Search results for: structural composites
3567 Diversity Indices as a Tool for Evaluating Quality of Water Ways
Authors: Khadra Ahmed, Khaled Kheireldin
Abstract:
In this paper, we present a pedestrian detection descriptor called Fused Structure and Texture (FST) features based on the combination of the local phase information with the texture features. Since the phase of the signal conveys more structural information than the magnitude, the phase congruency concept is used to capture the structural features. On the other hand, the Center-Symmetric Local Binary Pattern (CSLBP) approach is used to capture the texture information of the image. The dimension less quantity of the phase congruency and the robustness of the CSLBP operator on the flat images, as well as the blur and illumination changes, lead the proposed descriptor to be more robust and less sensitive to the light variations. The proposed descriptor can be formed by extracting the phase congruency and the CSLBP values of each pixel of the image with respect to its neighborhood. The histogram of the oriented phase and the histogram of the CSLBP values for the local regions in the image are computed and concatenated to construct the FST descriptor. Several experiments were conducted on INRIA and the low resolution DaimlerChrysler datasets to evaluate the detection performance of the pedestrian detection system that is based on the FST descriptor. A linear Support Vector Machine (SVM) is used to train the pedestrian classifier. These experiments showed that the proposed FST descriptor has better detection performance over a set of state of the art feature extraction methodologies.Keywords: planktons, diversity indices, water quality index, water ways
Procedia PDF Downloads 5183566 Properties of Concrete with Wood Ashes in Construction Engineering
Authors: Piotr-Robert Lazik, Lena Teichmann, Harald Garrecht
Abstract:
Many concrete technologists are looking for a solution to replace fly ashes as a component that occurs as a major component of many types of concrete. The importance of such a component is clear -it saves cement and reduces the amount of CO₂ in the atmosphere that occurs during cement production. For example, the amount of cement in ultrahigh strength concrete (UHPC) is approximately 700-800 kg/m³ in normal concrete up to 350 kg/m³. For this reason, it is easy to follow that the use of components like fly ashes or wood ashes protect the environment. The newest investigations carried out at the University of Stuttgart have clearly shown that the use of wood ashes with appropriate pre-treatment in concrete has a positive effect. German-wide, there are hundreds of tons of wood ashes, which can be used in a wide range of construction materials. The strengths of the concrete with different types of cement and with wood ashes have given the same or, in some cases, better results than those with the use of fly ashes. There are many areas in building construction, where the clays of wood ashes can be used as a by-product. This does not only require a strength test but also, for example, an examination of structural-physical parameters. Especially the heat and moisture characteristics have an important role in times of energy-efficient construction. These are therefore determined and then compared with the characteristics of the concretes with fly ashes. The University of Stuttgart has decided to investigate the buildings' physical properties of different types of concrete with wood ashes to find their application in construction. After the examination of the buildings' physical properties in combination with strength tests, it is possible to determine in which field of civil engineering, this type of concrete can be used.Keywords: fly ashes, wood ashes, structural-physical parameters, UHPC
Procedia PDF Downloads 1443565 Using Two-Mode Network to Access the Connections of Film Festivals
Authors: Qiankun Zhong
Abstract:
In a global cultural context, film festival awards become authorities to define the aesthetic value of films. To study which genres and producing countries are valued by different film festivals and how those evaluations interact with each other, this research explored the interactions between the film festivals through their selection of movies and the factors that lead to the tendency of film festivals to nominate the same movies. To do this, the author employed a two-mode network on the movies that won the highest awards at five international film festivals with the highest attendance in the past ten years (the Venice Film Festival, the Cannes Film Festival, the Toronto International Film Festival, Sundance Film Festival, and the Berlin International Film Festival) and the film festivals that nominated those movies. The title, genre, producing country and language of 50 movies, and the range (regional, national or international) and organizing country or area of 129 film festivals were collected. These created networks connected by nominating the same films and awarding the same movies. The author then assessed the density and centrality of these networks to answer the question: What are the film festivals that tend to have more shared values with other festivals? Based on the Eigenvector centrality of the two-mode network, Palm Springs, Robert Festival, Toronto, Chicago, and San Sebastian are the festivals that tend to nominate commonly appreciated movies. In contrast, Black Movie Film Festival has the unique value of generally not sharing nominations with other film festivals. A homophily test was applied to access the clustering effects of film and film festivals. The result showed that movie genres (E-I index=0.55) and geographic location (E-I index=0.35) are possible indicators of film festival clustering. A blockmodel was also created to examine the structural roles of the film festivals and their meaning in real-world context. By analyzing the same blocks with film festival attributes, it was identified that film festivals either organized in the same area, with the same history, or with the same attitude on independent films would occupy the same structural roles in the network. Through the interpretation of the blocks, language was identified as an indicator that contributes to the role position of a film festival. Comparing the result of blockmodeling in the different periods, it is seen that international film festivals contrast with the Hollywood industry’s dominant value. The structural role dynamics provide evidence for a multi-value film festival network.Keywords: film festivals, film studies, media industry studies, network analysis
Procedia PDF Downloads 3163564 Multi-Walled Carbon Nanotube Based Water Filter for Virus Pathogen Removal
Authors: K. Domagala, D. Kata, T. Graule
Abstract:
Diseases caused by contaminated drinking water are the worldwide problem, which leads to the death and severe illnesses for hundreds of millions million people each year. There is an urgent need for efficient water treatment techniques for virus pathogens removal. The aim of the research was to develop safe and economic solution, which help with the water treatment. In this study, the synthesis of copper-based multi-walled carbon nanotube composites is described. Proposed solution utilize combination of a low-cost material with a high active surface area and copper antiviral properties. Removal of viruses from water was possible by adsorption based on electrostatic interactions of negatively charged virus with a positively charged filter material.Keywords: multi walled carbon nanotubes, water purification, virus removal, water treatment
Procedia PDF Downloads 1313563 Music Reading Expertise Facilitates Implicit Statistical Learning of Sentence Structures in a Novel Language: Evidence from Eye Movement Behavior
Authors: Sara T. K. Li, Belinda H. J. Chung, Jeffery C. N. Yip, Janet H. Hsiao
Abstract:
Music notation and text reading both involve statistical learning of music or linguistic structures. However, it remains unclear how music reading expertise influences text reading behavior. The present study examined this issue through an eye-tracking study. Chinese-English bilingual musicians and non-musicians read English sentences, Chinese sentences, musical phrases, and sentences in Tibetan, a language novel to the participants, with their eye movement recorded. Each set of stimuli consisted of two conditions in terms of structural regularity: syntactically correct and syntactically incorrect musical phrases/sentences. They then completed a sentence comprehension (for syntactically correct sentences) or a musical segment/word recognition task afterwards to test their comprehension/recognition abilities. The results showed that in reading musical phrases, as compared with non-musicians, musicians had a higher accuracy in the recognition task, and had shorter reading time, fewer fixations, and shorter fixation duration when reading syntactically correct (i.e., in diatonic key) than incorrect (i.e., in non-diatonic key/atonal) musical phrases. This result reflects their expertise in music reading. Interestingly, in reading Tibetan sentences, which was novel to both participant groups, while non-musicians did not show any behavior differences between reading syntactically correct or incorrect Tibetan sentences, musicians showed a shorter reading time and had marginally fewer fixations when reading syntactically correct sentences than syntactically incorrect ones. However, none of the musicians reported discovering any structural regularities in the Tibetan stimuli after the experiment when being asked explicitly, suggesting that they may have implicitly acquired the structural regularities in Tibetan sentences. This group difference was not observed when they read English or Chinese sentences. This result suggests that music reading expertise facilities reading texts in a novel language (i.e., Tibetan), but not in languages that the readers are already familiar with (i.e., English and Chinese). This phenomenon may be due to the similarities between reading music notations and reading texts in a novel language, as in both cases the stimuli follow particular statistical structures but do not involve semantic or lexical processing. Thus, musicians may transfer their statistical learning skills stemmed from music notation reading experience to implicitly discover structures of sentences in a novel language. This speculation is consistent with a recent finding showing that music reading expertise modulates the processing of English nonwords (i.e., words that do not follow morphological or orthographic rules) but not pseudo- or real words. These results suggest that the modulation of music reading expertise on language processing depends on the similarities in the cognitive processes involved. It also has important implications for the benefits of music education on language and cognitive development.Keywords: eye movement behavior, eye-tracking, music reading expertise, sentence reading, structural regularity, visual processing
Procedia PDF Downloads 3803562 From Wave-Powered Propulsion to Flight with Membrane Wings: Insights Powered by High-Fidelity Immersed Boundary Methods based FSI Simulations
Authors: Rajat Mittal, Jung Hee Seo, Jacob Turner, Harshal Raut
Abstract:
The perpetual advancement in computational capabilities, coupled with the continuous evolution of software tools and numerical algorithms, is creating novel avenues for research, exploration, and application at the nexus of computational fluid and structural mechanics. Fish leverage their remarkably flexible bodies and fins to harness energy from vortices, propelling themselves with an elegance and efficiency that captivates engineers. Bats fly with unparalleled agility and speed by using their flexible membrane wings. Wave-assisted propulsion (WAP) systems, utilizing elastically mounted hydrofoils, convert wave energy into thrust. Each of these problems involves a complex and elegant interplay between fluid dynamics and structural mechanics. Historically, investigations into such phenomena were constrained by available tools, but modern computational advancements now facilitate exploration of these multi-physics challenges with an unprecedented level of fidelity, precision, and realism. In this work, the author will discuss projects that harness the capabilities of high-fidelity sharp-interface immersed boundary methods to address a spectrum of engineering and biological challenges involving fluid-structure interaction.Keywords: immersed boundary methods, CFD, bioflight, fluid structure interaction
Procedia PDF Downloads 703561 Structural Performance Evaluation of Electronic Road Sign Panels Reflecting Damage Scenarios
Authors: Junwon Seo, Bipin Adhikari, Euiseok Jeong
Abstract:
This paper is intended to evaluate the structural performance of welded electronic road signs under various damage scenarios (DSs) using a finite element (FE) model calibrated with full-scale ultimate load testing results. The tested electronic road sign specimen was built with a back skin made of 5052 aluminum and two channels and a frame made of 6061 aluminum, where the back skin was connected to the frame by welding. The size of the tested specimen was 1.52 m long, 1.43 m wide, and 0.28 m deep. An actuator applied vertical loads at the center of the back skin of the specimen, resulting in a displacement of 158.7 mm and an ultimate load of 153.46 kN. Using these testing data, generation and calibration of a FE model of the tested specimen were executed in ABAQUS, indicating that the difference in the ultimate load between the calibrated model simulation and full-scale testing was only 3.32%. Then, six different DSs were simulated where the areas of the welded connection in the calibrated model were diminished for the DSs. It was found that the corners at the back skin-frame joint were prone to connection failure for all the DSs, and failure of the back skin-frame connection occurred remarkably from the distant edges.Keywords: computational analysis, damage scenarios, electronic road signs, finite element, welded connections
Procedia PDF Downloads 923560 Tribocorrosion Behavior of Austempered Ductile Iron Microalloyed with Boron
Authors: S. Gvazava, N. Khidasheli, G. Gordeziani, A. DL. Batako
Abstract:
The work presented in this paper studied the tribological characteristics (wear resistance, friction coefficient) of austempered ductile iron (ADI) with different combinations of structural composition (upper bainite, lower bainite, retained austenite) in dry sliding friction. A range of structural states of the metal matrix was obtained by changing the regimes of isothermal quenching of high-strength cast iron. The tribological tests were carried out using two sets of isothermal quenched cast irons. After austenitization at 900°С for 60 minutes, the specimens from the first group were isothermally quenched at the 300°С temperature and the specimens from the second set – at 400°С. The investigations showed that the isothermal quenching increases the friction coefficient of high-strength cast irons. The friction coefficient was found to be in the range from 0.4 to 0.55 for cast irons, depending on the structures of the metal matrix. The quenched cast irons having lower bainite demonstrate higher wear resistance in dry friction conditions. The dependence of wear resistance on the amount of retained austenite in isothermal quenched cast irons has a nonlinear characteristic and reaches its maximum value when the content of retained austenite is about 15-22%. The boron micro-additives allowed to reduce the friction coefficient of ADI and increase their wear resistance by 1.5-1.7 times.Keywords: wear resistance, dry sliding, austempering, ADI, friction coefficient, retained austenite, isothermal quenching
Procedia PDF Downloads 1813559 High Resolution Solid State NMR Structural Study of a Ternary Hydraulic Mixture
Authors: Rym Sassi, Franck Fayon, Mohend Chaouche, Emmanuel Veron, Valerie Montouillout
Abstract:
The chemical phenomena occurring during cement hydration are complex and interdependent, and even after almost two centuries of studies, they are still difficult to solve for complex mixtures combining different hydraulic binders. Powder-XRD has been widely used for characterizing the crystalline phases in both anhydrous and hydrated cement, but only limited information is obtained in the case of strongly disordered and amorphous phases. In contrast, local spectroscopies like solid-state NMR can provide a quantitative description of noncrystalline phases. In this work, the structural modifications occurring during hydration of a fast-setting ternary binder based on white Portland cement, white calcium aluminate cement, and calcium sulfate were investigated using advanced solid-state NMR methods. We particularly focused on the early stage of the hydration up to 28 days, working with samples whose hydration was controlled and stopped. ²⁷Al MQ-MAS as well as {¹H}-²⁷Al and {¹H}-²⁹Si Cross- Polarization MAS NMR techniques were combined to distinguish all of the aluminum and silicon species formed during the hydration. The NMR quantification of the different phases was conducted in parallel with the XRD analyses. The consumption of initial products, as well as the precipitation of hydraulic phases (ettringite, monosulfate, strätlingite, CSH, and CASH), were unambiguously quantified. Finally, the drawing of the consumption and formation of phases was correlated with mechanical strength measurements.Keywords: cement, hydration, hydrates structure, mechanical strength, NMR
Procedia PDF Downloads 1543558 Structural Modeling and Experimental-Numerical Correlation of the Dynamic Behavior of the Portuguese Guitar by Using a Structural-Fluid Coupled Model
Authors: M. Vieira, V. Infante, P. Serrão, A. Ribeiro
Abstract:
The Portuguese guitar is a pear-shaped plucked chordophone particularly known for its role in Fado, the most distinctive traditional Portuguese musical style. The acknowledgment of the dynamic behavior of the Portuguese guitar, specifically of its modal and mode shape response, has been the focus of different authors. In this research, the experimental results of the dynamic behavior of the guitar, which were previously obtained, are correlated with a vibro-acoustic finite element model of the guitar. The modelling of the guitar offered several challenges which are presented in this work. The results of the correlation between experimental and numerical data are presented and indicate good correspondence for the studied mode shapes. The influence of the air inside the chamber, for the finite element analysis, is shown to be crucial to understand the low-frequency modes of the Portuguese guitar, while, for higher frequency modes, the geometry of the guitar assumes greater relevance. Comparison is made with the classical guitar, providing relevant information about the intrinsic differences between the two, such as between its tones and other acoustical properties. These results represent a sustained base for future work, which will allow the study of the influence of different location and geometry of diverse components of the Portuguese guitar, being as well an asset to the comprehension of its musical properties and qualities and may, furthermore, represent an advantage for its players and luthiers.Keywords: dynamic behavior of guitars, instrument acoustics, modal analysis, Portuguese guitar
Procedia PDF Downloads 3993557 Environmental Governance and Opportunities for Disaster Risk Reduction in Nigeria
Authors: Willie Eselebor
Abstract:
Environmental governance is not new, but may consist of a series of actions taken to establish sanity and ensure sustainable environment. While there is a growing accord linking disaster risk reduction with the management of environment and natural resources, little is known about failure to act which constitute vulnerability and how improved governance reduces risk globally. The paper reviews emerging trends in the field of application of governance tools and approaches for reducing disaster risk. The Hyogo Framework for Action (HFA) enjoin all stakeholders to stimulate the sustainable use and management of ecosystems, which promote the implementation of integrated environmental and natural resource planning that incorporate disaster risk reduction, including structural and non-structural measures, such as integrated management of fragile ecosystems. The methodology adopted is a case study of disaster-prone sites, prompting guided analysis on which hazards are traceable to environmental degradation, why a degraded environment reduces community resilience; how healthy ecosystems provide natural defense, and which opportunities exist to address gaps in reduction of disasters in Nigeria. The paper further analyses the interaction between disaster risk and environmental change. It is established that environmental governance remains a challenge; which implies that there is the need for a shift in traditional approaches to disaster risk management; exploring new initiatives and allowing environmental managers to be docketed as disaster risk managers in context, potentially opening up a window of dialogue on disaster risk management.Keywords: disaster, ecosystem, environment, risk
Procedia PDF Downloads 3533556 The Flood Disaster Management of Communities in Ubon Ratchathani Province, Thailand
Authors: Eakarat Boonreang, Anothai Harasarn
Abstract:
The objectives of this study are to investigate the flood disaster management capacity of communities in Ubon Ratchathani province, Thailand, and to recommend the sustainable flood management approaches of communities in Ubon Ratchathani province, Thailand. The selected population consisted of the community leaders and committees, the executives of local administrative organizations, and the head of Ubon Ratchathani provincial office of disaster prevention and mitigation. The data was collected by in-depth interview, focus group, and observation. The data was analyzed and classified in order to determine the communities’ capacity in flood disaster management. The results revealed that communities’ capacity were as follows, before flood disaster, the community leaders held a meeting with the community committees in order to plan disaster response and determined evacuation routes, and the villagers moved their belongings to higher places and prepared vehicles for evacuation. During flood disaster, the communities arranged motorboats for transportation and villagers evacuated to a temporary evacuation center. Moreover, the communities asked for survival bags, motorboats, emergency toilets, and drinking water from the local administrative organizations and the 22nd Military Circle. After flood disaster, the villagers cleaned and fixed their houses and also collaborated in cleaning the temple, school, and other places in the community. The recommendation approaches for sustainable flood disaster management consisted of structural measures, such as the establishment of reservoirs and building higher houses, and non-structural measures such as raising awareness and fostering self-reliance, establishing disaster management plans, rehearsal of disaster response procedures every year, and transferring disaster knowledge among younger generations. Moreover, local administrative organizations should formulate strategic plans that focus on disaster management capacity building at the community level, particularly regarding non-structural measures. Ubon Ratchathani provincial offices of disaster prevention and mitigation should continually monitor and evaluate the outcomes of community based disaster risk management program, including allocating more flood disaster management-related resources among local administrative organizations and communities.Keywords: capacity building, community based disaster risk management, flood disaster management, Thailand
Procedia PDF Downloads 1683555 Modified Graphene Oxide in Ceramic Composite
Authors: Natia Jalagonia, Jimsher Maisuradze, Karlo Barbakadze, Tinatin Kuchukhidze
Abstract:
At present intensive scientific researches of ceramics, cermets and metal alloys have been conducted for improving materials physical-mechanical characteristics. In purpose of increasing impact strength of ceramics based on alumina, simple method of graphene homogenization was developed. Homogeneous distribution of graphene (homogenization) in pressing composite became possible through the connection of functional groups of graphene oxide (-OH, -COOH, -O-O- and others) and alumina superficial OH groups with aluminum organic compounds. These two components connect with each other with -O-Al–O- bonds, and by their thermal treatment (300–500°C), graphene and alumina phase are transformed. Thus, choosing of aluminum organic compounds for modification is stipulated by the following opinion: aluminum organic compounds fragments fixed on graphene and alumina finally are transformed into an integral part of the matrix. By using of other elements as modifier on the matrix surface (Al2O3) other phases are transformed, which change sharply physical-mechanical properties of ceramic composites, for this reason, effect caused by the inclusion of graphene will be unknown. Fixing graphene fragments on alumina surface by alumoorganic compounds result in new type graphene-alumina complex, in which these two components are connected by C-O-Al bonds. Part of carbon atoms in graphene oxide are in sp3 hybrid state, so functional groups (-OH, -COOH) are located on both sides of graphene oxide layer. Aluminum organic compound reacts with graphene oxide at the room temperature, and modified graphene oxide is obtained: R2Al-O-[graphene]–COOAlR2. Remaining Al–C bonds also reacts rapidly with surface OH groups of alumina. In a result of these process, pressing powdery composite [Al2O3]-O-Al-O-[graphene]–COO–Al–O–[Al2O3] is obtained. For the purpose, graphene oxide suspension in dry toluene have added alumoorganic compound Al(iC4H9)3 in toluene with equimolecular ratio. Obtained suspension has put in the flask and removed solution in a rotary evaporate presence nitrogen atmosphere. Obtained powdery have been researched and used to consolidation of ceramic materials based on alumina. Ceramic composites are obtained in high temperature vacuum furnace with different temperature and pressure conditions. Received ceramics do not have open pores and their density reaches 99.5 % of TD. During the work, the following devices have been used: High temperature vacuum furnace OXY-GON Industries Inc (USA), device of spark-plasma synthesis, induction furnace, Electronic Scanning Microscopes Nikon Eclipse LV 150, Optical Microscope NMM-800TRF, Planetary mill Pulverisette 7 premium line, Shimadzu Dynamic Ultra Micro Hardness Tester DUH-211S, Analysette 12 Dynasizer and others.Keywords: graphene oxide, alumo-organic, ceramic
Procedia PDF Downloads 3083554 Blast Load Resistance of Bridge Columns
Authors: Amir Kavousifard, Lan Lin
Abstract:
The objective of this study is to evaluate the effects of the detailing in the seismic design of reinforced concrete (RC) bridge columns on the blast load resistance. A generic two-span continuous RC bridge located in Victoria, British Columbia, which represents the highest seismicity in Canada, was examined in the study. The bridge superstructure consists of a single cell box girder while the substructure consists of two circular columns. The bridge was designed according to the 2006 Canadian Highway Bridge Design Code. More specifically, response spectrum analysis was performed to determine the seismic demands using CSI Bridge. The 3D blast load analysis is carried out in the platform of LS-DYNA. Two charge heights, i.e., one at the mid-height of the column and the other at the bottom of the column, are considered. For each height, three cases are analyzed in order to investigate the effects of standoff and charge weight on the structural response. The blast load resistance of the column is assessed in terms of the concrete failure mechanism, steel stress distribution, and column lateral displacement. The results from the study indicate that a column designed in accordance with the code requirements could survive during the blast attack. Spiral columns perform much better than tied columns. The results also show that the charge weight has more impact on the structural response than the standoff. These results are beneficial for the development of the Canadian standards for the design of bridges under blast loads.Keywords: blast, bridge, charge, height, seismic, standoff
Procedia PDF Downloads 193553 Feasibility of Building Structure Due to Decreased Concrete Quality of School Building in Banda Aceh City 19 Years after Tsunami
Authors: Rifqi Irvansyah, Abdullah Abdullah, Yunita Idris, Bunga Raihanda
Abstract:
Banda Aceh is particularly susceptible to heightened vulnerability during natural disasters due to its concentrated exposure to multi-hazard risks. Despite urgent priorities during the aftermath of natural disasters, such as the 2004 Indian Ocean earthquake and tsunami, several public facilities, including school buildings, sustained damage yet continued operations without adequate repairs, even though they were submerged by the tsunami. This research aims to evaluate the consequences of column damage induced by tsunami inundation on the structural integrity of buildings. The investigation employs interaction diagrams for columns to assess their capacity, taking into account factors such as rebar deterioration and corrosion. The analysis result shows that one-fourth of the K1 columns on the first floor fall outside of the column interaction diagram, indicating that the column structure cannot handle the load above it, as evidenced by the presence of Pu and Mu, which are greater than the column's design strength. This suggests that the five columns of K1 should be cause for concern, as the column's capacity is decreasing. These results indicate that the structure of the building cannot sustain the applied load because the column cross-section has deteriorated. In contrast, all K2 columns meet the design strength, indicating that the column structure can withstand the structural loads.Keywords: tsunami inundation, column damage, column interaction diagram, mitigation effort
Procedia PDF Downloads 673552 Observation on the Performance of Heritage Structures in Kathmandu Valley, Nepal during the 2015 Gorkha Earthquake
Authors: K. C. Apil, Keshab Sharma, Bigul Pokharel
Abstract:
Kathmandu Valley, capital city of Nepal houses numerous historical monuments as well as religious structures which are as old as from the 4th century A.D. The city alone is home to seven UNESCO’s world heritage sites including various public squares and religious sanctums which are often regarded as living heritages by various historians and archeological explorers. Recently on April 25, 2015, the capital city including other nearby locations was struck with Gorkha earthquake of moment magnitude (Mw) 7.8, followed by the strongest aftershock of moment magnitude (Mw) 7.3 on May 12. This study reports structural failures and collapse of heritage structures in Kathmandu Valley during the earthquake and presents preliminary findings as to the causes of failures and collapses. Field reconnaissance was carried immediately after the main shock and the aftershock, in major heritage sites: UNESCO world heritage sites, a number of temples and historic buildings in Kathmandu Durbar Square, Patan Durbar Square, and Bhaktapur Durbar Square. Despite such catastrophe, a significant number of heritage structures stood high, performing very well during the earthquake. Preliminary reports from archeological department suggest that 721 of such structures were severely affected, whereas numbers within the valley only were 444 including 76 structures which were completely collapsed. This study presents recorded accelerograms and geology of Kathmandu Valley. Structural typology and architecture of the heritage structures in Kathmandu Valley are briefly described. Case histories of damaged heritage structures, the patterns, and the failure mechanisms are also discussed in this paper. It was observed that performance of heritage structures was influenced by the multiple factors such as structural and architecture typology, configuration, and structural deficiency, local ground site effects and ground motion characteristics, age and maintenance level, material quality etc. Most of such heritage structures are of masonry type using bricks and earth-mortar as a bonding agent. The walls' resistance is mainly compressive, thus capable of withstanding vertical static gravitational load but not horizontal dynamic seismic load. There was no definitive pattern of damage to heritage structures as most of them behaved as a composite structure. Some structures were extensively damaged in some locations, while structures with similar configuration at nearby location had little or no damage. Out of major heritage structures, Dome, Pagoda (2, 3 or 5 tiered temples) and Shikhara structures were studied with similar variables. Studying varying degrees of damages in such structures, it was found that Shikhara structures were most vulnerable one where Dome structures were found to be the most stable one, followed by Pagoda structures. The seismic performance of the masonry-timber and stone masonry structures were slightly better than that of the masonry structures. Regular maintenance and periodic seismic retrofitting seems to have played pivotal role in strengthening seismic performance of the structure. The study also recommends some key functions to strengthen the seismic performance of such structures through study based on structural analysis, building material behavior and retrofitting details. The result also recognises the importance of documentation of traditional knowledge and its revised transformation in modern technology.Keywords: Gorkha earthquake, field observation, heritage structure, seismic performance, masonry building
Procedia PDF Downloads 1513551 Using Structural Equation Modeling to Analyze the Impact of Remote Work on Job Satisfaction
Authors: Florian Pfeffel, Valentin Nickolai, Christian Louis Kühner
Abstract:
Digitalization has disrupted the traditional workplace environment by allowing many employees to work from anywhere at any time. This trend of working from home was further accelerated due to the COVID-19 crisis, which forced companies to rethink their workplace models. While in many companies, this shift happened out of pure necessity; many employees were left more satisfied with their job due to the opportunity to work from home. This study focuses on employees’ job satisfaction in the service sector in dependence on the different work models, which are defined as a “work from home” model, the traditional “work in office” model, and a hybrid model. Using structural equation modeling (SEM), these three work models have been analyzed based on 13 influencing factors on job satisfaction that have been further summarized in the three groups “classic influencing factors”, “influencing factors changed by remote working”, and “new remote working influencing factors”. Based on the influencing factors on job satisfaction, a survey has been conducted with n = 684 employees in the service sector. Cronbach’s alpha of the individual constructs was shown to be suitable. Furthermore, the construct validity of the constructs was confirmed by face validity, content validity, convergent validity (AVE > 0.5: CR > 0.7), and discriminant validity. Additionally, confirmatory factor analysis (CFA) confirmed the model fit for the investigated sample (CMIN/DF: 2.567; CFI: 0.927; RMSEA: 0.048). The SEM-analysis has shown that the most significant influencing factor on job satisfaction is “identification with the work” with β = 0.540, followed by “Appreciation” (β = 0.151), “Compensation” (β = 0.124), “Work-Life-Balance” (β = 0.116), and “Communication and Exchange of Information” (β = 0.105). While the significance of each factor can vary depending on the work model, the SEM-analysis shows that the identification with the work is the most significant factor in all three work models and, in the case of the traditional office work model, it is the only significant influencing factor. The study shows that employees who work entirely remotely or have a hybrid work model are significantly more satisfied with their job, with a job satisfaction score of 5.0 respectively on a scale from 1 (very dissatisfied) to 7 (very satisfied), than employees do not have the option to work from home with a score of 4.6. This comes as a result of the lower identification with the work in the model without any remote working. Furthermore, the responses indicate that it is important to consider the individual preferences of each employee when it comes to the work model to achieve overall higher job satisfaction. Thus, it can be argued that companies can profit off of more motivation and higher productivity by considering the individual work model preferences, therefore, increasing the identification with the respective work.Keywords: home-office, identification with work, job satisfaction, new work, remote work, structural equation modeling
Procedia PDF Downloads 823550 Analytical and Experimental Evaluation of Effects of Nonstructural Brick Walls on Earthquake Response of Reinforced Concrete Structures
Authors: Hasan Husnu Korkmaz, Serra Zerrin Korkmaz
Abstract:
The reinforced concrete (RC) framed structures composed of beams, columns, shear walls and the slabs. The other members are assumed to be nonstructural. Especially the brick infill walls which are used to separate the rooms or spaces are just handled as dead loads. On the other hand, if these infills are constructed within the frame bays, they also have higher shear and compression capacities. It is a well-known fact that, brick infills increase the lateral rigidity of the structure and thought to be a reserve capacity in the design. But, brick infills can create unfavorable failure or damage modes in the earthquake action such as soft story or short columns. The increase in the lateral rigidity also causes an over estimation of natural period of the structure and the corresponding earthquake loads in the design are less than the actual ones. In order to obtain accurate and realistic design results, the infills must be modelled in the structural design and their capacities must be included. Unfortunately, in Turkish Earthquake Code, there is no design methodology for the engineers. In this paper, finite element modelling of infilled reinforced concrete structures are studied. The proposed or used method is compared with the experimental results of a previous study. The effect of infills on the structural response is expressed within the paper.Keywords: seismic loading, brick infills, finite element analysis, reinforced concrete, earthquake code
Procedia PDF Downloads 3143549 Distributional and Dynamic impact of Energy Subsidy Reform
Authors: Ali Hojati Najafabadi, Mohamad Hosein Rahmati, Seyed Ali Madanizadeh
Abstract:
Governments execute energy subsidy reforms by either increasing energy prices or reducing energy price dispersion. These policies make less use of energy per plant (intensive margin), vary the total number of firms (extensive margin), promote technological progress (technology channel), and make additional resources to redistribute (resource channel). We estimate a structural dynamic firm model with endogenous technology adaptation using data from the manufacturing firms in Iran and a country ranked the second-largest energy subsidy plan by the IMF. The findings show significant dynamics and distributional effects due to an energy reform plan. The price elasticity of energy consumption in the industrial sector is about -2.34, while it is -3.98 for large firms. The dispersion elasticity, defined as the amounts of changes in energy consumption by a one-percent reduction in the standard error of energy price distribution, is about 1.43, suggesting significant room for a distributional policy. We show that the intensive margin is the main driver of energy price elasticity, whereas the other channels mostly offset it. In contrast, the labor response is mainly through the extensive margin. Total factor productivity slightly improves in light of the reduction in energy consumption if, at the same time, the redistribution policy boosts the aggregate demands.Keywords: energy reform, firm dynamics, structural estimation, subsidy policy
Procedia PDF Downloads 963548 Numerical Simulation of Lightning Strike Direct Effects on Aircraft Skin Composite Laminate
Authors: Muhammad Khalil, Nader Abuelfoutouh, Gasser Abdelal, Adrian Murphy
Abstract:
Nowadays, the direct effects of lightning to aircrafts are of great importance because of the massive use of composite materials. In comparison with metallic materials, composites present several weaknesses for lightning strike direct effects. Especially, their low electrical and thermal conductivities lead to severe lightning strike damage. The lightning strike direct effects are burning, heating, magnetic force, sparking and arcing. As the problem is complex, we investigated it gradually. A magnetohydrodynamics (MHD) model is developed to simulate the lightning strikes in order to estimate the damages on the composite materials. Then, a coupled thermal-electrical finite element analysis is used to study the interaction between the lightning arc and the composite laminate and to investigate the material degradation.Keywords: composite structures, lightning multiphysics, magnetohydrodynamic (MHD), coupled thermal-electrical analysis, thermal plasmas.
Procedia PDF Downloads 3703547 Growth Model and Properties of a 3D Carbon Aerogel
Authors: J. Marx, D. Smazna, R. Adelung, B. Fiedler
Abstract:
Aerographite is a 3D interconnected carbon foam. Its tetrapodal morphology is based on the zinc oxide (ZnO) template structure, which is replicated in the chemical vapour deposition (CVD) into a hollow carbon structure. This replication process is analyzed in ex-situ studies via interrupted synthesis and the observation of the reaction progress by using scanning electron (SEM), transmission electron microscopy (TEM) and Raman spectroscopy techniques. Based on the epitaxial growth process, with a layer-by-layer growth behaviour of the wall thickness or number of layers and the catalytical graphitization of the deposited amorphous carbon into graphitic carbon by zinc, a growth model is created. The properties of aerographite, such as the electrical conductivity is dependent on the graphitization and number of layer (wall thickness). Wall thicknesses between 3 nm and 22 nm are achieved by a controlled stepwise reduction of the synthesis time on the basis of the developed growth model, and by a further thermal treatment at 1800 °C the graphitization of the presented carbon foam is modified. The variation of the wall thickness leads to an optimum defect density (ID/IG ratio) and the graphitization to an improvement in the electrical conductivity. Furthermore, a metallic conducting behaviour of untreated and 1800 °C treated aerographite can be observed. Due to these structural and defective modifications, a fundamental structural-property equation for the description of their influences on the electrical conductivity is developed.Keywords: electrical conductivity, electron microscopy (SEM/TEM), graphitization, wall thickness
Procedia PDF Downloads 1553546 Correlation of Residential Community Layout and Neighborhood Relationship: A Morphological Analysis of Tainan Using Space Syntax
Authors: Ping-Hung Chen, Han-Liang Lin
Abstract:
Taiwan has formed diverse settlement patterns in different time and space backgrounds. Various socio-network links are created between individuals, families, communities, and societies, and different living cultures are also derived. But rapid urbanization and social structural change have caused the creation of densely-packed assembly housing complexes and made neighborhood community upward developed. This, among others, seemed to have affected neighborhood relationship and also created social problems. To understand the complex relations and socio-spatial structure of the community, it is important to use mixed methods. This research employs the theory of space syntax to analyze the layout and structural indicators of the selected communities in Tainan city. On the other hand, this research does the survey about residents' interactions and the sense of community by questionnaire of the selected communities. Then the mean values of the syntax measures from each community were correlated with the results of the questionnaire using a Pearson correlation to examine how elements in physical design affect the sense of community and neighborhood relationship. In Taiwan, most urban morphology research methods are qualitative study. This paper tries to use space syntax to find out the correlation between the community layout and the neighborhood relationship. The result of this study could be used in future studies or improve the quality of residential communities in Taiwan.Keywords: community layout, neighborhood relationship, space syntax, mixed-method
Procedia PDF Downloads 1933545 Structural, Magnetic, Dielectric and Electrical Properties of Gd3+ Doped Cobalt Ferrite Nanoparticles
Authors: Raghvendra Singh Yadav, Ivo Kuřitka, Jarmila Vilcakova, Jaromir Havlica, Lukas Kalina, Pavel Urbánek, Michal Machovsky, Milan Masař, Martin Holek
Abstract:
In this work, CoFe₂₋ₓGdₓO₄ (x=0.00, 0.05, 0.10, 0.15, 0.20) spinel ferrite nanoparticles are synthesized by sonochemical method. The structural properties and cation distribution are investigated using X-ray Diffraction (XRD), Raman Spectroscopy, Fourier Transform Infrared Spectroscopy and X-ray photoelectron spectroscopy. The morphology and elemental analysis are screened using field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectroscopy, respectively. The particle size measured by FE-SEM and XRD analysis confirm the formation of nanoparticles in the range of 7-10 nm. The electrical properties show that the Gd³⁺ doped cobalt ferrite (CoFe₂₋ₓGdₓO₄; x= 0.20) exhibit enhanced dielectric constant (277 at 100 Hz) and ac conductivity (20.17 x 10⁻⁹ S/cm at 100 Hz). The complex impedance measurement study reveals that as Gd³⁺ doping concentration increases, the impedance Z’ and Z’ ’ decreases. The influence of Gd³⁺ doping in cobalt ferrite nanoparticles on the magnetic property is examined by using vibrating sample magnetometer. Magnetic property measurement reveal that the coercivity decreases with Gd³⁺ substitution from 234.32 Oe (x=0.00) to 12.60 Oe (x=0.05) and further increases from 12.60 Oe (x=0.05) to 68.62 Oe (x=0.20). The saturation magnetization decreases with Gd³⁺ substitution from 40.19 emu/g (x=0.00) to 21.58 emu/g (x=0.20). This decrease follows the three-sublattice model suggested by Yafet-Kittel (Y-K). The Y-K angle increases with the increase of Gd³⁺ doping in cobalt ferrite nanoparticles.Keywords: sonochemical method, nanoparticles, magnetic property, dielectric property, electrical property
Procedia PDF Downloads 3543544 Magnetic Survey for the Delineation of Concrete Pillars in Geotechnical Investigation for Site Characterization
Authors: Nuraddeen Usman, Khiruddin Abdullah, Mohd Nawawi, Amin Khalil Ismail
Abstract:
A magnetic survey is carried out in order to locate the remains of construction items, specifically concrete pillars. The conventional Euler deconvolution technique can perform the task but it requires the use of fixed structural index (SI) and the construction items are made of materials with different shapes which require different SI (unknown). A Euler deconvolution technique that estimate background, horizontal coordinate (xo and yo), depth and structural index (SI) simultaneously is prepared and used for this task. The synthetic model study carried indicated the new methodology can give a good estimate of location and does not depend on magnetic latitude. For field data, both the total magnetic field and gradiometer reading had been collected simultaneously. The computed vertical derivatives and gradiometer readings are compared and they have shown good correlation signifying the effectiveness of the method. The filtering is carried out using automated procedure, analytic signal and other traditional techniques. The clustered depth solutions coincided with the high amplitude/values of analytic signal and these are the possible target positions of the concrete pillars being sought. The targets under investigation are interpreted to be located at the depth between 2.8 to 9.4 meters. More follow up survey is recommended as this mark the preliminary stage of the work.Keywords: concrete pillar, magnetic survey, geotechnical investigation, Euler Deconvolution
Procedia PDF Downloads 2583543 Sustainability in Hospitality: An Inevitable Necessity in New Age with Big Environmental Challenges
Authors: Majid Alizadeh, Sina Nematizadeh, Hassan Esmailpour
Abstract:
The mutual effects of hospitality and the environment are undeniable, so that the tourism industry has major harmful effects on the environment. Hotels, as one of the most important pillars of the hospitality industry, have significant effects on the environment. Green marketing is a promising strategy in response to the growing concerns about the environment. A green hotel marketing model was proposed using a grounded theory approach in the hotel industry. The study was carried out as a mixed method study. Data gathering in the qualitative phase was done through literature review and In-depth, semi-structured interviews with 10 experts in green marketing using snowball technique. Following primary analysis, open, axial, and selective coding was done on the data, which yielded 69 concepts, 18 categories and six dimensions. Green hotel (green product) was adopted as the core phenomenon. In the quantitative phase, data were gleaned using 384 questionnaires filled-out by hotel guests and descriptive statistics and Structural equation modeling (SEM) were used for data analysis. The results indicated that the mediating role of behavioral response between the ecological literacy, trust, marketing mix and performance was significant. The green marketing mix, as a strategy, had a significant and positive effect on guests’ behavioral response, corporate green image, and financial and environmental performance of hotels.Keywords: green marketing, sustainable development, hospitality, grounded theory, structural equations model
Procedia PDF Downloads 813542 Interfacial Reactions between Aromatic Polyamide Fibers and Epoxy Matrix
Authors: Khodzhaberdi Allaberdiev
Abstract:
In order to understand the interactions on the interface polyamide fibers and epoxy matrix in fiber- reinforced composites were investigated industrial aramid fibers: armos, svm, terlon using individual epoxy matrix components, epoxies: diglycidyl ether of bisphenol A (DGEBA), three- and diglycidyl derivatives of m, p-amino-, m, p-oxy-, o, m,p-carboxybenzoic acids, the models: curing agent, aniline and the compound, that depict of the structure the primary addition reaction the amine to the epoxy resin, N-di (oxyethylphenoxy) aniline. The chemical structure of the surface of untreated and treated polyamide fibers analyzed using Fourier transform infrared spectroscopy (FTIR). The impregnation of fibers with epoxy matrix components and N-di (oxyethylphenoxy) aniline has been carried out by heating 150˚C (6h). The optimum fiber loading is at 65%.The result a thermal treatment is the covalent bonds formation , derived from a combined of homopolymerization and crosslinking mechanisms in the interfacial region between the epoxy resin and the surface of fibers. The reactivity of epoxy resins on interface in microcomposites (MC) also depends from processing aids treated on surface of fiber and the absorbance moisture. The influences these factors as evidenced by the conversion of epoxy groups values in impregnated with DGEBA of the terlons: industrial, dried (in vacuum) and purified samples: 5.20 %, 4.65% and 14.10%, respectively. The same tendency for svm and armos fibers is observed. The changes in surface composition of these MC were monitored by X-ray photoelectron spectroscopy (XPS). In the case of the purified fibers, functional groups of fibers act as well as a catalyst and curing agent of epoxy resin. It is found that the value of the epoxy groups conversion for reinforced formulations depends on aromatic polyamides nature and decreases in the order: armos >svm> terlon. This difference is due of the structural characteristics of fibers. The interfacial interactions also examined between polyglycidyl esters substituted benzoic acids and polyamide fibers in the MC. It is found that on interfacial interactions these systems influences as well as the structure and the isomerism of epoxides. The IR-spectrum impregnated fibers with aniline showed that the polyamide fibers appreciably with aniline do not react. FTIR results of treated fibers with N-di (oxyethylphenoxy) aniline fibers revealed dramatically changes IR-characteristic of the OH groups of the amino alcohol. These observations indicated hydrogen bondings and covalent interactions between amino alcohol and functional groups of fibers. This result also confirms appearance of the exo peak on Differential Scanning Calorimetry (DSC) curve of the MC. Finally, the theoretical evaluation non-covalent interactions between individual epoxy matrix components and fibers has been performed using the benzanilide and its derivative contaning the benzimidazole moiety as a models of terlon and svm,armos, respectively. Quantum-topological analysis also demonstrated the existence hydrogen bond between amide group of models and epoxy matrix components.All the results indicated that on the interface polyamide fibers and epoxy matrix exist not only covalent, but and non-covalent the interactions during the preparation of MC.Keywords: epoxies, interface, modeling, polyamide fibers
Procedia PDF Downloads 2663541 Investigation of Mode II Fracture Toughness in Orthotropic Materials
Authors: Mahdi Fakoor, Nabi Mehri Khansari, Ahmadreza Farokhi
Abstract:
Evaluation of mode II fracture toughness (KIIC) in composite materials is very hard problem to be solved, since it can be affected by many mechanisms of dissipation. Furthermore, non-linearity in its behavior can offer an extra difficulty to obtain accuracy in the results. Different reported values for KIIC in various references can prove the mentioned assertion. In this research, some solutions proposed based on the form of necessary corrections that should be executed on the common test fixtures. Due to the fact that the common test fixtures are not able to active toughening mechanisms in pure Mode II correctly, we have employed some structural modifications on common fixtures. Particularly, the Iosipescu test is used as start point. The tests are applied on graphite/epoxy; PMMA and Western White Pine Wood. Also, mixed mode I/II fracture limit curves are used to indicate the scattering in test results are really relevant to the creation of Fracture Process Zone (FPZ). In the present paper, shear load consideration applied at the predicted shear zone by considering some significant structural amendments that can active mode II toughening mechanisms. Indeed, the employed empirical method causes significant developing in repeatability and reproducibility as well. Moreover, a 3D Finite Element (FE) is performed for verification of the obtained results. Eventually, it is figured out that, a remarkable precision can be obtained in common test fixture in comparison with the previous one.Keywords: FPZ, shear test fixture, mode II fracture toughness, composite material, FEM
Procedia PDF Downloads 3613540 Waste-based Porous Geopolymers to Regulate the Temperature and Humidity Fluctuations Inside Buildings
Authors: Joao A. Labrincha, Rui M. Novais, L. Senff, J. Carvalheiras
Abstract:
The development of multifunctional materials to tackle the energy consumption and improve the hygrothermal performance of buildings is very relevant. This work reports the development of porous geopolymers or bi-layered composites, composed by a highly porous top-layer and a dense bottom-layer, showing high ability to reduce the temperature swings inside buildings and simultaneously buffer the humidity levels. The use of phase change materials (PCM) strongly reduces the indoor thermal fluctuation (up to 5 °C). The potential to modulate indoor humidity is demonstrated by the very high practical MBV (2.71 g/m2 Δ%HR). Since geopolymer matrixes are produced from wastes (biomass fly ash, red mud) the developed solutions contribute to sustainable and energy efficient and healthy building.Keywords: waste-based geopolymers, thermal insulation, temperature regulation, moisture buffer
Procedia PDF Downloads 613539 Novel Hybrid Ceramic Nanocomposites Fabricated by Rapid Sintering Technology
Authors: Iftikhar Ahmad, Abulhakim Almajid
Abstract:
Alumina (Al2O3) is an attractive structural ceramic however; brittleness turns Al2O3 down for advanced applications. Development of multi-phase phase ceramics systems is promising to curtail the brittleness and the incorporation of strong/elastic graphene, as third phase, into dual phase (Al2O3-SiC) is striking for mechanical upgrading purpose. Thin graphene nanosheets (GNS) were prepared by thermal exfoliation process and reinforced into dual phase ceramic system. The hybrid nanocomposite was consolidated by novel HF-IH (high-frequency induction heating) sintering furnace at 1500 °C under 50 MPa in vacuum conditions. Structural features and grain size of the resulting nanocomposite were analyzed by SEM and TEM whilst the mechanical properties were assessed by microhardness and nanoindentation techniques. The fracture toughness of the hybrid nanocomposites was appraised by direct crack measurement method. Electron microscopic investigations confirmed the preparation of thin (< 10 nm) graphene nanosheets (GNS). HF-IH sintering route condensed the three-phase (GNS-Al2O3-SiC) hybrid nanocomposite system to > 99% relative densities. SEM of the hybrid nanocomposites fractured surfaces revealed even distribution of the nanocomposite constituents and changed in fracture-mode. Structurally, 88% grain reduction into hybrid nanocomposite was also obtained. Mechanically, enhanced fracture toughness (50%) and hardness (53%) were also achieved for hybrid nanocomposites were attained against bench marked monolithic Al2O3.Keywords: alumina, graphene, hybrid nanocomposites, rapid sintering
Procedia PDF Downloads 3783538 Modern Agriculture and Employment Generation in Nigeria: A Recursive Model Approach
Authors: Ese Urhie, Olabisi Popoola, Obindah Gershon
Abstract:
Several policies and programs initiated to address the challenge of unemployment in Nigeria seem to be inadequate. The desired structural transformation which is expected to absorb the excess labour in the economy is yet to be achieved. The agricultural sector accounts for almost half of the labour force with very low productivity. This could partly explain why the much anticipated structural transformation has not been achieved. A major reason for the low productivity is the fact that the production process is predominantly based on the use of traditional tools. In view of the underdeveloped nature of the agricultural sector, Nigeria still has huge potentials for productivity enhancement through modern technology. Aside from productivity enhancement, modern agriculture also stimulates both backward and forward linkages that promote investment and thus generate employment. Contrary to the apprehension usually expressed by many stake-holders about the adoption of modern technology by labour-abundant less-developed countries, this study showed that though there will be job loss initially, the reverse will be the case in the long-run. The outcome of this study will enhance the understanding of all stakeholders in the sector and also encourage them to adopt modern techniques of farming. It will also aid policy formulation at both sectoral and national levels. The recursive model and analysis adopted in the study is useful because it exhibits a unilateral cause-and-effect relationship which most simultaneous equation models do not. It enables the structural equations to be ordered in such a way that the first equation includes only predetermined variables on the right-hand side, while the solution for the final endogenous variable is completely determined by all equations of the system. The study examines the transmission channels and effect of modern agriculture on agricultural productivity and employment growth in Nigeria, via its forward and backward linkages. Using time series data spanning 1980 to 2014, the result of the analyses shows that: (i) a significant and positive relationship between agricultural productivity growth and modern agriculture; (ii) a significant and negative relationship between export price index and agricultural productivity growth; (iii) a significant and positive relationship between export and investment; and (iv) a significant and positive relationship between investment and employment growth. The unbalanced growth theory will be a good strategy to adopt by developing countries such as Nigeria.Keywords: employment, modern agriculture, productivity, recursive model
Procedia PDF Downloads 265