Search results for: Data Mining
23976 Computational Modeling of Load Limits of Carbon Fibre Composite Laminates Subjected to Low-Velocity Impact Utilizing Convolution-Based Fast Fourier Data Filtering Algorithms
Authors: Farhat Imtiaz, Umar Farooq
Abstract:
In this work, we developed a computational model to predict ply level failure in impacted composite laminates. Data obtained from physical testing from flat and round nose impacts of 8-, 16-, 24-ply laminates were considered. Routine inspections of the tested laminates were carried out to approximate ply by ply inflicted damage incurred. Plots consisting of load–time, load–deflection, and energy–time history were drawn to approximate the inflicted damages. Impact test generated unwanted data logged due to restrictions on testing and logging systems were also filtered. Conventional filters (built-in, statistical, and numerical) reliably predicted load thresholds for relatively thin laminates such as eight and sixteen ply panels. However, for relatively thick laminates such as twenty-four ply laminates impacted by flat nose impact generated clipped data which can just be de-noised using oscillatory algorithms. The literature search reveals that modern oscillatory data filtering and extrapolation algorithms have scarcely been utilized. This investigation reports applications of filtering and extrapolation of the clipped data utilising fast Fourier Convolution algorithm to predict load thresholds. Some of the results were related to the impact-induced damage areas identified with Ultrasonic C-scans and found to be in acceptable agreement. Based on consistent findings, utilizing of modern data filtering and extrapolation algorithms to data logged by the existing machines has efficiently enhanced data interpretations without resorting to extra resources. The algorithms could be useful for impact-induced damage approximations of similar cases.Keywords: fibre reinforced laminates, fast Fourier algorithms, mechanical testing, data filtering and extrapolation
Procedia PDF Downloads 13523975 Design of Incident Information System in IoT Virtualization Platform
Authors: Amon Olimov, Umarov Jamshid, Dae-Ho Kim, Chol-U Lee, Ryum-Duck Oh
Abstract:
This paper proposes IoT virtualization platform based incident information system. IoT information based environment is the platform that was developed for the purpose of collecting a variety of data by managing regionally scattered IoT devices easily and conveniently in addition to analyzing data collected from roads. Moreover, this paper configured the platform for the purpose of providing incident information based on sensed data. It also provides the same input/output interface as UNIX and Linux by means of matching IoT devices with the directory of file system and also the files. In addition, it has a variety of approaches as to the devices. Thus, it can be applied to not only incident information but also other platforms. This paper proposes the incident information system that identifies and provides various data in real time as to urgent matters on roads based on the existing USN/M2M and IoT visualization platform.Keywords: incident information system, IoT, virtualization platform, USN, M2M
Procedia PDF Downloads 35123974 Social Network Analysis as a Research and Pedagogy Tool in Problem-Focused Undergraduate Social Innovation Courses
Authors: Sean McCarthy, Patrice M. Ludwig, Will Watson
Abstract:
This exploratory case study explores the deployment of Social Network Analysis (SNA) in mapping community assets in an interdisciplinary, undergraduate, team-taught course focused on income insecure populations in a rural area in the US. Specifically, it analyzes how students were taught to collect data on community assets and to visualize the connections between those assets using Kumu, an SNA data visualization tool. Further, the case study shows how social network data was also collected about student teams via their written communications in Slack, an enterprise messaging tool, which enabled instructors to manage and guide student research activity throughout the semester. The discussion presents how SNA methods can simultaneously inform both community-based research and social innovation pedagogy through the use of data visualization and collaboration-focused communication technologies.Keywords: social innovation, social network analysis, pedagogy, problem-based learning, data visualization, information communication technologies
Procedia PDF Downloads 14723973 Mobile Learning: Toward Better Understanding of Compression Techniques
Authors: Farouk Lawan Gambo
Abstract:
Data compression shrinks files into fewer bits then their original presentation. It has more advantage on internet because the smaller a file, the faster it can be transferred but learning most of the concepts in data compression are abstract in nature therefore making them difficult to digest by some students (Engineers in particular). To determine the best approach toward learning data compression technique, this paper first study the learning preference of engineering students who tend to have strong active, sensing, visual and sequential learning preferences, the paper also study the advantage that mobility of learning have experienced; Learning at the point of interest, efficiency, connection, and many more. A survey is carried out with some reasonable number of students, through random sampling to see whether considering the learning preference and advantages in mobility of learning will give a promising improvement over the traditional way of learning. Evidence from data analysis using Ms-Excel as a point of concern for error-free findings shows that there is significance different in the students after using learning content provided on smart phone, also the result of the findings presented in, bar charts and pie charts interpret that mobile learning has to be promising feature of learning.Keywords: data analysis, compression techniques, learning content, traditional learning approach
Procedia PDF Downloads 34723972 Assessing Flood Risk and Mapping Inundation Zones in the Kelantan River Basin: A Hydrodynamic Modeling Approach
Authors: Fatemehsadat Mortazavizadeh, Amin Dehghani, Majid Mirzaei, Nurulhuda Binti Mohammad Ramli, Adnan Dehghani
Abstract:
Flood is Malaysia's most common and serious natural disaster. Kelantan River Basin is a tropical basin that experiences a rainy season during North-East Monsoon from November to March. It is also one of the hardest hit areas in Peninsular Malaysia during the heavy monsoon rainfall. Considering the consequences of the flood events, it is essential to develop the flood inundation map as part of the mitigation approach. In this study, the delineation of flood inundation zone in the area of Kelantan River basin using a hydrodynamic model is done by HEC-RAS, QGIS and ArcMap. The streamflow data has been generated with the weather generator based on the observation data. Then, the data is statistically analyzed with the Extreme Value (EV1) method for 2-, 5-, 25-, 50- and 100-year return periods. The minimum depth, maximum depth, mean depth, and the standard deviation of all the scenarios, including the OBS, are observed and analyzed. Based on the results, generally, the value of the data increases with the return period for all the scenarios. However, there are certain scenarios that have different results, which not all the data obtained are increasing with the return period. Besides, OBS data resulted in the middle range within Scenario 1 to Scenario 40.Keywords: flood inundation, kelantan river basin, hydrodynamic model, extreme value analysis
Procedia PDF Downloads 7023971 The Use of Network Tool for Brain Signal Data Analysis: A Case Study with Blind and Sighted Individuals
Authors: Cleiton Pons Ferreira, Diana Francisca Adamatti
Abstract:
Advancements in computers technology have allowed to obtain information for research in biology and neuroscience. In order to transform the data from these surveys, networks have long been used to represent important biological processes, changing the use of this tools from purely illustrative and didactic to more analytic, even including interaction analysis and hypothesis formulation. Many studies have involved this application, but not directly for interpretation of data obtained from brain functions, asking for new perspectives of development in neuroinformatics using existent models of tools already disseminated by the bioinformatics. This study includes an analysis of neurological data through electroencephalogram (EEG) signals, using the Cytoscape, an open source software tool for visualizing complex networks in biological databases. The data were obtained from a comparative case study developed in a research from the University of Rio Grande (FURG), using the EEG signals from a Brain Computer Interface (BCI) with 32 eletrodes prepared in the brain of a blind and a sighted individuals during the execution of an activity that stimulated the spatial ability. This study intends to present results that lead to better ways for use and adapt techniques that support the data treatment of brain signals for elevate the understanding and learning in neuroscience.Keywords: neuroinformatics, bioinformatics, network tools, brain mapping
Procedia PDF Downloads 18223970 Analysis of the Impact of Climate Change on Maize (Zea Mays) Yield in Central Ethiopia
Authors: Takele Nemomsa, Girma Mamo, Tesfaye Balemi
Abstract:
Climate change refers to a change in the state of the climate that can be identified (e.g. using statistical tests) by changes in the mean and/or variance of its properties and that persists for an extended period, typically decades or longer. In Ethiopia; Maize production in relation to climate change at regional and sub- regional scales have not been studied in detail. Thus, this study was aimed to analyse the impact of climate change on maize yield in Ambo Districts, Central Ethiopia. To this effect, weather data, soil data and maize experimental data for Arganne hybrid were used. APSIM software was used to investigate the response of maize (Zea mays) yield to different agronomic management practices using current and future (2020s–2080s) climate data. The climate change projections data which were downscaled using SDSM were used as input of climate data for the impact analysis. Compared to agronomic practices the impact of climate change on Arganne in Central Ethiopia is minute. However, within 2020s-2080s in Ambo area; the yield of Arganne hybrid is projected to reduce by 1.06% to 2.02%, and in 2050s it is projected to reduce by 1.56 While in 2080s; it is projected to increase by 1.03% to 2.07%. Thus, to adapt to the changing climate; farmers should consider increasing plant density and fertilizer rate per hectare.Keywords: APSIM, downscaling, response, SDSM
Procedia PDF Downloads 38323969 Aerodynamic Modeling Using Flight Data at High Angle of Attack
Authors: Rakesh Kumar, A. K. Ghosh
Abstract:
The paper presents the modeling of linear and nonlinear longitudinal aerodynamics using real flight data of Hansa-3 aircraft gathered at low and high angles of attack. The Neural-Gauss-Newton (NGN) method has been applied to model the linear and nonlinear longitudinal dynamics and estimate parameters from flight data. Unsteady aerodynamics due to flow separation at high angles of attack near stall has been included in the aerodynamic model using Kirchhoff’s quasi-steady stall model. NGN method is an algorithm that utilizes Feed Forward Neural Network (FFNN) and Gauss-Newton optimization to estimate the parameters and it does not require any a priori postulation of mathematical model or solving of equations of motion. NGN method was validated on real flight data generated at moderate angles of attack before application to the data at high angles of attack. The estimates obtained from compatible flight data using NGN method were validated by comparing with wind tunnel values and the maximum likelihood estimates. Validation was also carried out by comparing the response of measured motion variables with the response generated by using estimates a different control input. Next, NGN method was applied to real flight data generated by executing a well-designed quasi-steady stall maneuver. The results obtained in terms of stall characteristics and aerodynamic parameters were encouraging and reasonably accurate to establish NGN as a method for modeling nonlinear aerodynamics from real flight data at high angles of attack.Keywords: parameter estimation, NGN method, linear and nonlinear, aerodynamic modeling
Procedia PDF Downloads 44623968 Big Data’s Mechanistic View of Human Behavior May Displace Traditional Library Missions That Empower Users
Authors: Gabriel Gomez
Abstract:
The very concept of information seeking behavior, and the means by which librarians teach users to gain information, that is information literacy, are at the heart of how libraries deliver information, but big data will forever change human interaction with information and the way such behavior is both studied and taught. Just as importantly, big data will orient the study of behavior towards commercial ends because of a tendency towards instrumentalist views of human behavior, something one might also call a trend towards behaviorism. This oral presentation seeks to explore how the impact of big data on understandings of human behavior might impact a library information science (LIS) view of human behavior and information literacy, and what this might mean for social justice aims and concomitant community action normally at the center of librarianship. The methodology employed here is a non-empirical examination of current understandings of LIS in regards to social justice alongside an examination of the benefits and dangers foreseen with the growth of big data analysis. The rise of big data within the ever-changing information environment encapsulates a shift to a more mechanistic view of human behavior, one that can easily encompass information seeking behavior and information use. As commercial aims displace the important political and ethical aims that are often central to the missions espoused by libraries and the social sciences, the very altruism and power relations found in LIS are at risk. In this oral presentation, an examination of the social justice impulses of librarians regarding power and information demonstrates how such impulses can be challenged by big data, particularly as librarians understand user behavior and promote information literacy. The creeping behaviorist impulse inherent in the emphasis big data places on specific solutions, that is answers to question that ask how, as opposed to larger questions that hint at an understanding of why people learn or use information threaten library information science ideals. Together with the commercial nature of most big data, this existential threat can harm the social justice nature of librarianship.Keywords: big data, library information science, behaviorism, librarianship
Procedia PDF Downloads 38323967 Data Collection with Bounded-Sized Messages in Wireless Sensor Networks
Authors: Min Kyung An
Abstract:
In this paper, we study the data collection problem in Wireless Sensor Networks (WSNs) adopting the two interference models: The graph model and the more realistic physical interference model known as Signal-to-Interference-Noise-Ratio (SINR). The main issue of the problem is to compute schedules with the minimum number of timeslots, that is, to compute the minimum latency schedules, such that data from every node can be collected without any collision or interference to a sink node. While existing works studied the problem with unit-sized and unbounded-sized message models, we investigate the problem with the bounded-sized message model, and introduce a constant factor approximation algorithm. To the best known of our knowledge, our result is the first result of the data collection problem with bounded-sized model in both interference models.Keywords: data collection, collision-free, interference-free, physical interference model, SINR, approximation, bounded-sized message model, wireless sensor networks
Procedia PDF Downloads 22223966 The Twin Terminal of Pedestrian Trajectory Based on City Intelligent Model (CIM) 4.0
Authors: Chen Xi, Lao Xuerui, Li Junjie, Jiang Yike, Wang Hanwei, Zeng Zihao
Abstract:
To further promote the development of smart cities, the microscopic "nerve endings" of the City Intelligent Model (CIM) are extended to be more sensitive. In this paper, we develop a pedestrian trajectory twin terminal based on the CIM and CNN technology. It also uses 5G networks, architectural and geoinformatics technologies, convolutional neural networks, combined with deep learning networks for human behaviour recognition models, to provide empirical data such as 'pedestrian flow data and human behavioural characteristics data', and ultimately form spatial performance evaluation criteria and spatial performance warning systems, to make the empirical data accurate and intelligent for prediction and decision making.Keywords: urban planning, urban governance, CIM, artificial intelligence, convolutional neural network
Procedia PDF Downloads 15023965 Understanding Cyber Terrorism from Motivational Perspectives: A Qualitative Data Analysis
Authors: Yunos Zahri, Ariffin Aswami
Abstract:
Cyber terrorism represents the convergence of two worlds: virtual and physical. The virtual world is a place in which computer programs function and data move, whereas the physical world is where people live and function. The merging of these two domains is the interface being targeted in the incidence of cyber terrorism. To better understand why cyber terrorism acts are committed, this study presents the context of cyber terrorism from motivational perspectives. Motivational forces behind cyber terrorism can be social, political, ideological and economic. In this research, data are analyzed using a qualitative method. A semi-structured interview with purposive sampling was used for data collection. With the growing interconnectedness between critical infrastructures and Information & Communication Technology (ICT), selecting targets that facilitate maximum disruption can significantly influence terrorists. This work provides a baseline for defining the concept of cyber terrorism from motivational perspectives.Keywords: cyber terrorism, terrorism, motivation, qualitative analysis
Procedia PDF Downloads 42223964 Research Analysis of Urban Area Expansion Based on Remote Sensing
Authors: Sheheryar Khan, Weidong Li, Fanqian Meng
Abstract:
The Urban Heat Island (UHI) effect is one of the foremost problems out of other ecological and socioeconomic issues in urbanization. Due to this phenomenon that human-made urban areas have replaced the rural landscape with the surface that increases thermal conductivity and urban warmth; as a result, the temperature in the city is higher than in the surrounding rural areas. To affect the evidence of this phenomenon in the Zhengzhou city area, an observation of the temperature variations in the urban area is done through a scientific method that has been followed. Landsat 8 satellite images were taken from 2013 to 2015 to calculate the effect of Urban Heat Island (UHI) along with the NPP-VRRIS night-time remote sensing data to analyze the result for a better understanding of the center of the built-up area. To further support the evidence, the correlation between land surface temperatures and the normalized difference vegetation index (NDVI) was calculated using the Red band 4 and Near-infrared band 5 of the Landsat 8 data. Mono-window algorithm was applied to retrieve the land surface temperature (LST) distribution from the Landsat 8 data using Band 10 and 11 accordingly to convert the top-of-atmosphere radiance (TOA) and to convert the satellite brightness temperature. Along with Landsat 8 data, NPP-VIIRS night-light data is preprocessed to get the research area data. The analysis between Landsat 8 data and NPP night-light data was taken to compare the output center of the Built-up area of Zhengzhou city.Keywords: built-up area, land surface temperature, mono-window algorithm, NDVI, remote sensing, threshold method, Zhengzhou
Procedia PDF Downloads 13923963 A Comparative Study of the Athlete Health Records' Minimum Data Set in Selected Countries and Presenting a Model for Iran
Authors: Robab Abdolkhani, Farzin Halabchi, Reza Safdari, Goli Arji
Abstract:
Background and purpose: The quality of health record depends on the quality of its content and proper documentation. Minimum data set makes a standard method for collecting key data elements that make them easy to understand and enable comparison. The aim of this study was to determine the minimum data set for Iranian athletes’ health records. Methods: This study is an applied research of a descriptive comparative type which was carried out in 2013. By using internal and external forms of documentation, a checklist was created that included data elements of athletes health record and was subjected to debate in Delphi method by experts in the field of sports medicine and health information management. Results: From 97 elements which were subjected to discussion, 85 elements by more than 75 percent of the participants (as the main elements) and 12 elements by 50 to 75 percent of the participants (as the proposed elements) were agreed upon. In about 97 elements of the case, there was no significant difference between responses of alumni groups of sport pathology and sports medicine specialists with medical record, medical informatics and information management professionals. Conclusion: Minimum data set of Iranian athletes’ health record with four information categories including demographic information, health history, assessment and treatment plan was presented. The proposed model is available for manual and electronic medical records.Keywords: Documentation, Health record, Minimum data set, Sports medicine
Procedia PDF Downloads 48023962 Data Collection in Protected Agriculture for Subsequent Big Data Analysis: Methodological Evaluation in Venezuela
Authors: Maria Antonieta Erna Castillo Holly
Abstract:
During the last decade, data analysis, strategic decision making, and the use of artificial intelligence (AI) tools in Latin American agriculture have been a challenge. In some countries, the availability, quality, and reliability of historical data, in addition to the current data recording methodology in the field, makes it difficult to use information systems, complete data analysis, and their support for making the right strategic decisions. This is something essential in Agriculture 4.0. where the increase in the global demand for fresh agricultural products of tropical origin, during all the seasons of the year requires a change in the production model and greater agility in the responses to the consumer market demands of quality, quantity, traceability, and sustainability –that means extensive data-. Having quality information available and updated in real-time on what, how much, how, when, where, at what cost, and the compliance with production quality standards represents the greatest challenge for sustainable and profitable agriculture in the region. The objective of this work is to present a methodological proposal for the collection of georeferenced data from the protected agriculture sector, specifically in production units (UP) with tall structures (Greenhouses), initially for Venezuela, taking the state of Mérida as the geographical framework, and horticultural products as target crops. The document presents some background information and explains the methodology and tools used in the 3 phases of the work: diagnosis, data collection, and analysis. As a result, an evaluation of the process is carried out, relevant data and dashboards are displayed, and the first satellite maps integrated with layers of information in a geographic information system are presented. Finally, some improvement proposals and tentatively recommended applications are added to the process, understanding that their objective is to provide better qualified and traceable georeferenced data for subsequent analysis of the information and more agile and accurate strategic decision making. One of the main points of this study is the lack of quality data treatment in the Latin America area and especially in the Caribbean basin, being one of the most important points how to manage the lack of complete official data. The methodology has been tested with horticultural products, but it can be extended to other tropical crops.Keywords: greenhouses, protected agriculture, data analysis, geographic information systems, Venezuela
Procedia PDF Downloads 13123961 Reliable Consensus Problem for Multi-Agent Systems with Sampled-Data
Authors: S. H. Lee, M. J. Park, O. M. Kwon
Abstract:
In this paper, reliable consensus of multi-agent systems with sampled-data is investigated. By using a suitable Lyapunov-Krasovskii functional and some techniques such as Wirtinger Inequality, Schur Complement and Kronecker Product, the results of this systems are obtained by solving a set of Linear Matrix Inequalities(LMIs). One numerical example is included to show the effectiveness of the proposed criteria.Keywords: multi-agent, linear matrix inequalities (LMIs), kronecker product, sampled-data, Lyapunov method
Procedia PDF Downloads 52823960 Materialized View Effect on Query Performance
Authors: Yusuf Ziya Ayık, Ferhat Kahveci
Abstract:
Currently, database management systems have various tools such as backup and maintenance, and also provide statistical information such as resource usage and security. In terms of query performance, this paper covers query optimization, views, indexed tables, pre-computation materialized view, query performance analysis in which query plan alternatives can be created and the least costly one selected to optimize a query. Indexes and views can be created for related table columns. The literature review of this study showed that, in the course of time, despite the growing capabilities of the database management system, only database administrators are aware of the need for dealing with archival and transactional data types differently. These data may be constantly changing data used in everyday life, and also may be from the completed questionnaire whose data input was completed. For both types of data, the database uses its capabilities; but as shown in the findings section, instead of repeating similar heavy calculations which are carrying out same results with the same query over a survey results, using materialized view results can be in a more simple way. In this study, this performance difference was observed quantitatively considering the cost of the query.Keywords: cost of query, database management systems, materialized view, query performance
Procedia PDF Downloads 28023959 An AK-Chart for the Non-Normal Data
Authors: Chia-Hau Liu, Tai-Yue Wang
Abstract:
Traditional multivariate control charts assume that measurement from manufacturing processes follows a multivariate normal distribution. However, this assumption may not hold or may be difficult to verify because not all the measurement from manufacturing processes are normal distributed in practice. This study develops a new multivariate control chart for monitoring the processes with non-normal data. We propose a mechanism based on integrating the one-class classification method and the adaptive technique. The adaptive technique is used to improve the sensitivity to small shift on one-class classification in statistical process control. In addition, this design provides an easy way to allocate the value of type I error so it is easier to be implemented. Finally, the simulation study and the real data from industry are used to demonstrate the effectiveness of the propose control charts.Keywords: multivariate control chart, statistical process control, one-class classification method, non-normal data
Procedia PDF Downloads 42323958 Panel Application for Determining Impact of Real Exchange Rate and Security on Tourism Revenues: Countries with Middle and High Level Tourism Income
Authors: M. Koray Cetin, Mehmet Mert
Abstract:
The purpose of the study is to examine impacts on tourism revenues of the exchange rate and country overall security level. There are numerous studies that examine the bidirectional relation between macroeconomic factors and tourism revenues and tourism demand. Most of the studies support the existence of impact of tourism revenues on growth rate but not vice versa. Few studies examine the impact of factors like real exchange rate or purchasing power parity on the tourism revenues. In this context, firstly impact of real exchange rate on tourism revenues examination is aimed. Because exchange rate is one of the main determinants of international tourism services price in guests currency unit. Another determinant of tourism demand for a country is country’s overall security level. This issue can be handled in the context of the relationship between tourism revenues and overall security including turmoil, terrorism, border problem, political violence. In this study, factors are handled for several countries which have tourism revenues on a certain level. With this structure, it is a panel data, and it is evaluated with panel data analysis techniques. Panel data have at least two dimensions, and one of them is time dimensions. The panel data analysis techniques are applied to data gathered from Worldbank data web page. In this study, it is expected to find impacts of real exchange rate and security factors on tourism revenues for the countries that have noteworthy tourism revenues.Keywords: exchange rate, panel data analysis, security, tourism revenues
Procedia PDF Downloads 35123957 The Effect of General Data Protection Regulation on South Asian Data Protection Laws
Authors: Sumedha Ganjoo, Santosh Goswami
Abstract:
The rising reliance on technology places national security at the forefront of 21st-century issues. It complicates the efforts of emerging and developed countries to combat cyber threats and increases the inherent risk factors connected with technology. The inability to preserve data securely might have devastating repercussions on a massive scale. Consequently, it is vital to establish national, regional, and global data protection rules and regulations that penalise individuals who participate in immoral technology usage and exploit the inherent vulnerabilities of technology. This study paper seeks to analyse GDPR-inspired Bills in the South Asian Region and determine their suitability for the development of a worldwide data protection framework, considering that Asian countries are much more diversified than European ones. In light of this context, the objectives of this paper are to identify GDPR-inspired Bills in the South Asian Region, identify their similarities and differences, as well as the obstacles to developing a regional-level data protection mechanism, thereby satisfying the need to develop a global-level mechanism. Due to the qualitative character of this study, the researcher did a comprehensive literature review of prior research papers, journal articles, survey reports, and government publications on the aforementioned topics. Taking into consideration the survey results, the researcher conducted a critical analysis of the significant parameters highlighted in the literature study. Many nations in the South Asian area are in the process of revising their present data protection measures in accordance with GDPR, according to the primary results of this study. Consideration is given to the data protection laws of Thailand, Malaysia, China, and Japan. Significant parallels and differences in comparison to GDPR have been discussed in detail. The conclusion of the research analyses the development of various data protection legislation regimes in South Asia.Keywords: data privacy, GDPR, Asia, data protection laws
Procedia PDF Downloads 8223956 Longitudinal Analysis of Internet Speed Data in the Gulf Cooperation Council Region
Authors: Musab Isah
Abstract:
This paper presents a longitudinal analysis of Internet speed data in the Gulf Cooperation Council (GCC) region, focusing on the most populous cities of each of the six countries – Riyadh, Saudi Arabia; Dubai, UAE; Kuwait City, Kuwait; Doha, Qatar; Manama, Bahrain; and Muscat, Oman. The study utilizes data collected from the Measurement Lab (M-Lab) infrastructure over a five-year period from January 1, 2019, to December 31, 2023. The analysis includes downstream and upstream throughput data for the cities, covering significant events such as the launch of 5G networks in 2019, COVID-19-induced lockdowns in 2020 and 2021, and the subsequent recovery period and return to normalcy. The results showcase substantial increases in Internet speeds across the cities, highlighting improvements in both download and upload throughput over the years. All the GCC countries have achieved above-average Internet speeds that can conveniently support various online activities and applications with excellent user experience.Keywords: internet data science, internet performance measurement, throughput analysis, internet speed, measurement lab, network diagnostic tool
Procedia PDF Downloads 6323955 The Application of Distributed Optical Strain Sensing to Measure Rock Bolt Deformation Subject to Bedding Shear
Authors: Thomas P. Roper, Brad Forbes, Jurij Karlovšek
Abstract:
Shear displacement along bedding defects is a well-recognised behaviour when tunnelling and mining in stratified rock. This deformation can affect the durability and integrity of installed rock bolts. In-situ monitoring of rock bolt deformation under bedding shear cannot be accurately derived from traditional strain gauge bolts as sensors are too large and spaced too far apart to accurately assess concentrated displacement along discrete defects. A possible solution to this is the use of fiber optic technologies developed for precision monitoring. Distributed Optic Sensor (DOS) embedded rock bolts were installed in a tunnel project with the aim of measuring the bolt deformation profile under significant shear displacements. This technology successfully measured the 3D strain distribution along the bolts when subjected to bedding shear and resolved the axial and lateral strain constituents in order to determine the deformational geometry of the bolts. The results are compared well with the current visual method for monitoring shear displacement using borescope holes, considering this method as suitable.Keywords: distributed optical strain sensing, rock bolt, bedding shear, sandstone tunnel
Procedia PDF Downloads 16123954 Weighted Risk Scores Method Proposal for Occupational Safety Risk Assessment
Authors: Ulas Cinar, Omer Faruk Ugurlu, Selcuk Cebi
Abstract:
Occupational safety risk management is the most important element of a safe working environment. Effective risk management can only be possible with accurate analysis and evaluations. Scoring-based risk assessment methods offer considerable ease of application as they convert linguistic expressions into numerical results. It can also be easily adapted to any field. Contrary to all these advantages, important problems in scoring-based methods are frequently discussed. Effective measurability is one of the most critical problems. Existing methods allow experts to choose a score equivalent to each parameter. Therefore, experts prefer the score of the most likely outcome for risk. However, all other possible consequences are neglected. Assessments of the existing methods express the most probable level of risk, not the real risk of the enterprises. In this study, it is aimed to develop a method that will present a more comprehensive evaluation compared to the existing methods by evaluating the probability and severity scores, all sub-parameters, and potential results, and a new scoring-based method is proposed in the literature.Keywords: occupational health and safety, risk assessment, scoring based risk assessment method, underground mining, weighted risk scores
Procedia PDF Downloads 13623953 A Web Service Based Sensor Data Management System
Authors: Rose A. Yemson, Ping Jiang, Oyedeji L. Inumoh
Abstract:
The deployment of wireless sensor network has rapidly increased, however with the increased capacity and diversity of sensors, and applications ranging from biological, environmental, military etc. generates tremendous volume of data’s where more attention is placed on the distributed sensing and little on how to manage, analyze, retrieve and understand the data generated. This makes it more quite difficult to process live sensor data, run concurrent control and update because sensor data are either heavyweight, complex, and slow. This work will focus on developing a web service platform for automatic detection of sensors, acquisition of sensor data, storage of sensor data into a database, processing of sensor data using reconfigurable software components. This work will also create a web service based sensor data management system to monitor physical movement of an individual wearing wireless network sensor technology (SunSPOT). The sensor will detect movement of that individual by sensing the acceleration in the direction of X, Y and Z axes accordingly and then send the sensed reading to a database that will be interfaced with an internet platform. The collected sensed data will determine the posture of the person such as standing, sitting and lying down. The system is designed using the Unified Modeling Language (UML) and implemented using Java, JavaScript, html and MySQL. This system allows real time monitoring an individual closely and obtain their physical activity details without been physically presence for in-situ measurement which enables you to work remotely instead of the time consuming check of an individual. These details can help in evaluating an individual’s physical activity and generate feedback on medication. It can also help in keeping track of any mandatory physical activities required to be done by the individuals. These evaluations and feedback can help in maintaining a better health status of the individual and providing improved health care.Keywords: HTML, java, javascript, MySQL, sunspot, UML, web-based, wireless network sensor
Procedia PDF Downloads 21223952 Research on Territorial Ecological Restoration in Mianzhu City, Sichuan, under the Dual Evaluation Framework
Authors: Wenqian Bai
Abstract:
Background: In response to the post-pandemic directives of Xi Jinping concerning the new era of ecological civilization, China has embarked on ecological restoration projects across its territorial spaces. This initiative faces challenges such as complex evaluation metrics and subpar informatization standards. Methodology: This research focuses on Mianzhu City, Sichuan Province, to assess its resource and environmental carrying capacities and the appropriateness of land use for development from ecological, agricultural, and urban perspectives. The study incorporates a range of spatial data to evaluate factors like ecosystem services (including water conservation, soil retention, and biodiversity), ecological vulnerability (addressing issues like soil erosion and desertification), and resilience. Utilizing the Minimum Cumulative Resistance model along with the ‘Three Zones and Three Lines’ strategy, the research maps out ecological corridors and significant ecological networks. These frameworks support the ecological restoration and environmental enhancement of the area. Results: The study identifies critical ecological zones in Mianzhu City's northwestern region, highlighting areas essential for protection and particularly crucial for water conservation. The southeastern region is categorized as a generally protected ecological zone with respective ratings for water conservation functionality and ecosystem resilience. The research also explores the spatial challenges of three ecological functions and underscores the substantial impact of human activities, such as mining and agricultural expansion, on the ecological baseline. The proposed spatial arrangement for ecological restoration, termed ‘One Mountain, One Belt, Four Rivers, Five Zones, and Multiple Corridors’, strategically divides the city into eight major restoration zones, each with specific tasks and projects. Conclusion: With its significant ‘mountain-plain’ geography, Mianzhu City acts as a crucial ecological buffer for the Yangtze River's upper reaches. Future development should focus on enhancing ecological corridors in agriculture and urban areas, controlling soil erosion, and converting farmlands back to forests and grasslands to foster ecosystem rehabilitation.Keywords: ecological restoration, resource and environmental carrying capacity, land development suitability, ecosystem services, ecological vulnerability, ecological networks
Procedia PDF Downloads 3923951 Foundation of the Information Model for Connected-Cars
Authors: Hae-Won Seo, Yong-Gu Lee
Abstract:
Recent progress in the next generation of automobile technology is geared towards incorporating information technology into cars. Collectively called smart cars are bringing intelligence to cars that provides comfort, convenience and safety. A branch of smart cars is connected-car system. The key concept in connected-cars is the sharing of driving information among cars through decentralized manner enabling collective intelligence. This paper proposes a foundation of the information model that is necessary to define the driving information for smart-cars. Road conditions are modeled through a unique data structure that unambiguously represent the time variant traffics in the streets. Additionally, the modeled data structure is exemplified in a navigational scenario and usage using UML. Optimal driving route searching is also discussed using the proposed data structure in a dynamically changing road conditions.Keywords: connected-car, data modeling, route planning, navigation system
Procedia PDF Downloads 37423950 Bridging Educational Research and Policymaking: The Development of Educational Think Tank in China
Authors: Yumei Han, Ling Li, Naiqing Song, Xiaoping Yang, Yuping Han
Abstract:
Educational think tank is agreeably regarded as significant part of a nation’s soft power to promote the scientific and democratic level of educational policy making, and it plays critical role of bridging educational research in higher institutions and educational policy making. This study explores the concept, functions and significance of educational think tank in China, and conceptualizes a three dimensional framework to analyze the approaches of transforming research-based higher institutions into effective educational think tanks to serve educational policy making in the nation wide. Since 2014, the Ministry of Education P.R. China has been promoting the strategy of developing new type of educational think tanks in higher institutions, and such a strategy has been put into the agenda for the 13th Five Year Plan for National Education Development released in 2017.In such context, increasing scholars conduct studies to put forth strategies of promoting the development and transformation of new educational think tanks to serve educational policy making process. Based on literature synthesis, policy text analysis, and analysis of theories about policy making process and relationship between educational research and policy-making, this study constructed a three dimensional conceptual framework to address the following questions: (a) what are the new features of educational think tanks in the new era comparing traditional think tanks, (b) what are the functional objectives of the new educational think tanks, (c) what are the organizational patterns and mechanism of the new educational think tanks, (d) in what approaches traditional research-based higher institutions can be developed or transformed into think tanks to effectively serve the educational policy making process. The authors adopted case study approach on five influential education policy study centers affiliated with top higher institutions in China and applied the three dimensional conceptual framework to analyze their functional objectives, organizational patterns as well as their academic pathways that researchers use to contribute to the development of think tanks to serve education policy making process.Data was mainly collected through interviews with center administrators, leading researchers and academic leaders in the institutions. Findings show that: (a) higher institution based think tanks mainly function for multi-level objectives, providing evidence, theoretical foundations, strategies, or evaluation feedbacks for critical problem solving or policy-making on the national, provincial, and city/county level; (b) higher institution based think tanks organize various types of research programs for different time spans to serve different phases of policy planning, decision making, and policy implementation; (c) in order to transform research-based higher institutions into educational think tanks, the institutions must promote paradigm shift that promotes issue-oriented field studies, large data mining and analysis, empirical studies, and trans-disciplinary research collaborations; and (d) the five cases showed distinguished features in their way of constructing think tanks, and yet they also exposed obstacles and challenges such as independency of the think tanks, the discourse shift from academic papers to consultancy report for policy makers, weakness in empirical research methods, lack of experience in trans-disciplinary collaboration. The authors finally put forth implications for think tank construction in China and abroad.Keywords: education policy-making, educational research, educational think tank, higher institution
Procedia PDF Downloads 15823949 Automated Multisensory Data Collection System for Continuous Monitoring of Refrigerating Appliances Recycling Plants
Authors: Georgii Emelianov, Mikhail Polikarpov, Fabian Hübner, Jochen Deuse, Jochen Schiemann
Abstract:
Recycling refrigerating appliances plays a major role in protecting the Earth's atmosphere from ozone depletion and emissions of greenhouse gases. The performance of refrigerator recycling plants in terms of material retention is the subject of strict environmental certifications and is reviewed periodically through specialized audits. The continuous collection of Refrigerator data required for the input-output analysis is still mostly manual, error-prone, and not digitalized. In this paper, we propose an automated data collection system for recycling plants in order to deduce expected material contents in individual end-of-life refrigerating appliances. The system utilizes laser scanner measurements and optical data to extract attributes of individual refrigerators by applying transfer learning with pre-trained vision models and optical character recognition. Based on Recognized features, the system automatically provides material categories and target values of contained material masses, especially foaming and cooling agents. The presented data collection system paves the way for continuous performance monitoring and efficient control of refrigerator recycling plants.Keywords: automation, data collection, performance monitoring, recycling, refrigerators
Procedia PDF Downloads 16423948 Sales Patterns Clustering Analysis on Seasonal Product Sales Data
Authors: Soojin Kim, Jiwon Yang, Sungzoon Cho
Abstract:
As a seasonal product is only in demand for a short time, inventory management is critical to profits. Both markdowns and stockouts decrease the return on perishable products; therefore, researchers have been interested in the distribution of seasonal products with the aim of maximizing profits. In this study, we propose a data-driven seasonal product sales pattern analysis method for individual retail outlets based on observed sales data clustering; the proposed method helps in determining distribution strategies.Keywords: clustering, distribution, sales pattern, seasonal product
Procedia PDF Downloads 59723947 Probability Sampling in Matched Case-Control Study in Drug Abuse
Authors: Surya R. Niraula, Devendra B Chhetry, Girish K. Singh, S. Nagesh, Frederick A. Connell
Abstract:
Background: Although random sampling is generally considered to be the gold standard for population-based research, the majority of drug abuse research is based on non-random sampling despite the well-known limitations of this kind of sampling. Method: We compared the statistical properties of two surveys of drug abuse in the same community: one using snowball sampling of drug users who then identified “friend controls” and the other using a random sample of non-drug users (controls) who then identified “friend cases.” Models to predict drug abuse based on risk factors were developed for each data set using conditional logistic regression. We compared the precision of each model using bootstrapping method and the predictive properties of each model using receiver operating characteristics (ROC) curves. Results: Analysis of 100 random bootstrap samples drawn from the snowball-sample data set showed a wide variation in the standard errors of the beta coefficients of the predictive model, none of which achieved statistical significance. One the other hand, bootstrap analysis of the random-sample data set showed less variation, and did not change the significance of the predictors at the 5% level when compared to the non-bootstrap analysis. Comparison of the area under the ROC curves using the model derived from the random-sample data set was similar when fitted to either data set (0.93, for random-sample data vs. 0.91 for snowball-sample data, p=0.35); however, when the model derived from the snowball-sample data set was fitted to each of the data sets, the areas under the curve were significantly different (0.98 vs. 0.83, p < .001). Conclusion: The proposed method of random sampling of controls appears to be superior from a statistical perspective to snowball sampling and may represent a viable alternative to snowball sampling.Keywords: drug abuse, matched case-control study, non-probability sampling, probability sampling
Procedia PDF Downloads 493