Search results for: building performance rating tool
4383 Energetic and Exergetic Evaluation of Box-Type Solar Cookers Using Different Insulation Materials
Authors: A. K. Areamu, J. C. Igbeka
Abstract:
The performance of box-type solar cookers has been reported by several researchers but little attention was paid to the effect of the type of insulation material on the energy and exergy efficiency of these cookers. This research aimed at evaluating the energy and exergy efficiencies of the box-type cookers containing different insulation materials. Energy and exergy efficiencies of five box-type solar cookers insulated with maize cob, air (control), maize husk, coconut coir and polyurethane foam respectively were obtained over a period of three years. The cookers were evaluated using water heating test procedures in determining the energy and exergy analysis. The results were subjected to statistical analysis using ANOVA. The result shows that the average energy input for the five solar cookers were: 245.5, 252.2, 248.7, 241.5 and 245.5J respectively while their respective average energy losses were: 201.2, 212.7, 208.4, 189.1 and 199.8J. The average exergy input for five cookers were: 228.2, 234.4, 231.1, 224.4 and 228.2J respectively while their respective average exergy losses were: 223.4, 230.6, 226.9, 218.9 and 223.0J. The energy and exergy efficiency was highest in the cooker with coconut coir (37.35 and 3.90% respectively) in the first year but was lowest for air (11 and 1.07% respectively) in the third year. Statistical analysis showed significant difference between the energy and exergy efficiencies over the years. These results reiterate the importance of a good insulating material for a box-type solar cooker.Keywords: efficiency, energy, exergy, heating insolation
Procedia PDF Downloads 3674382 Lc-Ms N-Alkylamide Profiling of an Ethanolic Anacyclus pyrethrum Root Extract
Authors: Vikas Sharma, V. K. Dixit
Abstract:
The roots of Anacyclus pyrethrum DC (AP) (Asteraceae) are frequently used in traditional medicine as Vajikarana Rasayana. An ethanolic extract of root of Anacyclus pyrethrum demonstrated its potential to enhance the sexual behaviour of male rats, with a dose dependent effect on sperm count and androgens concentration. Phytochemical analysis of ethanolic extract of Anacyclus pyrethrum revealed that it is rich in N-alkylamide. This study therefore sought to assess characterization of ethanolic extract of Anacyclus pyrethrum root. Root extract was performed using a gradient reversed phase high performance liquid chromatography/UV/electrospray ionization ion trap mass spectrometry (HPLC/ESI-MS) method on an embedded polar column. MS1 and MS2 fragmentation data were used for identification purposes, while UV was used for quantification. Thirteen N-alkylamides (five N-isobutylamides, three N-methyl isobutylamides, four tyramides, and one 2-phenylethylamide) were detected. Five of them identified as undeca-2E,4E-diene-8,10-diynoic acid N-methyl isobutylamide, tetradeca-2E,4E-diene-8,10-diynoic acid tyramide, deca-2E,4E-dienoic acid N-methyl isobutylamide, tetradeca-2E,4E,XE/Z-trienoic acid tyramide and tetradeca-2E,4E,8Z,10Z-tetraenoic isobutylamide are novel compounds, which have never been identified in Anacyclus pyrethrum.Keywords: Anacyclus pyrethrum (Asteraceae), LC-MS plant profiling, N-alkylamides, pellitorine, anacycline
Procedia PDF Downloads 4024381 Multiscale Computational Approach to Enhance the Understanding, Design and Development of CO₂ Catalytic Conversion Technologies
Authors: Agnieszka S. Dzielendziak, Lindsay-Marie Armstrong, Matthew E. Potter, Robert Raja, Pier J. A. Sazio
Abstract:
Reducing carbon dioxide, CO₂, is one of the greatest global challenges. Conversion of CO₂ for utilisation across synthetic fuel, pharmaceutical, and agrochemical industries offers a promising option, yet requires significant research to understanding the complex multiscale processes involved. To experimentally understand and optimize such processes at that catalytic sites and exploring the impact of the process at reactor scale, is too expensive. Computational methods offer significant insight and flexibility but require a more detailed multi-scale approach which is a significant challenge in itself. This work introduces a computational approach which incorporates detailed catalytic models, taken from experimental investigations, into a larger-scale computational flow dynamics framework. The reactor-scale species transport approach is modified near the catalytic walls to determine the influence of catalytic clustering regions. This coupling approach enables more accurate modelling of velocity, pressures, temperatures, species concentrations and near-wall surface characteristics which will ultimately enable the impact of overall reactor design on chemical conversion performance.Keywords: catalysis, CCU, CO₂, multi-scale model
Procedia PDF Downloads 2534380 Least-Square Support Vector Machine for Characterization of Clusters of Microcalcifications
Authors: Baljit Singh Khehra, Amar Partap Singh Pharwaha
Abstract:
Clusters of Microcalcifications (MCCs) are most frequent symptoms of Ductal Carcinoma in Situ (DCIS) recognized by mammography. Least-Square Support Vector Machine (LS-SVM) is a variant of the standard SVM. In the paper, LS-SVM is proposed as a classifier for classifying MCCs as benign or malignant based on relevant extracted features from enhanced mammogram. To establish the credibility of LS-SVM classifier for classifying MCCs, a comparative evaluation of the relative performance of LS-SVM classifier for different kernel functions is made. For comparative evaluation, confusion matrix and ROC analysis are used. Experiments are performed on data extracted from mammogram images of DDSM database. A total of 380 suspicious areas are collected, which contain 235 malignant and 145 benign samples, from mammogram images of DDSM database. A set of 50 features is calculated for each suspicious area. After this, an optimal subset of 23 most suitable features is selected from 50 features by Particle Swarm Optimization (PSO). The results of proposed study are quite promising.Keywords: clusters of microcalcifications, ductal carcinoma in situ, least-square support vector machine, particle swarm optimization
Procedia PDF Downloads 3544379 3D Numerical Investigation of Asphalt Pavements Behaviour Using Infinite Elements
Authors: K. Sandjak, B. Tiliouine
Abstract:
This article presents the main results of three-dimensional (3-D) numerical investigation of asphalt pavement structures behaviour using a coupled Finite Element-Mapped Infinite Element (FE-MIE) model. The validation and numerical performance of this model are assessed by confronting critical pavement responses with Burmister’s solution and FEM simulation results for multi-layered elastic structures. The coupled model is then efficiently utilised to perform 3-D simulations of a typical asphalt pavement structure in order to investigate the impact of two tire configurations (conventional dual and new generation wide-base tires) on critical pavement response parameters. The numerical results obtained show the effectiveness and the accuracy of the coupled (FE-MIE) model. In addition, the simulation results indicate that, compared with conventional dual tire assembly, single wide base tire caused slightly greater fatigue asphalt cracking and subgrade rutting potentials and can thus be utilised in view of its potential to provide numerous mechanical, economic, and environmental benefits.Keywords: 3-D numerical investigation, asphalt pavements, dual and wide base tires, Infinite elements
Procedia PDF Downloads 2154378 A Machine Learning Approach for Intelligent Transportation System Management on Urban Roads
Authors: Ashish Dhamaniya, Vineet Jain, Rajesh Chouhan
Abstract:
Traffic management is one of the gigantic issue in most of the urban roads in al-most all metropolitan cities in India. Speed is one of the critical traffic parameters for effective Intelligent Transportation System (ITS) implementation as it decides the arrival rate of vehicles on an intersection which are majorly the point of con-gestions. The study aimed to leverage Machine Learning (ML) models to produce precise predictions of speed on urban roadway links. The research objective was to assess how categorized traffic volume and road width, serving as variables, in-fluence speed prediction. Four tree-based regression models namely: Decision Tree (DT), Random Forest (RF), Extra Tree (ET), and Extreme Gradient Boost (XGB)are employed for this purpose. The models' performances were validated using test data, and the results demonstrate that Random Forest surpasses other machine learning techniques and a conventional utility theory-based model in speed prediction. The study is useful for managing the urban roadway network performance under mixed traffic conditions and effective implementation of ITS.Keywords: stream speed, urban roads, machine learning, traffic flow
Procedia PDF Downloads 704377 Characteristics of Elastic Tracked-Crawler Based on Worm-Rack Mechanism
Authors: Jun-ya Nagase
Abstract:
There are many pipes such as a water pipe and a gas pipe in a chemical plant and house. It is possible to prevent accidents by these inspections. However, many pipes are very narrow and it is difficult for people to inspect directly. Therefore, development of a robot that can move in narrow pipe is necessary. A wheel movement type robot, a snake-like robot and a multi-leg robot are all described in the relevant literature as pipe inspection robots that are currently studied. Among them, the tracked crawler robot can travel by traversing uneven ground flexibly with a crawler belt attached firmly to the ground surface. Although conventional crawler robots have high efficiency and/or high ground-covering ability, they require a comparatively large space to move. In this study, a cylindrical crawler robot based on worm-rack mechanism, which does not need large space to move and which has high ground-covering ability, is proposed. Experiments have demonstrated smooth operation and a forward movement of the robot by application of voltage to the motor. In addition, performance tests show that it can propel itself in confined spaces. This paper reports the structure, drive mechanism, prototype, and experimental evaluation.Keywords: tracked-crawler, pipe inspection robot, worm-rack mechanism, amoeba locomotion
Procedia PDF Downloads 4314376 Improved Blood Glucose-Insulin Monitoring with Dual-Layer Predictive Control Design
Authors: Vahid Nademi
Abstract:
In response to widely used wearable medical devices equipped with a continuous glucose monitor (CGM) and insulin pump, the advanced control methods are still demanding to get the full benefit of these devices. Unlike costly clinical trials, implementing effective insulin-glucose control strategies can provide significant contributions to the patients suffering from chronic diseases such as diabetes. This study deals with a key role of two-layer insulin-glucose regulator based on model-predictive-control (MPC) scheme so that the patient’s predicted glucose profile is in compliance with the insulin level injected through insulin pump automatically. It is achieved by iterative optimization algorithm which is called an integrated perturbation analysis and sequential quadratic programming (IPA-SQP) solver for handling uncertainties due to unexpected variations in glucose-insulin values and body’s characteristics. The feasibility evaluation of the discussed control approach is also studied by means of numerical simulations of two case scenarios via measured data. The obtained results are presented to verify the superior and reliable performance of the proposed control scheme with no negative impact on patient safety.Keywords: blood glucose monitoring, insulin pump, predictive control, optimization
Procedia PDF Downloads 1364375 Influence of UV/Ozone Treatment on the Electrical Performance of Polystyrene Buffered Pentacene-Based OFETs
Authors: Lin Gong, Holger Göbel
Abstract:
In the present study, we have investigated the influence of UV/ozone treatment on pentacene-based organic field effect transistors (OFETs) with a bilayer gate dielectric. The OFETs for this study were fabricated on heavily n-doped Si substrates with a thermally deposited SiO2 dielectric layer (300nm). On the SiO2 dielectric a very thin (≈ 15nm) buffer layer of polystyrene (PS) was first spin-coated and then treated by UV/ozone to modify the surface prior to the deposition of pentacene. We found out that by extending the UV/ozone treatment time the threshold voltage of the OFETs was monotonically shifted towards positive values, whereas the field effect mobility first decreased but eventually reached a stable value after a treatment time of approximately thirty seconds. Since the field effect mobility of the UV/ozone treated bilayer OFETs was found to be higher than the value of a comparable transistor with a single layer dielectric, we propose that the bilayer (SiO2/PS) structure can be used to shift the threshold voltage to a desired value without sacrificing field effect mobility.Keywords: buffer layer, organic field effect transistors, threshold voltage, UV/ozone treatment
Procedia PDF Downloads 3374374 Effects of Classroom Management Strategies on Students’ Well-Being at Secondary Level
Authors: Saba Latif
Abstract:
The study is about exploring the Impact of Classroom Management Techniques on students’ Well-being at the secondary level. The objectives of the study are to identify the classroom management practices of teachers and their impact on students’ achievement. All secondary schools of Lahore city are the population of study. The researcher randomly selected ten schools, and from these schools, two hundred students participated in this study. Data has been collected by using Classroom Management and Students’ Wellbeing questionnaire. Frequency analysis has been applied. The major findings of the study are calculated as follows: The teacher’s instructional activities affect classroom management. The secondary school students' seating arrangement can influence the learning-teaching process. Secondary school students strongly disagree with the statement that the large size of the class affects the teacher’s classroom management. The learning environment of the class helps students participate in question-and-answer sessions. All the activities of the teachers are in accordance with practices in the class. The discipline of the classroom helps the students to learn more. The role of the teacher is to guide, and it enhances the performance of the teacher. The teacher takes time on disciplinary rules and regulations of the classroom. The teacher appreciates them when they complete the given task. The teacher appreciates teamwork in the class.Keywords: classroom management, strategies, wellbeing, practices
Procedia PDF Downloads 514373 The Contribution of Algerian Sports Channels on YouTube to the Marketing of Professional Players Abroad: The View of Algerian Sports Content Makers
Authors: Ali Mana, Okba Lahmar
Abstract:
It is natural that sports media seeks to reach the audience of viewers wherever they are and at any time. Perhaps YouTube is one of the most important platforms in which the Algerian audience resides, as Alexa, which is one of the most important tools for providing usage statistics, indicated that the number of Algerian audience views of this site has exceeded 11 million views per month, and many Algerian content makers have initiated the creation of Sports channels in order to achieve profit goals. They also seek through it to market professional footballers abroad, in addition to influencing the opinions of fans towards them. This scene directs us to study the extent to which these channels contribute to discovering professional players, marketing to them, and protecting them from negative criticism. We also aim to know the extent of the influence of the content makers of these channels on the Algerian audience and to raise their awareness of the positive support of the players, regardless of their level of performance. To collect the necessary data, a descriptive study was conducted in which interview and observation were adopted as two basic tools. The sample included 04 sports content makers out of the total community that organizes more than 50 channels. It was chosen intentionally and included channels with more than 300,000 subscribers.Keywords: sports content creators, YouTube, professional player, Algerian public, sports marketing
Procedia PDF Downloads 764372 Machine Learning Techniques for Estimating Ground Motion Parameters
Authors: Farid Khosravikia, Patricia Clayton
Abstract:
The main objective of this study is to evaluate the advantages and disadvantages of various machine learning techniques in forecasting ground-motion intensity measures given source characteristics, source-to-site distance, and local site condition. Intensity measures such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Estimating these variables for future earthquake events is a key step in seismic hazard assessment and potentially subsequent risk assessment of different types of structures. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as a statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The algorithms are adjusted to quantify event-to-event and site-to-site variability of the ground motions by implementing them as random effects in the proposed models to reduce the aleatory uncertainty. All the algorithms are trained using a selected database of 4,528 ground-motions, including 376 seismic events with magnitude 3 to 5.8, recorded over the hypocentral distance range of 4 to 500 km in Oklahoma, Kansas, and Texas since 2005. The main reason of the considered database stems from the recent increase in the seismicity rate of these states attributed to petroleum production and wastewater disposal activities, which necessities further investigation in the ground motion models developed for these states. Accuracy of the models in predicting intensity measures, generalization capability of the models for future data, as well as usability of the models are discussed in the evaluation process. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available.Keywords: artificial neural network, ground-motion models, machine learning, random forest, support vector machine
Procedia PDF Downloads 1224371 Handover for Dense Small Cells Heterogeneous Networks: A Power-Efficient Game Theoretical Approach
Authors: Mohanad Alhabo, Li Zhang, Naveed Nawaz
Abstract:
In this paper, a non-cooperative game method is formulated where all players compete to transmit at higher power. Every base station represents a player in the game. The game is solved by obtaining the Nash equilibrium (NE) where the game converges to optimality. The proposed method, named Power Efficient Handover Game Theoretic (PEHO-GT) approach, aims to control the handover in dense small cell networks. Players optimize their payoff by adjusting the transmission power to improve the performance in terms of throughput, handover, power consumption and load balancing. To select the desired transmission power for a player, the payoff function considers the gain of increasing the transmission power. Then, the cell selection takes place by deploying Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS). A game theoretical method is implemented for heterogeneous networks to validate the improvement obtained. Results reveal that the proposed method gives a throughput improvement while reducing the power consumption and minimizing the frequent handover.Keywords: energy efficiency, game theory, handover, HetNets, small cells
Procedia PDF Downloads 1274370 Efficient High Fidelity Signal Reconstruction Based on Level Crossing Sampling
Authors: Negar Riazifar, Nigel G. Stocks
Abstract:
This paper proposes strategies in level crossing (LC) sampling and reconstruction that provide high fidelity signal reconstruction for speech signals; these strategies circumvent the problem of exponentially increasing number of samples as the bit-depth is increased and hence are highly efficient. Specifically, the results indicate that the distribution of the intervals between samples is one of the key factors in the quality of signal reconstruction; including samples with short intervals do not improve the accuracy of the signal reconstruction, whilst samples with large intervals lead to numerical instability. The proposed sampling method, termed reduced conventional level crossing (RCLC) sampling, exploits redundancy between samples to improve the efficiency of the sampling without compromising performance. A reconstruction technique is also proposed that enhances the numerical stability through linear interpolation of samples separated by large intervals. Interpolation is demonstrated to improve the accuracy of the signal reconstruction in addition to the numerical stability. We further demonstrate that the RCLC and interpolation methods can give useful levels of signal recovery even if the average sampling rate is less than the Nyquist rate.Keywords: level crossing sampling, numerical stability, speech processing, trigonometric polynomial
Procedia PDF Downloads 1464369 Effectiveness of Electronic Learning for Continuing Interprofessional Education on Behavior Change of Healthcare Professionals: A Scoping Review
Authors: Kailin K. Zhang, Anne W. Thompson
Abstract:
Electronic learning for continuing professional education (CPE) and interprofessional education (IPE) in healthcare have been shown to improve learners’ satisfaction, attitudes, and performance. Yet, their impact on behavior change in healthcare professionals through continuing interprofessional education (CIPE) is less known. A scoping review of 32 articles from 2010 to 2020 was conducted using the Arksey and O’Malley framework across all healthcare settings. It focused on evaluating the effectiveness of CIPE on behavior change of healthcare professionals, as well as identifying course features of electronic CIPE programs facilitating behavior change. Eight different types of electronic learning methods, including online programs, tele-education, and social media, were identified as interventions. More than 35,542 healthcare professionals participated in the interventions. Electronic learning for CIPE led to positive behavior outcomes in 30 out of 32 studies, especially through a change in patient care practices. The most successful programs provided interactive and authentic learning experiences tailored to learners’ needs while promoting the direct application of what was learned in their clinical settings. Future research should include monitoring of sustained behavior changes and their resultant patient outcomes.Keywords: behavior change, continuing interprofessional education, distance learning, electronic learning
Procedia PDF Downloads 1444368 Youth Health Promotion Project for Indigenous People in Canada: Together against Bullying and Cyber-Dependence
Authors: Mohamed El Fares Djellatou, Fracoise Filion
Abstract:
The Ashukin program that means bridge in Naskapi or Atikamekw language, has been designed to offer a partnership between nursing students and an indigenous community. The students design a health promotion project tailored to the needs of the community. The issues of intimidation in primary school and cyber-dependence in high school were some concerns in a rural Atikamekw community. The goal of the project was to have a conversation with indigenous youths, aged 10-16 years old, on the challenges presented by intimidation and cyber dependence as well as promoting healthy relationships online and within the community. Methods: Multiple progressive inquiry questions (PIQs) were used to assess the feasibility and importance of this project for the Atikamekw nation, and to determine a plan to follow. The theoretical foundations to guide the conception of the project were the Population Health Promotion Model (PHPM), the First Nations Holistic Lifelong Learning Model, and the Medicine Wheel. A broad array of social determinants of health were addressed, including healthy childhood development, personal health practices, and coping skills, and education. The youths were encouraged to participate in interactive educational sessions, using PowerPoint presentations and pamphlets as the main effective strategies. Additional tools such as cultural artworks and physical activities were introduced to strengthen the inter-relational and team spirit within the Indigenous population. A quality assurance tool (QAT) was developed specifically to determine the appropriateness of these health promotion tools. Improvements were guided by the feedback issued by the indigenous schools’ teachers and social workers who filled the QATs. Post educational sessions, quantitative results have shown that 93.48% of primary school students were able to identify the different types of intimidation, 72.65% recognized more than two strategies, and 52.1% were able to list at least four resources to diffuse intimidation. On the other hand, around 75% of the adolescents were able to name at least three negative effects, and 50% listed three strategies to reduce cyber-dependence. This project was meant to create a bridge with the First Nation through health promotion, a population that is known to be disadvantaged due to systemic health inequity and disparities. Culturally safe care was proposed to deal with the two identified priority issues, and an educational toolkit was given to both schools to ensure the sustainability of the project. The project was self-financed through fundraising activities, and it yielded better results than expected.Keywords: indigenous, first nation, bullying, cyber-dependence, internet addiction, intimidation, youth, adolescents, school, community nursing, health promotion
Procedia PDF Downloads 984367 The Role of Poling Protocol on Augmentation of Magnetoelectricity in BCZT/NZFO Layered Composites
Authors: Pankhuri Bansal, Sanjeev Kumar
Abstract:
We examined the exotic role of electrical poling of layered BCZT-NZFO bulk composite for sustainable advancement of magnetoelectric (ME) technology. Practically, it seems quite difficult to access the full potential of ME composites due to their weak ME coupling performances. Using a standard poling protocol, we successfully deployed the coupling performance of laminated ME composite, comprised of a ferroelectric (FE) layer of BCZT and a ferrite layer of NZFO. However, the ME coupling constant of laminated composite is optimized by lowering the volume fraction of the FE component to strengthen the mechanical strain in the piezoelectric layer while fixing the thickness of the magnetostrictive ferrite layer. Here, we employed systematic zero field cooled (ZFC) and field cooled (FC) electrical poling protocol on morphotropic phase boundary (MPB) based BCZT composition, well-appreciated for it’s remarkable electromechanical activity. We report a record augmentation in magnetoelectric coupling as a consequence of a prudent field-cooled poling mechanism. On the basis of our findings, we emphasize that the degree of magnetoelectricity may be significantly improved for the miniaturization of efficient devices via proper execution of the poling technique.Keywords: magnetoelectric, lead-free, ferroelctric, ferromagnetic, energy harvesting
Procedia PDF Downloads 444366 Experimental Study on Modified Double Slope Solar Still and Modified Basin Type Double Slope Multiwick Solar Still
Authors: Piyush Pal, Rahul Dev
Abstract:
Water is essential for life and fresh water is a finite resource that is becoming scarce day by day even though it is recycled by hydrological cycle. The fresh water reserves are being polluted due to expanding irrigation, industries, urban population and its development. Contaminated water leads to several health problems. With the increasing demand of fresh water, solar distillation is an alternate solution which uses solar energy to evaporate water and then to condense it, thereby collecting distilled water within or outside the same system to use it as potable water. The structure that houses the process is known as a 'solar still'. In this paper, ‘Modified double slope solar still (MDSSS)’ & 'Modified double slope basin type multiwick solar still (MDSBMSS)' have been designed to convert saline, brackish water into drinking water. In this work two different modified solar stills are fabricated to study the performance of these solar stills. For modification of solar stills, Fibre Reinforced Plastic (FRP) and Acrylic sheets are used. The experiments in MDSBMSS and MDSSS was carried on 10 September 2015 & 5 November 2015 respectively. Performances of the stills were investigated. The amount of distillate has been found 3624 Ml/day in MDSBMSS on 10 September 2015 and 2400 Ml/day in MDSSS on 5 November 2015.Keywords: contaminated water, conventional solar still, modified solar still, wick
Procedia PDF Downloads 4324365 Pitch Processing in Autistic Mandarin-Speaking Children with Hypersensitivityand Hypo-Sensitivity: An Event-Related Potential Study
Authors: Kaiying Lai, Suiping Wang, Luodi Yu, Yang Zhang, Pengmin Qin
Abstract:
Abnormalities in auditory processing are one of the most commonly reported sensory processing impairments in children with Autism Spectrum Disorder (ASD). Tonal language speaker with autism has enhanced neural sensitivity to pitch changes in pure tone. However, not all children with ASD exhibit the same performance in pitch processing due to different auditory sensitivity. The current study aimed to examine auditory change detection in ASD with different auditory sensitivity. K-means clustering method was adopted to classify ASD participants into two groups according to the auditory processing scores of the Sensory Profile, 11 autism with hypersensitivity (mean age = 11.36 ; SD = 1.46) and 18 with hypo-sensitivity (mean age = 10.64; SD = 1.89) participated in a passive auditory oddball paradigm designed for eliciting mismatch negativity (MMN) under the pure tone condition. Results revealed that compared to hypersensitive autism, the children with hypo-sensitivity showed smaller MMN responses to pure tone stimuli. These results suggest that ASD with auditory hypersensitivity and hypo-sensitivity performed differently in processing pure tone, so neural responses to pure tone hold promise for predicting the auditory sensitivity of ASD and targeted treatment in children with ASD.Keywords: ASD, sensory profile, pitch processing, mismatch negativity, MMN
Procedia PDF Downloads 3914364 Towards the Development of Uncertainties Resilient Business Model for Driving the Solar Panel Industry in Nigeria Power Sector
Authors: Balarabe Z. Ahmad, Anne-Lorène Vernay
Abstract:
The emergence of electricity in Nigeria was dated back to 1896. The power plants have the potential to generate 12,522 MW of electric power. Whereas current dispatch is about 4,000 MW, access to electrification is about 60%, with consumption at 0.14 MWh/capita. The government embarked on energy reforms to mitigate energy poverty. The reform targeted the provision of electricity access to 75% of the population by 2020 and 90% by 2030. Growth of total electricity demand by a factor of 5 by 2035 had been projected. This means that Nigeria will require almost 530 TWh of electricity which can be delivered through generators with a capacity of 65 GW. Analogously, the geographical location of Nigeria has placed it in an advantageous position as the source of solar energy; the availability of a high sunshine belt is obvious in the country. The implication is that the far North, where energy poverty is high, equally has about twice the solar radiation as against southern Nigeria. Hence, the chance of generating solar electricity is 66% possible at 11850 x 103 GWh per year, which is one hundred times the current electricity consumption rate in the country. Harvesting these huge potentials may be a mirage if the entrepreneurs in the solar panel business are left with the conventional business models that are not uncertainty resilient. Currently, business entities in RE in Nigeria are uncertain of; accessing the national grid, purchasing potentials of cooperating organizations, currency fluctuation and interest rate increases. Uncertainties such as the security of projects and government policy are issues entrepreneurs must navigate to remain sustainable in the solar panel industry in Nigeria. The aim of this paper is to identify how entrepreneurial firms consider uncertainties in developing workable business models for commercializing solar energy projects in Nigeria. In an attempt to develop a novel business model, the paper investigated how entrepreneurial firms assess and navigate uncertainties. The roles of key stakeholders in helping entrepreneurs to manage uncertainties in the Nigeria RE sector were probed in the ongoing study. The study explored empirical uncertainties that are peculiar to RE entrepreneurs in Nigeria. A mixed-mode of research was embraced using qualitative data from face-to-face interviews conducted on the Solar Energy Entrepreneurs and the experts drawn from key stakeholders. Content analysis of the interview was done using Atlas. It is a nine qualitative tool. The result suggested that all stakeholders are required to synergize in developing an uncertainty resilient business model. It was opined that the RE entrepreneurs need modifications in the business recommendations encapsulated in the energy policy in Nigeria to strengthen their capability in delivering solar energy solutions to the yawning Nigerians.Keywords: uncertainties, entrepreneurial, business model, solar-panel
Procedia PDF Downloads 1494363 Spontaneous and Posed Smile Detection: Deep Learning, Traditional Machine Learning, and Human Performance
Authors: Liang Wang, Beste F. Yuksel, David Guy Brizan
Abstract:
A computational model of affect that can distinguish between spontaneous and posed smiles with no errors on a large, popular data set using deep learning techniques is presented in this paper. A Long Short-Term Memory (LSTM) classifier, a type of Recurrent Neural Network, is utilized and compared to human classification. Results showed that while human classification (mean of 0.7133) was above chance, the LSTM model was more accurate than human classification and other comparable state-of-the-art systems. Additionally, a high accuracy rate was maintained with small amounts of training videos (70 instances). The derivation of important features to further understand the success of our computational model were analyzed, and it was inferred that thousands of pairs of points within the eyes and mouth are important throughout all time segments in a smile. This suggests that distinguishing between a posed and spontaneous smile is a complex task, one which may account for the difficulty and lower accuracy of human classification compared to machine learning models.Keywords: affective computing, affect detection, computer vision, deep learning, human-computer interaction, machine learning, posed smile detection, spontaneous smile detection
Procedia PDF Downloads 1254362 The Model Establishment and Analysis of TRACE/FRAPTRAN for Chinshan Nuclear Power Plant Spent Fuel Pool
Authors: J. R. Wang, H. T. Lin, Y. S. Tseng, W. Y. Li, H. C. Chen, S. W. Chen, C. Shih
Abstract:
TRACE is developed by U.S. NRC for the nuclear power plants (NPPs) safety analysis. We focus on the establishment and application of TRACE/FRAPTRAN/SNAP models for Chinshan NPP (BWR/4) spent fuel pool in this research. The geometry is 12.17 m × 7.87 m × 11.61 m for the spent fuel pool. In this study, there are three TRACE/SNAP models: one-channel, two-channel, and multi-channel TRACE/SNAP model. Additionally, the cooling system failure of the spent fuel pool was simulated and analyzed by using the above models. According to the analysis results, the peak cladding temperature response was more accurate in the multi-channel TRACE/SNAP model. The results depicted that the uncovered of the fuels occurred at 2.7 day after the cooling system failed. In order to estimate the detailed fuel rods performance, FRAPTRAN code was used in this research. According to the results of FRAPTRAN, the highest cladding temperature located on the node 21 of the fuel rod (the highest node at node 23) and the cladding burst roughly after 3.7 day.Keywords: TRACE, FRAPTRAN, BWR, spent fuel pool
Procedia PDF Downloads 3574361 Attention-Based ResNet for Breast Cancer Classification
Authors: Abebe Mulugojam Negash, Yongbin Yu, Ekong Favour, Bekalu Nigus Dawit, Molla Woretaw Teshome, Aynalem Birtukan Yirga
Abstract:
Breast cancer remains a significant health concern, necessitating advancements in diagnostic methodologies. Addressing this, our paper confronts the notable challenges in breast cancer classification, particularly the imbalance in datasets and the constraints in the accuracy and interpretability of prevailing deep learning approaches. We proposed an attention-based residual neural network (ResNet), which effectively combines the robust features of ResNet with an advanced attention mechanism. Enhanced through strategic data augmentation and positive weight adjustments, this approach specifically targets the issue of data imbalance. The proposed model is tested on the BreakHis dataset and achieved accuracies of 99.00%, 99.04%, 98.67%, and 98.08% in different magnifications (40X, 100X, 200X, and 400X), respectively. We evaluated the performance by using different evaluation metrics such as precision, recall, and F1-Score and made comparisons with other state-of-the-art methods. Our experiments demonstrate that the proposed model outperforms existing approaches, achieving higher accuracy in breast cancer classification.Keywords: residual neural network, attention mechanism, positive weight, data augmentation
Procedia PDF Downloads 1024360 Development of K-Factor for Road Geometric Design: A Case Study of North Coast Road in Java
Authors: Edwin Hidayat, Redi Yulianto, Disi Hanafiah
Abstract:
On the one hand, parameters which are used for determining the number of lane on the new road construction are average annual average daily traffic (AADT) and peak hour factor (K-factor). On the other hand, the value of K-factor listed in the guidelines and manual for road planning in Indonesia is a value of adoption or adaptation from foreign guidelines or manuals. Thus, the value is less suitable for Indonesian condition due to differences in road conditions, vehicle type, and driving behavior. The purpose of this study is to provide an example on how to determine k-factor values at a road segment with particular conditions in north coast road, West Java. The methodology is started with collecting traffic volume data for 24 hours over 365 days using PLATO (Automated Traffic Counter) with the approach of video image processing. Then, the traffic volume data is divided into per hour and analyzed by comparing the peak traffic volume in the 30th hour (or other) with the AADT in the same year. The analysis has resulted that for the 30th peak hour the K-factor is 0.97. This value can be used for planning road geometry or evaluating the road capacity performance for the 4/2D interurban road.Keywords: road geometry, K-factor, annual average daily traffic, north coast road
Procedia PDF Downloads 1614359 Audio-Visual Recognition Based on Effective Model and Distillation
Authors: Heng Yang, Tao Luo, Yakun Zhang, Kai Wang, Wei Qin, Liang Xie, Ye Yan, Erwei Yin
Abstract:
Recent years have seen that audio-visual recognition has shown great potential in a strong noise environment. The existing method of audio-visual recognition has explored methods with ResNet and feature fusion. However, on the one hand, ResNet always occupies a large amount of memory resources, restricting the application in engineering. On the other hand, the feature merging also brings some interferences in a high noise environment. In order to solve the problems, we proposed an effective framework with bidirectional distillation. At first, in consideration of the good performance in extracting of features, we chose the light model, Efficientnet as our extractor of spatial features. Secondly, self-distillation was applied to learn more information from raw data. Finally, we proposed a bidirectional distillation in decision-level fusion. In more detail, our experimental results are based on a multi-model dataset from 24 volunteers. Eventually, the lipreading accuracy of our framework was increased by 2.3% compared with existing systems, and our framework made progress in audio-visual fusion in a high noise environment compared with the system of audio recognition without visual.Keywords: lipreading, audio-visual, Efficientnet, distillation
Procedia PDF Downloads 1344358 A Study of Adaptive Fault Detection Method for GNSS Applications
Authors: Je Young Lee, Hee Sung Kim, Kwang Ho Choi, Joonhoo Lim, Sebum Chun, Hyung Keun Lee
Abstract:
A purpose of this study is to develop efficient detection method for Global Navigation Satellite Systems (GNSS) applications based on adaptive estimation. Due to dependence of radio frequency signals, GNSS measurements are dominated by systematic errors in receiver’s operating environment. Thus, to utilize GNSS for aerospace or ground vehicles requiring high level of safety, unhealthy measurements should be considered seriously. For the reason, this paper proposes adaptive fault detection method to deal with unhealthy measurements in various harsh environments. By the proposed method, the test statistics for fault detection is generated by estimated measurement noise. Pseudorange and carrier-phase measurement noise are obtained at time propagations and measurement updates in process of Carrier-Smoothed Code (CSC) filtering, respectively. Performance of the proposed method was evaluated by field-collected GNSS measurements. To evaluate the fault detection capability, intentional faults were added to measurements. The experimental result shows that the proposed detection method is efficient in detecting unhealthy measurements and improves the accuracy of GNSS positioning under fault occurrence.Keywords: adaptive estimation, fault detection, GNSS, residual
Procedia PDF Downloads 5764357 Understanding Evidence Dispersal Caused by the Effects of Using Unmanned Aerial Vehicles in Active Indoor Crime Scenes
Authors: Elizabeth Parrott, Harry Pointon, Frederic Bezombes, Heather Panter
Abstract:
Unmanned aerial vehicles (UAV’s) are making a profound effect within policing, forensic and fire service procedures worldwide. These intelligent devices have already proven useful in photographing and recording large-scale outdoor and indoor sites using orthomosaic and three-dimensional (3D) modelling techniques, for the purpose of capturing and recording sites during and post-incident. UAV’s are becoming an established tool as they are extending the reach of the photographer and offering new perspectives without the expense and restrictions of deploying full-scale aircraft. 3D reconstruction quality is directly linked to the resolution of captured images; therefore, close proximity flights are required for more detailed models. As technology advances deployment of UAVs in confined spaces is becoming more common. With this in mind, this study investigates the effects of UAV operation within active crimes scenes with regard to the dispersal of particulate evidence. To date, there has been little consideration given to the potential effects of using UAV’s within active crime scenes aside from a legislation point of view. Although potentially the technology can reduce the likelihood of contamination by replacing some of the roles of investigating practitioners. There is the risk of evidence dispersal caused by the effect of the strong airflow beneath the UAV, from the downwash of the propellers. The initial results of this study are therefore presented to determine the height of least effect at which to fly, and the commercial propeller type to choose to generate the smallest amount of disturbance from the dataset tested. In this study, a range of commercially available 4-inch propellers were chosen as a starting point due to the common availability and their small size makes them well suited for operation within confined spaces. To perform the testing, a rig was configured to support a single motor and propeller powered with a standalone mains power supply and controlled via a microcontroller. This was to mimic a complete throttle cycle and control the device to ensure repeatability. By removing the variances of battery packs and complex UAV structures to allow for a more robust setup. Therefore, the only changing factors were the propeller and operating height. The results were calculated via computer vision analysis of the recorded dispersal of the sample particles placed below the arm-mounted propeller. The aim of this initial study is to give practitioners an insight into the technology to use when operating within confined spaces as well as recognizing some of the issues caused by UAV’s within active crime scenes.Keywords: dispersal, evidence, propeller, UAV
Procedia PDF Downloads 1634356 Machine Learning Approach for Mutation Testing
Authors: Michael Stewart
Abstract:
Mutation testing is a type of software testing proposed in the 1970s where program statements are deliberately changed to introduce simple errors so that test cases can be validated to determine if they can detect the errors. Test cases are executed against the mutant code to determine if one fails, detects the error and ensures the program is correct. One major issue with this type of testing was it became intensive computationally to generate and test all possible mutations for complex programs. This paper used reinforcement learning and parallel processing within the context of mutation testing for the selection of mutation operators and test cases that reduced the computational cost of testing and improved test suite effectiveness. Experiments were conducted using sample programs to determine how well the reinforcement learning-based algorithm performed with one live mutation, multiple live mutations and no live mutations. The experiments, measured by mutation score, were used to update the algorithm and improved accuracy for predictions. The performance was then evaluated on multiple processor computers. With reinforcement learning, the mutation operators utilized were reduced by 50 – 100%.Keywords: automated-testing, machine learning, mutation testing, parallel processing, reinforcement learning, software engineering, software testing
Procedia PDF Downloads 1984355 Three-Stage Anaerobic Co-digestion of High-Solids Food Waste and Horse Manure
Authors: Kai-Chee Loh, Jingxin Zhang, Yen-Wah Tong
Abstract:
Hydrolysis and acidogenesis are the rate-controlling steps in an anaerobic digestion (AD) process. Considering that the optimum conditions for each stage can be diverse diverse, the development of a multi-stage AD system is likely to the AD efficiency through individual optimization. In this research, we developed a highly integrate three-stage anaerobic digester (HM3) to combine the advantages of dry AD and wet AD for anaerobic co-digestion of food waste and horse manure. The digester design comprised mainly of three chambers - high-solids hydrolysis, high-solids acidogenesis and wet methanogensis. Through comparing the treatment performance with other two control digesters, HM3 presented 11.2 ~22.7% higher methane yield. The improved methane yield was mainly attributed to the functionalized partitioning in the integrated digester, which significantly accelerated the solubilization of solid organic matters and the formation of organic acids, as well as ammonia in the high-solids hydrolytic and acidogenic stage respectively. Additionally, HM3 also showed the highest volatile solids reduction rate among the three digesters. Real-time PCR and pyrosequencing analysis indicated that the abundance and biodiversity of microorganisms including bacteria and archaea in HM3 was much higher than that in the control reactors.Keywords: anaerobic digestion, high-solids, food waste and horse manure, microbial community
Procedia PDF Downloads 4144354 The Development of Modernist Chinese Architecture from the Perspective of Cultural Regionalism in Taiwan: Spatial Practice by the Fieldoffice Architects
Authors: Yilei Yu
Abstract:
Modernism, emerging in the Western world of the 20th century, attempted to create a universal international style, which pulled the architectural and social systems created by classicism back to an initial pure state. However, out of the introspection of the Modernism, Regionalism attempted to restore a humanistic environment and create flexible buildings during the 1950s. Meanwhile, as the first generation of architects came back, the wind of the Regionalism blew to Taiwan. However, with the increasing of political influence and the tightening of free creative space, from the second half of the 1950s to the 1980s, the "real" Regional Architecture, which should have taken roots in Taiwan, becomes the "fake" Regional Architecture filled with the oriental charm. Through the Comparative Method, which includes description, interpretation, juxtaposition, and comparison, this study analyses the difference of the style of the Modernist Chinese Architecture between the period before the 1980s and the after. The paper aims at exploring the development of Regionalism Architecture in Taiwan, which includes three parts. First, the burgeoning period of the "modernist Chinese architecture" in Taiwan was the beginning of the Chinese Nationalist Party's coming to Taiwan to consolidate political power. The architecture of the "Ming and Qing Dynasty Palace Revival Style" dominated the architectural circles in Taiwan. These superficial "regional buildings" have nearly no combination with the local customs of Taiwan, which is difficult to evoke the social identity. Second, in the late 1970s, the second generation of architects headed by Baode Han began focusing on the research and preservation of traditional Taiwanese architecture, and creating buildings combined the terroirs of Taiwan through the imitation of styles. However, some scholars have expressed regret that very few regionalist architectural works that appeared in the 1980s can respond specifically to regional conditions and forms of construction. Instead, most of them are vocabulary-led representations. Third, during the 1990s, by the end of the period of martial law, community building gradually emerged, which made the object of Taiwan's architectural concern gradually extended to the folk and ethnic groups. In the Yilan area, there are many architects who care about the local environment, such as the Field office Architects. Compared with the hollow regionality of the passionate national spirits that emerged during the martial law period, the local practice of the architect team in Yilan can better link the real local environmental life and reflect the true regionality. In conclusion, with the local practice case of the huge construction team in Yilan area, this paper focuses on the Spatial Practice by the Field office Architects to explore the spatial representation of the space and the practical enlightenment in the process of modernist Chinese architecture development in Taiwan.Keywords: regionalism, modernism, Chinese architecture, political landscape, spatial representation
Procedia PDF Downloads 130