classical single carrier SINR performance evaluation is extended to multi-carrier systems operating over frequency selective channels. Extension is achieved by expressing the link outage probability in terms of the statistics of the effective SINR. For effective SINR computation, the exponential effective SINR mapping (EESM) method is used on this work. Closed-form expression for the link outage probability is achieved assuming a log skew normal approximation for single carrier case. Then we rely on the lognormal approximation to express the exponential effective SINR distribution as a function of the mean and standard deviation of the SINR of a generic subcarrier. Achieved formulas is easily computable and can be obtained for a user equipment (UE) located at any distance from its serving eNodeB. Simulations show that the proposed framework provides results with accuracy within 0.5 dB.

Keywords: LTE, OFDMA, effective SINR, log skew normal approximation

Procedia PDF Downloads 365
6929 Learning-by-Heart vs. Learning by Thinking: Fostering Thinking in Foreign Language Learning A Comparison of Two Approaches

Authors: Danijela Vranješ, Nataša Vukajlović

Abstract:

Turning to learner-centered teaching instead of the teacher-centered approach brought a whole new perspective into the process of teaching and learning and set a new goal for improving the educational process itself. However, recently a tremendous decline in students’ performance on various standardized tests can be observed, above all on the PISA-test. The learner-centeredness on its own is not enough anymore: the students’ ability to think is deteriorating. Especially in foreign language learning, one can encounter a lot of learning by heart: whether it is grammar or vocabulary, teachers often seem to judge the students’ success merely on how well they can recall a specific word, phrase, or grammar rule, but they rarely aim to foster their ability to think. Convinced that foreign language teaching can do both, this research aims to discover how two different approaches to teaching foreign language foster the students’ ability to think as well as to what degree they help students get to the state-determined level of foreign language at the end of the semester as defined in the Common European Framework. For this purpose, two different curricula were developed: one is a traditional, learner-centered foreign language curriculum that aims at teaching the four competences as defined in the Common European Framework and serves as a control variable, whereas the second one has been enriched with various thinking routines and aims at teaching the foreign language as a means to communicate ideas and thoughts rather than reducing it to the four competences. Moreover, two types of tests were created for each approach, each based on the content taught during the semester. One aims to test the students’ competences as defined in the CER, and the other aims to test the ability of students to draw on the knowledge gained and come to their own conclusions based on the content taught during the semester. As it is an ongoing study, the results are yet to be interpreted.

Keywords: common european framework of reference, foreign language learning, foreign language teaching, testing and assignment

Procedia PDF Downloads 107
6928 Development of a Framework for Assessment of Market Penetration of Oil Sands Energy Technologies in Mining Sector

Authors: Saeidreza Radpour, Md. Ahiduzzaman, Amit Kumar

Abstract:

Alberta’s mining sector consumed 871.3 PJ in 2012, which is 67.1% of the energy consumed in the industry sector and about 40% of all the energy consumed in the province of Alberta. Natural gas, petroleum products, and electricity supplied 55.9%, 20.8%, and 7.7%, respectively, of the total energy use in this sector. Oil sands mining and upgrading to crude oil make up most of the mining energy sector activities in Alberta. Crude oil is produced from the oil sands either by in situ methods or by the mining and extraction of bitumen from oil sands ore. In this research, the factors affecting oil sands production have been assessed and a framework has been developed for market penetration of new efficient technologies in this sector. Oil sands production amount is a complex function of many different factors, broadly categorized into technical, economic, political, and global clusters. The results of developed and implemented statistical analysis in this research show that the importance of key factors affecting on oil sands production in Alberta is ranked as: Global energy consumption (94% consistency), Global crude oil price (86% consistency), and Crude oil export (80% consistency). A framework for modeling oil sands energy technologies’ market penetration (OSETMP) has been developed to cover related technical, economic and environmental factors in this sector. It has been assumed that the impact of political and social constraints is reflected in the model by changes of global oil price or crude oil price in Canada. The market share of novel in situ mining technologies with low energy and water use are assessed and calculated in the market penetration framework include: 1) Partial upgrading, 2) Liquid addition to steam to enhance recovery (LASER), 3) Solvent-assisted process (SAP), also called solvent-cyclic steam-assisted gravity drainage (SC-SAGD), 4) Cyclic solvent, 5) Heated solvent, 6) Wedge well, 7) Enhanced modified steam and Gas push (emsagp), 8) Electro-thermal dynamic stripping process (ET-DSP), 9) Harris electro-magnetic heating applications (EMHA), 10) Paraffin froth separation. The results of the study will show the penetration profile of these technologies over a long term planning horizon.

Keywords: appliances efficiency improvement, diffusion models, market penetration, residential sector

Procedia PDF Downloads 330
6927 Variable Refrigerant Flow (VRF) Zonal Load Prediction Using a Transfer Learning-Based Framework

Authors: Junyu Chen, Peng Xu

Abstract:

In the context of global efforts to enhance building energy efficiency, accurate thermal load forecasting is crucial for both device sizing and predictive control. Variable Refrigerant Flow (VRF) systems are widely used in buildings around the world, yet VRF zonal load prediction has received limited attention. Due to differences between VRF zones in building-level prediction methods, zone-level load forecasting could significantly enhance accuracy. Given that modern VRF systems generate high-quality data, this paper introduces transfer learning to leverage this data and further improve prediction performance. This framework also addresses the challenge of predicting load for building zones with no historical data, offering greater accuracy and usability compared to pure white-box models. The study first establishes an initial variable set of VRF zonal building loads and generates a foundational white-box database using EnergyPlus. Key variables for VRF zonal loads are identified using methods including SRRC, PRCC, and Random Forest. XGBoost and LSTM are employed to generate pre-trained black-box models based on the white-box database. Finally, real-world data is incorporated into the pre-trained model using transfer learning to enhance its performance in operational buildings. In this paper, zone-level load prediction was integrated with transfer learning, and a framework was proposed to improve the accuracy and applicability of VRF zonal load prediction.

Keywords: zonal load prediction, variable refrigerant flow (VRF) system, transfer learning, energyplus

Procedia PDF Downloads 28
6926 Digital Skill Framework Required by Students of Building Technology in Nigerian Higher Institutions

Authors: Shirka Kassam Jwasshaka

Abstract:

Graduates from higher educational institutions in Nigeria need to leave with the necessary skills to be independent in the emergence work environment. The goal of this study is to develop a framework of digital skills that Nigerian graduates in building construction need to be proficient in various digital skills to comfortably fit into the global advances in a technological labour market. The descriptive survey design was used in this investigation. The study's population consisted of building construction experts selected from different sites within the North Central geographical zones of Nigeria. Using random sampling approaches, 120 seasoned experts were chosen. Three research questions raised by the researchers guided the study. The data was gathered using a 60-item, structured questionnaire. The questions were formulated around three key skill areas such as digital skills related to ICT, digital skills related to general workforce, and basic digital literacy skills that students should have. A building construction specialist validated the questionnaire. Winstep in conjunction with SPSS was used to determine the Cronbach Alpha reliability of the items' internal consistency and person separation,item measure, item fit based on PTMEA CORR, polarity items, misfit items, unidimensionality, and a person-item map. The Cronbach Coefficient reliability of items for the three sub constructs was 0.70. The results showed nearly every sub component within the three areas of digital skills was regarded as significant to be learn by experts. The researchers recommended among other things, that all parties involved in the education sector should work together to develop a curriculum that covers digital skills which can meet employer’s' needs.

Keywords: lifelong learning, digital skill, framework, building technology

Procedia PDF Downloads 61
6925 AER Model: An Integrated Artificial Society Modeling Method for Cloud Manufacturing Service Economic System

Authors: Deyu Zhou, Xiao Xue, Lizhen Cui

Abstract:

With the increasing collaboration among various services and the growing complexity of user demands, there are more and more factors affecting the stable development of the cloud manufacturing service economic system (CMSE). This poses new challenges to the evolution analysis of the CMSE. Many researchers have modeled and analyzed the evolution process of CMSE from the perspectives of individual learning and internal factors influencing the system, but without considering other important characteristics of the system's individuals (such as heterogeneity, bounded rationality, etc.) and the impact of external environmental factors. Therefore, this paper proposes an integrated artificial social model for the cloud manufacturing service economic system, which considers both the characteristics of the system's individuals and the internal and external influencing factors of the system. The model consists of three parts: the Agent model, environment model, and rules model (Agent-Environment-Rules, AER): (1) the Agent model considers important features of the individuals, such as heterogeneity and bounded rationality, based on the adaptive behavior mechanisms of perception, action, and decision-making; (2) the environment model describes the activity space of the individuals (real or virtual environment); (3) the rules model, as the driving force of system evolution, describes the mechanism of the entire system's operation and evolution. Finally, this paper verifies the effectiveness of the AER model through computational and experimental results.

Keywords: cloud manufacturing service economic system (CMSE), AER model, artificial social modeling, integrated framework, computing experiment, agent-based modeling, social networks

Procedia PDF Downloads 80
6924 The Use of Geographic Information System for Selecting Landfill Sites in Osogbo

Authors: Nureni Amoo, Sunday Aroge, Oluranti Akintola, Hakeem Olujide, Ibrahim Alabi

Abstract:

This study investigated the optimum landfill site in Osogbo so as to identify suitable solid waste dumpsite for proper waste management in the capital city. Despite an increase in alternative techniques for disposing of waste, landfilling remains the primary means of waste disposal. These changes in attitudes in many parts of the world have been supported by changes in laws and policies regarding the environment and waste disposal. Selecting the most suitable site for landfill can avoid any ecological and socio-economic effects. The increase in industrial and economic development, along with the increase of population growth in Osogbo town, generates a tremendous amount of solid waste within the region. Factors such as the scarcity of land, the lifespan of the landfill, and environmental considerations warrant that the scientific and fundamental studies are carried out in determining the suitability of a landfill site. The analysis of spatial data and consideration of regulations and accepted criteria are part of the important elements in the site selection. This paper presents a multi-criteria decision-making method using geographic information system (GIS) with the integration of the fuzzy logic multi-criteria decision making (FMCDM) technique for landfill suitability site evaluation. By using the fuzzy logic method (classification of suitable areas in the range of 0 to 1 scale), the superposing of the information layers related to drainage, soil, land use/land cover, slope, land use, and geology maps were performed in the study. Based on the result obtained in this study, five (5) potential sites are suitable for the construction of a landfill are proposed, two of which belong to the most suitable zone, and the existing waste disposal site belonged to the unsuitable zone.

Keywords: fuzzy logic multi-criteria decision making, geographic information system, landfill, suitable site, waste disposal

Procedia PDF Downloads 143
6923 Verification and Proposal of Information Processing Model Using EEG-Based Brain Activity Monitoring

Authors: Toshitaka Higashino, Naoki Wakamiya

Abstract:

Human beings perform a task by perceiving information from outside, recognizing them, and responding them. There have been various attempts to analyze and understand internal processes behind the reaction to a given stimulus by conducting psychological experiments and analysis from multiple perspectives. Among these, we focused on Model Human Processor (MHP). However, it was built based on psychological experiments and thus the relation with brain activity was unclear so far. To verify the validity of the MHP and propose our model from a viewpoint of neuroscience, EEG (Electroencephalography) measurements are performed during experiments in this study. More specifically, first, experiments were conducted where Latin alphabet characters were used as visual stimuli. In addition to response time, ERPs (event-related potentials) such as N100 and P300 were measured by using EEG. By comparing cycle time predicted by the MHP and latency of ERPs, it was found that N100, related to perception of stimuli, appeared at the end of the perceptual processor. Furthermore, by conducting an additional experiment, it was revealed that P300, related to decision making, appeared during the response decision process, not at the end. Second, by experiments using Japanese Hiragana characters, i.e. Japan's own phonetic symbols, those findings were confirmed. Finally, Japanese Kanji characters were used as more complicated visual stimuli. A Kanji character usually has several readings and several meanings. Despite the difference, a reading-related task and a meaning-related task exhibited similar results, meaning that they involved similar information processing processes of the brain. Based on those results, our model was proposed which reflects response time and ERP latency. It consists of three processors: the perception processor from an input of a stimulus to appearance of N100, the cognitive processor from N100 to P300, and the decision-action processor from P300 to response. Using our model, an application system which reflects brain activity can be established.

Keywords: brain activity, EEG, information processing model, model human processor

Procedia PDF Downloads 98
6922 Legal and Contractual Framework for Private Experiments in Space

Authors: Linda Ana-Maria Ungureanu

Abstract:

As space exploration opens to new actors, we are faced with the interesting question of regulating more complex structures that enable private experiments. From intellectual property implications to private and public law, there is a multitude of factors and legal structures that need to be taken into consideration when opening space, and these structures need to be harmonized with the International Space Treaties governing space exploration. In this sense, this article presents an overview of the legal and contractual framework applicable to private experiments conducted in space and/or in relation to off-world environments. Additionally, the article analyses the manner in which national space agencies regulate agreements concluded with private actors and research institutions. Finally, the article sets a series of de lege ferenda proposals for the regulation of general research and development rules and intellectual property matters that are connected to experiments and research conducted in space and/or concerning off-world environments.

Keywords: private space, intellectual property, contracts, ESA guidelines, EU legislation, Intellectual property law, international IP treaties

Procedia PDF Downloads 107
6921 Revolutionizing Project Management: A Comprehensive Review of Artificial Intelligence and Machine Learning Applications for Smarter Project Execution

Authors: Wenzheng Fu, Yue Fu, Zhijiang Dong, Yujian Fu

Abstract:

The integration of artificial intelligence (AI) and machine learning (ML) into project management is transforming how engineering projects are executed, monitored, and controlled. This paper provides a comprehensive survey of AI and ML applications in project management, systematically categorizing their use in key areas such as project data analytics, monitoring, tracking, scheduling, and reporting. As project management becomes increasingly data-driven, AI and ML offer powerful tools for improving decision-making, optimizing resource allocation, and predicting risks, leading to enhanced project outcomes. The review highlights recent research that demonstrates the ability of AI and ML to automate routine tasks, provide predictive insights, and support dynamic decision-making, which in turn increases project efficiency and reduces the likelihood of costly delays. This paper also examines the emerging trends and future opportunities in AI-driven project management, such as the growing emphasis on transparency, ethical governance, and data privacy concerns. The research suggests that AI and ML will continue to shape the future of project management by driving further automation and offering intelligent solutions for real-time project control. Additionally, the review underscores the need for ongoing innovation and the development of governance frameworks to ensure responsible AI deployment in project management. The significance of this review lies in its comprehensive analysis of AI and ML’s current contributions to project management, providing valuable insights for both researchers and practitioners. By offering a structured overview of AI applications across various project phases, this paper serves as a guide for the adoption of intelligent systems, helping organizations achieve greater efficiency, adaptability, and resilience in an increasingly complex project management landscape.

Keywords: artificial intelligence, decision support systems, machine learning, project management, resource optimization, risk prediction

Procedia PDF Downloads 22
6920 Implementation of the Outputs of Computer Simulation to Support Decision-Making Processes

Authors: Jiri Barta

Abstract:

At the present time, awareness, education, computer simulation and information systems protection are very serious and relevant topics. The article deals with perspectives and possibilities of implementation of emergence or natural hazard threats into the system which is developed for communication among members of crisis management staffs. The Czech Hydro-Meteorological Institute with its System of Integrated Warning Service resents the largest usable base of information. National information systems are connected to foreign systems, especially to flooding emergency systems of neighboring countries, systems of European Union and international organizations where the Czech Republic is a member. Use of outputs of particular information systems and computer simulations on a single communication interface of information system for communication among members of crisis management staff and setting the site interoperability in the net will lead to time savings in decision-making processes in solving extraordinary events and crisis situations. Faster managing of an extraordinary event or a crisis situation will bring positive effects and minimize the impact of negative effects on the environment.

Keywords: computer simulation, communication, continuity, critical infrastructure, information systems, safety

Procedia PDF Downloads 333
6919 Evolutionary Analysis of Green Credit Regulation on Greenwashing Behavior in Dual-Layer Network

Authors: Bo-wen Zhu, Bin Wu, Feng Chen

Abstract:

It has become a common measure among governments to support green development of enterprises through Green Credit policies. In China, the Central Bank of China and other authorities even put forward corresponding assessment requirements for proportion of green credit in commercial banks. Policy changes might raise concerns about commercial banks turning a blind eye to greenwashing behavior by enterprises. The lack of effective regulation may lead to a diffusion of such behavior, and eventually result in the phenomenon of “bad money driving out good money”, which could dampen the incentive effect of Green Credit policies. This paper employs a complex network model based on an evolutionary game analysis framework involving enterprises, banks, and regulatory authorities to investigate inhibitory effect of the Green Credit regulation on enterprises’ greenwashing behavior, banks’ opportunistic and collusive behaviors. The findings are as follows: (1) Banking opportunism rises with Green Credit evaluation criteria and requirements for the proportion of credit balance. Restrictive regulation against violating banks is necessary as there is an increasing trend of banks adopting opportunistic strategy. (2) Raising penalties and probability of regulatory inspections can effectively suppress banks’ opportunistic behavior, however, it cannot entirely eradicate the opportunistic behavior on the bank side. (3) Although maintaining a certain inspection probability can inhibit enterprises from adopting greenwashing behavior, enterprises choose a catering production strategy instead. (4) One-time rewards from local government have limited effects on the equilibrium state and diffusion trend of bank regulatory decision-making.

Keywords: green credit, greenwashing behavior, regulation, diffusion effect

Procedia PDF Downloads 24
6918 Utilizing Waste Heat from Thermal Power Plants to Generate Power by Modelling an Atmospheric Vortex Engine

Authors: Mohammed Nabeel Khan, C. Perisamy

Abstract:

Convective vortices are normal highlights of air that ingest lower-entropy-energy at higher temperatures than they dismiss higher-entropy-energy to space. By means of the thermodynamic proficiency, it has been anticipated that the force of convective vortices relies upon the profundity of the convective layer. The atmospheric vortex engine is proposed as a gadget for delivering mechanical energy by methods for artificially produced vortex. The task of the engine is in view of the certainties that the environment is warmed from the base and cooled from the top. By generation of the artificial vortex, it is planned to take out the physical solar updraft tower and decrease the capital of the solar chimney power plants. The study shows the essentials of the atmospheric vortex engine, furthermore, audits the cutting edge in subject. Moreover, the study talks about a thought on using the solar energy as heat source to work the framework. All in all, the framework is attainable and promising for electrical power production.

Keywords: AVE, atmospheric vortex engine, atmosphere, updraft, vortex

Procedia PDF Downloads 161
6917 Criticality Assessment of Power Transformer by Using Entropy Weight Method

Authors: Rattanakorn Phadungthin, Juthathip Haema

Abstract:

This research presents an assessment of the criticality of the substation's power transformer using the Entropy Weight method to enable more effective maintenance planning. Typically, transformers fail due to heat, electricity, chemical reactions, mechanical stress, and extreme climatic conditions. Effective monitoring of the insulating oil is critical to prevent transformer failure. However, finding appropriate weights for dissolved gases is a major difficulty due to the lack of a defined baseline and the requirement for subjective expert opinion. To decrease expert prejudice and subjectivity, the Entropy Weight method is used to optimise the weightings of eleven key dissolved gases. The algorithm to assess the criticality operates through five steps: create a decision matrix, normalise the decision matrix, compute the entropy, calculate the weight, and calculate the criticality score. This study not only optimises gas weighing but also greatly minimises the need for expert judgment in transformer maintenance. It is expected to improve the efficiency and reliability of power transformers so failures and related economic costs are minimized. Furthermore, maintenance schemes and ranking are accomplished appropriately when the assessment of criticality is reached.

Keywords: criticality assessment, dissolved gas, maintenance scheme, power transformer

Procedia PDF Downloads 8
6916 A Use Case-Oriented Performance Measurement Framework for AI and Big Data Solutions in the Banking Sector

Authors: Yassine Bouzouita, Oumaima Belghith, Cyrine Zitoun, Charles Bonneau

Abstract:

Performance measurement framework (PMF) is an essential tool in any organization to assess the performance of its processes. It guides businesses to stay on track with their objectives and benchmark themselves from the market. With the growing trend of the digital transformation of business processes, led by innovations in artificial intelligence (AI) & Big Data applications, developing a mature system capable of capturing the impact of digital solutions across different industries became a necessity. Based on the conducted research, no such system has been developed in academia nor the industry. In this context, this paper covers a variety of methodologies on performance measurement, overviews the major AI and big data applications in the banking sector, and covers an exhaustive list of relevant metrics. Consequently, this paper is of interest to both researchers and practitioners. From an academic perspective, it offers a comparative analysis of the reviewed performance measurement frameworks. From an industry perspective, it offers exhaustive research, from market leaders, of the major applications of AI and Big Data technologies, across the different departments of an organization. Moreover, it suggests a standardized classification model with a well-defined structure of intelligent digital solutions. The aforementioned classification is mapped to a centralized library that contains an indexed collection of potential metrics for each application. This library is arranged in a manner that facilitates the rapid search and retrieval of relevant metrics. This proposed framework is meant to guide professionals in identifying the most appropriate AI and big data applications that should be adopted. Furthermore, it will help them meet their business objectives through understanding the potential impact of such solutions on the entire organization.

Keywords: AI and Big Data applications, impact assessment, metrics, performance measurement

Procedia PDF Downloads 198
6915 Synthesis of Pd Nanoparticles Confined in Graphene Oxide Framework as Nano Catalyst with Improved Activity and Recyclability in Suzuki-Miyaura Cross-Coupling Reaction

Authors: Thuy Phuong Nhat Tran, Ashutosh Thakur, Toshiaki Taniike

Abstract:

Recently, covalently linked graphene oxide frameworks (GOFs) have attracted considerable attention in gas absorbance and water purification as well-defined microporous materials. In spite of their potential advantages such as a controllable pore dimension, adjustable hydrophobicity, and structural stability, these materials have been scarcely employed in heterogeneous catalysis. Here we demonstrate a novel and facile method to synthesize Pd nanoparticles (NPs) confined in a GOF (Pd@GOF). The GOF with uniform interlayer space was obtained by the intercalation of diboronic acid between graphene oxide layers. It was found that Pd NPs were generated inside the graphitic gallery spaces of the GOF, and thus, formed Pd NPs were well-dispersed with a narrow particle size distribution. The synthesized Pd@GOF emerged as an efficient nanocatalyst based on its superior performance (product yield and recyclability) toward Suzuki-Miyaura cross-coupling reaction in both polar and apolar solvents, which has been hardly observed for previously reported graphene-based Pd nanocatalysts. Furthermore, the rational comparison of the catalytic performance between two kinds of Pd@GOF (Pd NPs encapsulated in a diboronic ester-intercalated GOF and in a monoboronic ester-intercalated GOF) firmly confirmed the essential role of a rigid framework design in the stabilization of Pd NPs. Based on these results, the covalently assembled GOF was proposed as a promising scaffold for hosting noble metal NPs to construct desired metal@GOF nanocatalysts with improved activity and durability.

Keywords: graphene oxide framework, palladium nanocatalyst, pore confinement, Suzuki-Miyaura cross-coupling reaction

Procedia PDF Downloads 138
6914 ViraPart: A Text Refinement Framework for Automatic Speech Recognition and Natural Language Processing Tasks in Persian

Authors: Narges Farokhshad, Milad Molazadeh, Saman Jamalabbasi, Hamed Babaei Giglou, Saeed Bibak

Abstract:

The Persian language is an inflectional subject-object-verb language. This fact makes Persian a more uncertain language. However, using techniques such as Zero-Width Non-Joiner (ZWNJ) recognition, punctuation restoration, and Persian Ezafe construction will lead us to a more understandable and precise language. In most of the works in Persian, these techniques are addressed individually. Despite that, we believe that for text refinement in Persian, all of these tasks are necessary. In this work, we proposed a ViraPart framework that uses embedded ParsBERT in its core for text clarifications. First, used the BERT variant for Persian followed by a classifier layer for classification procedures. Next, we combined models outputs to output cleartext. In the end, the proposed model for ZWNJ recognition, punctuation restoration, and Persian Ezafe construction performs the averaged F1 macro scores of 96.90%, 92.13%, and 98.50%, respectively. Experimental results show that our proposed approach is very effective in text refinement for the Persian language.

Keywords: Persian Ezafe, punctuation, ZWNJ, NLP, ParsBERT, transformers

Procedia PDF Downloads 218
6913 Using Machine-Learning Methods for Allergen Amino Acid Sequence's Permutations

Authors: Kuei-Ling Sun, Emily Chia-Yu Su

Abstract:

Allergy is a hypersensitive overreaction of the immune system to environmental stimuli, and a major health problem. These overreactions include rashes, sneezing, fever, food allergies, anaphylaxis, asthmatic, shock, or other abnormal conditions. Allergies can be caused by food, insect stings, pollen, animal wool, and other allergens. Their development of allergies is due to both genetic and environmental factors. Allergies involve immunoglobulin E antibodies, a part of the body’s immune system. Immunoglobulin E antibodies will bind to an allergen and then transfer to a receptor on mast cells or basophils triggering the release of inflammatory chemicals such as histamine. Based on the increasingly serious problem of environmental change, changes in lifestyle, air pollution problem, and other factors, in this study, we both collect allergens and non-allergens from several databases and use several machine learning methods for classification, including logistic regression (LR), stepwise regression, decision tree (DT) and neural networks (NN) to do the model comparison and determine the permutations of allergen amino acid’s sequence.

Keywords: allergy, classification, decision tree, logistic regression, machine learning

Procedia PDF Downloads 303