Search results for: outlier detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3497

Search results for: outlier detection

1937 Rapid Monitoring of Earthquake Damages Using Optical and SAR Data

Authors: Saeid Gharechelou, Ryutaro Tateishi

Abstract:

Earthquake is an inevitable catastrophic natural disaster. The damages of buildings and man-made structures, where most of the human activities occur are the major cause of casualties from earthquakes. A comparison of optical and SAR data is presented in the case of Kathmandu valley which was hardly shaken by 2015-Nepal Earthquake. Though many existing researchers have conducted optical data based estimated or suggested combined use of optical and SAR data for improved accuracy, however finding cloud-free optical images when urgently needed are not assured. Therefore, this research is specializd in developing SAR based technique with the target of rapid and accurate geospatial reporting. Should considers that limited time available in post-disaster situation offering quick computation exclusively based on two pairs of pre-seismic and co-seismic single look complex (SLC) images. The InSAR coherence pre-seismic, co-seismic and post-seismic was used to detect the change in damaged area. In addition, the ground truth data from field applied to optical data by random forest classification for detection of damaged area. The ground truth data collected in the field were used to assess the accuracy of supervised classification approach. Though a higher accuracy obtained from the optical data then integration by optical-SAR data. Limitation of cloud-free images when urgently needed for earthquak evevent are and is not assured, thus further research on improving the SAR based damage detection is suggested. Availability of very accurate damage information is expected for channelling the rescue and emergency operations. It is expected that the quick reporting of the post-disaster damage situation quantified by the rapid earthquake assessment should assist in channeling the rescue and emergency operations, and in informing the public about the scale of damage.

Keywords: Sentinel-1A data, Landsat-8, earthquake damage, InSAR, rapid damage monitoring, 2015-Nepal earthquake

Procedia PDF Downloads 172
1936 Multicenter Evaluation of the ACCESS Anti-HCV Assay on the DxI 9000 ACCESS Immunoassay Analyzer, for the Detection of Hepatitis C Virus Antibody

Authors: Dan W. Rhodes, Juliane Hey, Magali Karagueuzian, Florianne Martinez, Yael Sandowski, Vanessa Roulet, Mahmoud Badawi, Mohammed-Amine Chakir, Valérie Simon, Jérémie Gautier, Françoise Le Boulaire, Catherine Coignard, Claire Vincent, Sandrine Greaume, Isabelle Voisin

Abstract:

Background: Beckman Coulter, Inc. (BEC) has recently developed a fully automated second-generation anti-HCV test on a new immunoassay platform. The objective of this multicenter study conducted in Europe was to evaluate the performance of the ACCESS anti-HCV assay on the recently CE-marked DxI 9000 ACCESS Immunoassay Analyzer as an aid in the diagnosis of HCV (Hepatitis C Virus) infection and as a screening test for blood and plasma donors. Methods: The clinical specificity of the ACCESS anti-HCV assay was determined using HCV antibody-negative samples from blood donors and hospitalized patients. Sample antibody status was determined by a CE-marked anti-HCV assay (Abbott ARCHITECTTM anti-HCV assay or Abbott PRISM HCV assay) with an additional confirmation method (Immunoblot testing with INNO-LIATM HCV Score - Fujirebio), if necessary, according to pre-determined testing algorithms. The clinical sensitivity was determined using known HCV antibody-positive samples, identified positive by Immunoblot testing with INNO-LIATM HCV Score - Fujirebio. HCV RNA PCR or genotyping was available on all Immunoblot positive samples for further characterization. The false initial reactive rate was determined on fresh samples from blood donors and hospitalized patients. Thirty (30) commercially available seroconversion panels were tested to assess the sensitivity for early detection of HCV infection. The study was conducted from November 2019 to March 2022. Three (3) external sites and one (1) internal site participated. Results: Clinical specificity (95% CI) was 99.7% (99.6 – 99.8%) on 5852 blood donors and 99.0% (98.4 – 99.4%) on 1527 hospitalized patient samples. There were 15 discrepant samples (positive on ACCESS anti-HCV assay and negative on both ARCHITECT and Immunoblot) observed with hospitalized patient samples, and of note, additional HCV RNA PCR results showed five (5) samples had positive HCV RNA PCR results despite the absence of HCV antibody detection by ARCHITECT and Immunoblot, suggesting a better sensitivity of the ACCESS anti-HCV assay with these five samples compared to the ARCHITECT and Immunoblot anti-HCV assays. Clinical sensitivity (95% CI) on 510 well-characterized, known HCV antibody-positive samples was 100.0% (99.3 – 100.0%), including 353 samples with known HCV genotypes (1 to 6). The overall false initial reactive rate (95% CI) on 6630 patient samples was 0.02% (0.00 – 0.09%). Results obtained on 30 seroconversion panels demonstrated that the ACCESS anti-HCV assay had equivalent sensitivity performances, with an average bleed difference since the first reactive bleed below one (1), compared to the ARCHITECTTM anti-HCV assay. Conclusion: The newly developed ACCESS anti-HCV assay from BEC for use on the DxI 9000 ACCESS Immunoassay Analyzer demonstrated high clinical sensitivity and specificity, equivalent to currently marketed anti-HCV assays, as well as a low false initial reactive rate.

Keywords: DxI 9000 ACCESS Immunoassay Analyzer, HCV, HCV antibody, Hepatitis C virus, immunoassay

Procedia PDF Downloads 100
1935 Performance Enrichment of Deep Feed Forward Neural Network and Deep Belief Neural Networks for Fault Detection of Automobile Gearbox Using Vibration Signal

Authors: T. Praveenkumar, Kulpreet Singh, Divy Bhanpuriya, M. Saimurugan

Abstract:

This study analysed the classification accuracy for gearbox faults using Machine Learning Techniques. Gearboxes are widely used for mechanical power transmission in rotating machines. Its rotating components such as bearings, gears, and shafts tend to wear due to prolonged usage, causing fluctuating vibrations. Increasing the dependability of mechanical components like a gearbox is hampered by their sealed design, which makes visual inspection difficult. One way of detecting impending failure is to detect a change in the vibration signature. The current study proposes various machine learning algorithms, with aid of these vibration signals for obtaining the fault classification accuracy of an automotive 4-Speed synchromesh gearbox. Experimental data in the form of vibration signals were acquired from a 4-Speed synchromesh gearbox using Data Acquisition System (DAQs). Statistical features were extracted from the acquired vibration signal under various operating conditions. Then the extracted features were given as input to the algorithms for fault classification. Supervised Machine Learning algorithms such as Support Vector Machines (SVM) and unsupervised algorithms such as Deep Feed Forward Neural Network (DFFNN), Deep Belief Networks (DBN) algorithms are used for fault classification. The fusion of DBN & DFFNN classifiers were architected to further enhance the classification accuracy and to reduce the computational complexity. The fault classification accuracy for each algorithm was thoroughly studied, tabulated, and graphically analysed for fused and individual algorithms. In conclusion, the fusion of DBN and DFFNN algorithm yielded the better classification accuracy and was selected for fault detection due to its faster computational processing and greater efficiency.

Keywords: deep belief networks, DBN, deep feed forward neural network, DFFNN, fault diagnosis, fusion of algorithm, vibration signal

Procedia PDF Downloads 114
1934 Gold-Bearing Alteration Zones in South Eastern Desert of Egypt: Geology and Remote Sensing Analysis

Authors: Mohamed F. Sadek, Safaa M. Hassan, Safwat S. Gabr

Abstract:

Several alteration zones hosting gold mineralization are wide spreading in the South Eastern Desert of Egypt where gold has been mined from many localities since the time of the Pharaohs. The Sukkari is the only mine currently producing gold in the Eastern Desert of Egypt. Therefore, it is necessary to conduct more detailed studies on these locations using modern exploratory methods. The remote sensing plays an important role in lithological mapping and detection of associated hydrothermal mineralization particularly the exploration of gold mineralization. This study is focused on three localities in South Eastern Desert of Egypt, namely Beida, Defiet and Hoteib-Eiqat aiming to detect the gold-bearing hydrothermal alteration zones using the integrated data of remote sensing, field study and mineralogical investigation. Generally, these areas are dominated by Precambrian basement rocks including metamorphic and magmatic assemblages. They comprise ophiolitic serpentinite-talc carbonate, island-arc metavolcanics which were intruded by syn to late orogenic mafic and felsic intrusions mainly gabbro, granodiorite and monzogranite. The processed data of Advanced Spaceborne Thermal Emission and Reflection (ASTER) and Landsat-8 images are used in the present study to map the gold bearing-hydrothermal alteration zones. Band rationing and principal component analysis techniques are used to discriminate the different lithologic units exposed in the studied three areas. Field study and mineralogical investigation have been used to verify the remote sensing data. This study concluded that, the integrated remote sensing data with geological, field and mineralogical investigations are very effective in lithological discrimination, detailed geological mapping and detection of the gold-bearing hydrothermal alteration zones. More detailed exploration for gold mineralization with the help of remote sensing techniques is recommended to evaluate its potentiality in the study areas.

Keywords: pan-african, Egypt, landsat-8; ASTER, gold, alteration zones

Procedia PDF Downloads 127
1933 Artificial Intelligence Protecting Birds against Collisions with Wind Turbines

Authors: Aleksandra Szurlej-Kielanska, Lucyna Pilacka, Dariusz Górecki

Abstract:

The dynamic development of wind energy requires the simultaneous implementation of effective systems minimizing the risk of collisions between birds and wind turbines. Wind turbines are installed in more and more challenging locations, often close to the natural environment of birds. More and more countries and organizations are defining guidelines for the necessary functionality of such systems. The minimum bird detection distance, trajectory tracking, and shutdown time are key factors in eliminating collisions. Since 2020, we have continued the survey on the validation of the subsequent version of the BPS detection and reaction system. Bird protection system (BPS) is a fully automatic camera system which allows one to estimate the distance of the bird to the turbine, classify its size and autonomously undertake various actions depending on the bird's distance and flight path. The BPS was installed and tested in a real environment at a wind turbine in northern Poland and Central Spain. The performed validation showed that at a distance of up to 300 m, the BPS performs at least as well as a skilled ornithologist, and large bird species are successfully detected from over 600 m. In addition, data collected by BPS systems installed in Spain showed that 60% of the detections of all birds of prey were from individuals approaching the turbine, and these detections meet the turbine shutdown criteria. Less than 40% of the detections of birds of prey took place at wind speeds below 2 m/s while the turbines were not working. As shown by the analysis of the data collected by the system over 12 months, the system classified the improved size of birds with a wingspan of more than 1.1 m in 90% and the size of birds with a wingspan of 0.7 - 1 m in 80% of cases. The collected data also allow the conclusion that some species keep a certain distance from the turbines at a wind speed of over 8 m/s (Aquila sp., Buteo sp., Gyps sp.), but Gyps sp. and Milvus sp. remained active at this wind speed on the tested area. The data collected so far indicate that BPS is effective in detecting and stopping wind turbines in response to the presence of birds of prey with a wingspan of more than 1 m.

Keywords: protecting birds, birds monitoring, wind farms, green energy, sustainable development

Procedia PDF Downloads 76
1932 Automated Prediction of HIV-associated Cervical Cancer Patients Using Data Mining Techniques for Survival Analysis

Authors: O. J. Akinsola, Yinan Zheng, Rose Anorlu, F. T. Ogunsola, Lifang Hou, Robert Leo-Murphy

Abstract:

Cervical Cancer (CC) is the 2nd most common cancer among women living in low and middle-income countries, with no associated symptoms during formative periods. With the advancement and innovative medical research, there are numerous preventive measures being utilized, but the incidence of cervical cancer cannot be truncated with the application of only screening tests. The mortality associated with this invasive cervical cancer can be nipped in the bud through the important role of early-stage detection. This study research selected an array of different top features selection techniques which was aimed at developing a model that could validly diagnose the risk factors of cervical cancer. A retrospective clinic-based cohort study was conducted on 178 HIV-associated cervical cancer patients in Lagos University teaching Hospital, Nigeria (U54 data repository) in April 2022. The outcome measure was the automated prediction of the HIV-associated cervical cancer cases, while the predictor variables include: demographic information, reproductive history, birth control, sexual history, cervical cancer screening history for invasive cervical cancer. The proposed technique was assessed with R and Python programming software to produce the model by utilizing the classification algorithms for the detection and diagnosis of cervical cancer disease. Four machine learning classification algorithms used are: the machine learning model was split into training and testing dataset into ratio 80:20. The numerical features were also standardized while hyperparameter tuning was carried out on the machine learning to train and test the data. Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), and K-Nearest Neighbor (KNN). Some fitting features were selected for the detection and diagnosis of cervical cancer diseases from selected characteristics in the dataset using the contribution of various selection methods for the classification cervical cancer into healthy or diseased status. The mean age of patients was 49.7±12.1 years, mean age at pregnancy was 23.3±5.5 years, mean age at first sexual experience was 19.4±3.2 years, while the mean BMI was 27.1±5.6 kg/m2. A larger percentage of the patients are Married (62.9%), while most of them have at least two sexual partners (72.5%). Age of patients (OR=1.065, p<0.001**), marital status (OR=0.375, p=0.011**), number of pregnancy live-births (OR=1.317, p=0.007**), and use of birth control pills (OR=0.291, p=0.015**) were found to be significantly associated with HIV-associated cervical cancer. On top ten 10 features (variables) considered in the analysis, RF claims the overall model performance, which include: accuracy of (72.0%), the precision of (84.6%), a recall of (84.6%) and F1-score of (74.0%) while LR has: an accuracy of (74.0%), precision of (70.0%), recall of (70.0%) and F1-score of (70.0%). The RF model identified 10 features predictive of developing cervical cancer. The age of patients was considered as the most important risk factor, followed by the number of pregnancy livebirths, marital status, and use of birth control pills, The study shows that data mining techniques could be used to identify women living with HIV at high risk of developing cervical cancer in Nigeria and other sub-Saharan African countries.

Keywords: associated cervical cancer, data mining, random forest, logistic regression

Procedia PDF Downloads 84
1931 Pancreatic Adenocarcinoma Correctly Diagnosed by EUS but nor CT or MRI

Authors: Yousef Reda

Abstract:

Pancreatic cancer has an overall dismal prognosis. CT, MRI and Endoscopic Ultrasound are most often used to establish the diagnosis. We present a case of a patient found on abdominal CT and MRI to have an 8 mm cystic lesion within the head of the pancreas which was thought to be a benign intraductal papillary mucinous neoplasm (IPMN). Further evaluation by EUS demonstrated a 1 cm predominantly solid mass that was proven to be an adenocarcinoma by EUS-guided FNA. The patient underwent a Whipple procedure. The final pathology confirmed a 1 cm pT1 N0 pancreatic ductal adenocarcinoma. Case: A 63-year-old male presented with left upper quadrant pain and an abdominal CT demonstrated an 8 mm lesion within the head of the pancreas that was thought to represent a side branch IPMN. An MRI also showed similar findings. Four months later due to ongoing symptoms an EUS was performed to re-evaluate the pancreatic lesion. EUS revealed a predominantly solid hypoechoic, homogeneous mass measuring 12 mm x 9 mm. EUS-guided FNA was performed and was positive for adenocarcinoma. The patient underwent a Whipple procedure that confirmed it to be a ductal adenocarcinoma, pT1N0. The solid mass was noted to be adjacent to a cystic dilation with no papillary architecture and scant epithelium. The differential diagnosis resided between cystic degeneration of a primary pancreatic adenocarcinoma versus malignant degeneration within a side-branch IPMN. Discussion: The reported sensitivity of CT for pancreatic cancer is approximately 90%. For pancreatic tumors, less than 3 cm the sensitivity of CT is reduced ranging from 67-77%. MRI does not significantly improve overall detection rates compared to CT. EUS, however is superior to CT in the detection of pancreatic cancer, in particular among lesions smaller than 3 cm. EUS also outperforms CT and MRI in distinguishing neoplastic from non-neoplastic cysts. In this case, both MRI and CT failed to detect a small pancreatic adenocarcinoma. The addition of EUS and FNA to abdominal imaging can increase overall accuracy for the diagnosis of neoplastic pancreatic lesions. It may be prudent that when small lesions although appearing as a benign IPMN should further be evaluated by EUS as this would lead to potentially identifying earlier stage pancreatic cancers and improve survival in a disease which has a dismal prognosis.

Keywords: IPMN, MRI, EUS, CT

Procedia PDF Downloads 264
1930 Role of Molecular Changes and Immunohistochemical in Early Detection of Liver Cancer

Authors: Fatimah A. Alhomaid

Abstract:

The present study was planned to investigate the role of molecular changes and immunohistochemical in early detection of liver cancer in Saudi patients. our results were carried out on 54 patients liver cancer. We obtained our data from laboratory in King Khalid University Hospital. The specimens were taken (54) patients with liver cancer 34 male and 14 female and 2 control. The average age of varied from 37-85 years. The tumor was diagnosed as grade I in tow patients (male and female) and grade 2 in 45 patients (28 male and 17 female) while the grade 3 in 4 patients (all males). The specimens were processed for haematoxylin and eosin staining, immunohistochemical technique and flow cytometry analysis. Our study noted that most patients had adenocarcinoma which characterized by presence of signet-ring cells were very clear in advanced patients with adenocarcinoma. Our sections in adenocarcinoma in grade 2 and stage 3 had an increase in signet ring cells,an increase in the acini of glands and an increase in number of lymphocytes which spread to the muscular layer. With advancing the disease, there were haemorrhage in blood and increase in lymphocytes and increase in the number of nuclei in the tubular glands. Our study was carried on 48 patients, immunohistochemical diagnosis (CK20, PCNA, P53) and the analysis of DNA content by flow cytometry technique. Our study indicated that the presence of correlation between the immunohistochemical analysis for P53 and the grades. The reaction of P53 appeared as strong in nucleus in grades &stage 3 and appeared in other sections as dark brown pigment. Our study indicated that the absence of correlation between the immunohistochemical analysis for PCAN and the grades. In our sections there were strong reaction in the more 80% of nuclei in grade 1& stage 2. Our study indicated that the presence of correlation between the immunohistochemical analysis for CK20 and the grades. Our results indicated the presence of positive reaction in cytoplasm varied from weak to moderate in grade 3 & stage 4. Concerning the Flow cytometry technique our results indicated that the presence of correlation between the DNA and different stages of liver cancer.

Keywords: cancer, CK20, DNA, cytometry analysis, liver, immunohistochemical, molecular changes, PCNA, p53

Procedia PDF Downloads 266
1929 [Keynote Talk]: Heavy Metals in Marine Sediments of Gulf of Izmir

Authors: E. Kam, Z. U. Yümün, D. Kurt

Abstract:

In this study, sediment samples were collected from four sampling sites located on the shores of the Gulf of İzmir. In the samples, Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn concentrations were determined using inductively coupled, plasma-optical emission spectrometry (ICP-OES). The average heavy metal concentrations were: Cd < LOD (limit of detection); Co 14.145 ± 0.13 μg g−1; Cr 112.868 ± 0.89 μg g−1; Cu 34.045 ± 0.53 μg g−1; Mn 481.43 ± 7.65 μg g−1; Ni 76.538 ± 3.81 μg g−1; Pb 11.059 ± 0.53 μg g−1 and Zn 140.133 ± 1.37 μg g−1, respectively. The results were compared with the average abundances of these elements in the Earth’s crust. The measured heavy metal concentrations can serve as reference values for further studies carried out on the shores of the Aegean Sea.

Keywords: heavy metal, Aegean Sea, ICP-OES, sediment

Procedia PDF Downloads 184
1928 Carbon Nanotubes (CNTs) as Multiplex Surface Enhanced Raman Scattering Sensing Platforms

Authors: Pola Goldberg Oppenheimer, Stephan Hofmann, Sumeet Mahajan

Abstract:

Owing to its fingerprint molecular specificity and high sensitivity, surface-enhanced Raman scattering (SERS) is an established analytical tool for chemical and biological sensing capable of single-molecule detection. A strong Raman signal can be generated from SERS-active platforms given the analyte is within the enhanced plasmon field generated near a noble-metal nanostructured substrate. The key requirement for generating strong plasmon resonances to provide this electromagnetic enhancement is an appropriate metal surface roughness. Controlling nanoscale features for generating these regions of high electromagnetic enhancement, the so-called SERS ‘hot-spots’, is still a challenge. Significant advances have been made in SERS research, with wide-ranging techniques to generate substrates with tunable size and shape of the nanoscale roughness features. Nevertheless, the development and application of SERS has been inhibited by the irreproducibility and complexity of fabrication routes. The ability to generate straightforward, cost-effective, multiplex-able and addressable SERS substrates with high enhancements is of profound interest for miniaturised sensing devices. Carbon nanotubes (CNTs) have been concurrently, a topic of extensive research however, their applications for plasmonics has been only recently beginning to gain interest. CNTs can provide low-cost, large-active-area patternable substrates which, coupled with appropriate functionalization capable to provide advanced SERS-platforms. Herein, advanced methods to generate CNT-based SERS active detection platforms will be discussed. First, a novel electrohydrodynamic (EHD) lithographic technique will be introduced for patterning CNT-polymer composites, providing a straightforward, single-step approach for generating high-fidelity sub-micron-sized nanocomposite structures within which anisotropic CNTs are vertically aligned. The created structures are readily fine-tuned, which is an important requirement for optimizing SERS to obtain the highest enhancements with each of the EHD-CNTs individual structural units functioning as an isolated sensor. Further, gold-functionalized VACNTFs are fabricated as SERS micro-platforms. The dependence on the VACNTs’ diameters and density play an important role in the Raman signal strength, thus highlighting the importance of structural parameters, previously overlooked in designing and fabricating optimized CNTs-based SERS nanoprobes. VACNTs forests patterned into predesigned pillar structures are further utilized for multiplex detection of bio-analytes. Since CNTs exhibit electrical conductivity and unique adsorption properties, these are further harnessed in the development of novel chemical and bio-sensing platforms.

Keywords: carbon nanotubes (CNTs), EHD patterning, SERS, vertically aligned carbon nanotube forests (VACNTF)

Procedia PDF Downloads 331
1927 Application of Building Information Modeling in Energy Management of Individual Departments Occupying University Facilities

Authors: Kung-Jen Tu, Danny Vernatha

Abstract:

To assist individual departments within universities in their energy management tasks, this study explores the application of Building Information Modeling in establishing the ‘BIM based Energy Management Support System’ (BIM-EMSS). The BIM-EMSS consists of six components: (1) sensors installed for each occupant and each equipment, (2) electricity sub-meters (constantly logging lighting, HVAC, and socket electricity consumptions of each room), (3) BIM models of all rooms within individual departments’ facilities, (4) data warehouse (for storing occupancy status and logged electricity consumption data), (5) building energy management system that provides energy managers with various energy management functions, and (6) energy simulation tool (such as eQuest) that generates real time 'standard energy consumptions' data against which 'actual energy consumptions' data are compared and energy efficiency evaluated. Through the building energy management system, the energy manager is able to (a) have 3D visualization (BIM model) of each room, in which the occupancy and equipment status detected by the sensors and the electricity consumptions data logged are displayed constantly; (b) perform real time energy consumption analysis to compare the actual and standard energy consumption profiles of a space; (c) obtain energy consumption anomaly detection warnings on certain rooms so that energy management corrective actions can be further taken (data mining technique is employed to analyze the relation between space occupancy pattern with current space equipment setting to indicate an anomaly, such as when appliances turn on without occupancy); and (d) perform historical energy consumption analysis to review monthly and annually energy consumption profiles and compare them against historical energy profiles. The BIM-EMSS was further implemented in a research lab in the Department of Architecture of NTUST in Taiwan and implementation results presented to illustrate how it can be used to assist individual departments within universities in their energy management tasks.

Keywords: database, electricity sub-meters, energy anomaly detection, sensor

Procedia PDF Downloads 308
1926 Consumers Attitude toward the Latest Trends in Decreasing Energy Consumption of Washing Machine

Authors: Farnaz Alborzi, Angelika Schmitz, Rainer Stamminger

Abstract:

Reducing water temperatures in the wash phase of a washing programme and increasing the overall cycle durations are the latest trends in decreasing energy consumption of washing programmes. Since the implementation of the new energy efficiency classes in 2010, manufacturers seem to apply the aforementioned washing strategy with lower temperatures combined with longer programme durations extensively to realise energy-savings needed to meet the requirements of the highest energy efficiency class possible. A semi-representative on-line survey in eleven European countries (Czech Republic, Finland, France, Germany, Hungary, Italy, Poland, Romania, Spain, Sweden and the United Kingdom) was conducted by Bonn University in 2015 to shed light on consumer opinion and behaviour regarding the effects of the lower washing temperature and longer cycle duration in laundry washing on consumers’ acceptance of the programme. The risk of the long wash cycle is that consumers might not use the energy efficient Standard programmes and will think of this option as inconvenient and therefore switch to shorter, but more energy consuming programmes. Furthermore, washing in a lower temperature may lead to the problem of cross-contamination. Washing behaviour of over 5,000 households was studied in this survey to provide support and guidance for manufacturers and policy designers. Qualified households were chosen following a predefined quota: -Involvement in laundry washing: substantial, -Distribution of gender: more than 50 % female , -Selected age groups: -20–39 years, -40–59 years, -60–74 years, -Household size: 1, 2, 3, 4 and more than 4 people. Furthermore, Eurostat data for each country were used to calculate the population distribution in the respective age class and household size as quotas for the consumer survey distribution in each country. Before starting the analyses, the validity of each dataset was controlled with the aid of control questions. After excluding the outlier data, the number of the panel diminished from 5,100 to 4,843. The primary outcome of the study is European consumers are willing to save water and energy in a laundry washing but reluctant to use long programme cycles since they don’t believe that the long cycles could be energy-saving. However, the results of our survey don’t confirm that there is a relation between frequency of using Standard cotton (Eco) or Energy-saving programmes and the duration of the programmes. It might be explained by the fact that the majority of washing programmes used by consumers do not take so long, perhaps consumers just choose some additional time reduction option when selecting those programmes and this finding might be changed if the Energy-saving programmes take longer. Therefore, it may be assumed that introducing the programme duration as a new measure on a revised energy label would strongly influence the consumer at the point of sale. Furthermore, results of the survey confirm that consumers are more willing to use lower temperature programmes in order to save energy than accepting longer programme cycles and majority of them accept deviation from the nominal temperature of the programme as long as the results are good.

Keywords: duration, energy-saving, standard programmes, washing temperature

Procedia PDF Downloads 221
1925 Simulation Based Analysis of Gear Dynamic Behavior in Presence of Multiple Cracks

Authors: Ahmed Saeed, Sadok Sassi, Mohammad Roshun

Abstract:

Gears are important components with a vital role in many rotating machines. One of the common gear failure causes is tooth fatigue crack; however, its early detection is still a challenging task. The objective of this study is to develop a numerical model that simulates the effect of teeth cracks on the resulting gears vibrations and permits consequently to perform an early fault detection. In contrast to other published papers, this work incorporates the possibility of multiple simultaneous cracks with different depths. As cracks alter significantly the stiffness of the tooth, finite element software is used to determine the stiffness variation with respect to the angular position, for different combinations of crack orientation and depth. A simplified six degrees of freedom nonlinear lumped parameter model of a one-stage spur gear system is proposed to study the vibration with and without cracks. The model developed for calculating the stiffness with the crack permitted to update the physical parameters of the second-degree-of-freedom equations of motions describing the vibration of the gearbox. The vibration simulation results of the gearbox were by obtained using Simulink/Matlab. The effect of one crack with different levels was studied thoroughly. The change in the mesh stiffness and the vibration response were found to be consistent with previously published works. In addition, various statistical time domain parameters were considered. They showed different degrees of sensitivity toward the crack depth. Multiple cracks were also introduced at different locations and the vibration response along with the statistical parameters were obtained again for a general case of degradation (increase in crack depth, crack number and crack locations). It was found that although some parameters increase in value as the deterioration level increases, they show almost no change or even decrease when the number of cracks increases. Therefore, the use of any statistical parameters could be misleading if not considered in an appropriate way.

Keywords: Spur gear, cracked tooth, numerical simulation, time-domain parameters

Procedia PDF Downloads 266
1924 A Qualitative Research of Online Fraud Decision-Making Process

Authors: Semire Yekta

Abstract:

Many online retailers set up manual review teams to overcome the limitations of automated online fraud detection systems. This study critically examines the strategies they adapt in their decision-making process to set apart fraudulent individuals from non-fraudulent online shoppers. The study uses a mix method research approach. 32 in-depth interviews have been conducted alongside with participant observation and auto-ethnography. The study found out that all steps of the decision-making process are significantly affected by a level of subjectivity, personal understandings of online fraud, preferences and judgments and not necessarily by objectively identifiable facts. Rather clearly knowing who the fraudulent individuals are, the team members have to predict whether they think the customer might be a fraudster. Common strategies used are relying on the classification and fraud scorings in the automated fraud detection systems, weighing up arguments for and against the customer and making a decision, using cancellation to test customers’ reaction and making use of personal experiences and “the sixth sense”. The interaction in the team also plays a significant role given that some decisions turn into a group discussion. While customer data represent the basis for the decision-making, fraud management teams frequently make use of Google search and Google Maps to find out additional information about the customer and verify whether the customer is the person they claim to be. While this, on the one hand, raises ethical concerns, on the other hand, Google Street View on the address and area of the customer puts customers living in less privileged housing and areas at a higher risk of being classified as fraudsters. Phone validation is used as a final measurement to make decisions for or against the customer when previous strategies and Google Search do not suffice. However, phone validation is also characterized by individuals’ subjectivity, personal views and judgment on customer’s reaction on the phone that results in a final classification as genuine or fraudulent.

Keywords: online fraud, data mining, manual review, social construction

Procedia PDF Downloads 343
1923 Design of DNA Origami Structures Using LAMP Products as a Combined System for the Detection of Extended Spectrum B-Lactamases

Authors: Kalaumari Mayoral-Peña, Ana I. Montejano-Montelongo, Josué Reyes-Muñoz, Gonzalo A. Ortiz-Mancilla, Mayrin Rodríguez-Cruz, Víctor Hernández-Villalobos, Jesús A. Guzmán-López, Santiago García-Jacobo, Iván Licona-Vázquez, Grisel Fierros-Romero, Rosario Flores-Vallejo

Abstract:

The group B-lactamic antibiotics include some of the most frequently used small drug molecules against bacterial infections. Nevertheless, an alarming decrease in their efficacy has been reported due to the emergence of antibiotic-resistant bacteria. Infections caused by bacteria expressing extended Spectrum B-lactamases (ESBLs) are difficult to treat and account for higher morbidity and mortality rates, delayed recovery, and high economic burden. According to the Global Report on Antimicrobial Resistance Surveillance, it is estimated that mortality due to resistant bacteria will ascend to 10 million cases per year worldwide. These facts highlight the importance of developing low-cost and readily accessible detection methods of drug-resistant ESBLs bacteria to prevent their spread and promote accurate and fast diagnosis. Bacterial detection is commonly done using molecular diagnostic techniques, where PCR stands out for its high performance. However, this technique requires specialized equipment not available everywhere, is time-consuming, and has a high cost. Loop-Mediated Isothermal Amplification (LAMP) is an alternative technique that works at a constant temperature, significantly decreasing the equipment cost. It yields double-stranded DNA of several lengths with repetitions of the target DNA sequence as a product. Although positive and negative results from LAMP can be discriminated by colorimetry, fluorescence, and turbidity, there is still a large room for improvement in the point-of-care implementation. DNA origami is a technique that allows the formation of 3D nanometric structures by folding a large single-stranded DNA (scaffold) into a determined shape with the help of short DNA sequences (staples), which hybridize with the scaffold. This research aimed to generate DNA origami structures using LAMP products as scaffolds to improve the sensitivity to detect ESBLs in point-of-care diagnosis. For this study, the coding sequence of the CTM-X-15 ESBL of E. coli was used to generate the LAMP products. The set of LAMP primers were designed using PrimerExplorerV5. As a result, a target sequence of 200 nucleotides from CTM-X-15 ESBL was obtained. Afterward, eight different DNA origami structures were designed using the target sequence in the SDCadnano and analyzed with CanDo to evaluate the stability of the 3D structures. The designs were constructed minimizing the total number of staples to reduce costs and complexity for point-of-care applications. After analyzing the DNA origami designs, two structures were selected. The first one was a zig-zag flat structure, while the second one was a wall-like shape. Given the sequence repetitions in the scaffold sequence, both were able to be assembled with only 6 different staples each one, ranging between 18 to 80 nucleotides. Simulations of both structures were performed using scaffolds of different sizes yielding stable structures in all the cases. The generation of the LAMP products were tested by colorimetry and electrophoresis. The formation of the DNA structures was analyzed using electrophoresis and colorimetry. The modeling of novel detection methods through bioinformatics tools allows reliable control and prediction of results. To our knowledge, this is the first study that uses LAMP products and DNA-origami in combination to delect ESBL-producing bacterial strains, which represent a promising methodology for diagnosis in the point-of-care.

Keywords: beta-lactamases, antibiotic resistance, DNA origami, isothermal amplification, LAMP technique, molecular diagnosis

Procedia PDF Downloads 223
1922 Determination of Vitamin C (Ascorbic Acid) in Orange Juices Product

Authors: Wanida Wonsawat

Abstract:

This research describes a voltammetric approach to determine amounts of vitamin C (Ascorbic acid) in orange juice sample, using three screen printed electrode. The anodic currents of vitamin C were proportional to vitamin C concentration in the range of 0 – 10.0 mM with the limit of detection of 1.36 mM. The method was successfully employed with 2 µL of the working solution dropped on the electrode surface. The proposed method was applied for the analysis of vitamin C in packed orange juice without sample purification or complexion of sample preparation step.

Keywords: ascorbic acid, vitamin C, juice, voltammetry

Procedia PDF Downloads 327
1921 Design and Development of an Autonomous Beach Cleaning Vehicle

Authors: Mahdi Allaoua Seklab, Süleyman BaşTürk

Abstract:

In the quest to enhance coastal environmental health, this study introduces a fully autonomous beach cleaning machine, a breakthrough in leveraging green energy and advanced artificial intelligence for ecological preservation. Designed to operate independently, the machine is propelled by a solar-powered system, underscoring a commitment to sustainability and the use of renewable energy in autonomous robotics. The vehicle's autonomous navigation is achieved through a sophisticated integration of LIDAR and a camera system, utilizing an SSD MobileNet V2 object detection model for accurate and real-time trash identification. The SSD framework, renowned for its efficiency in detecting objects in various scenarios, is coupled with the lightweight and precise highly MobileNet V2 architecture, making it particularly suited for the computational constraints of on-board processing in mobile robotics. Training of the SSD MobileNet V2 model was conducted on Google Colab, harnessing cloud-based GPU resources to facilitate a rapid and cost-effective learning process. The model was refined with an extensive dataset of annotated beach debris, optimizing the parameters using the Adam optimizer and a cross-entropy loss function to achieve high-precision trash detection. This capability allows the machine to intelligently categorize and target waste, leading to more effective cleaning operations. This paper details the design and functionality of the beach cleaning machine, emphasizing its autonomous operational capabilities and the novel application of AI in environmental robotics. The results showcase the potential of such technology to fill existing gaps in beach maintenance, offering a scalable and eco-friendly solution to the growing problem of coastal pollution. The deployment of this machine represents a significant advancement in the field, setting a new standard for the integration of autonomous systems in the service of environmental stewardship.

Keywords: autonomous beach cleaning machine, renewable energy systems, coastal management, environmental robotics

Procedia PDF Downloads 27
1920 Structural Health Monitoring of Buildings–Recorded Data and Wave Method

Authors: Tzong-Ying Hao, Mohammad T. Rahmani

Abstract:

This article presents the structural health monitoring (SHM) method based on changes in wave traveling times (wave method) within a layered 1-D shear beam model of structure. The wave method measures the velocity of shear wave propagating in a building from the impulse response functions (IRF) obtained from recorded data at different locations inside the building. If structural damage occurs in a structure, the velocity of wave propagation through it changes. The wave method analysis is performed on the responses of Torre Central building, a 9-story shear wall structure located in Santiago, Chile. Because events of different intensity (ambient vibrations, weak and strong earthquake motions) have been recorded at this building, therefore it can serve as a full-scale benchmark to validate the structural health monitoring method utilized. The analysis of inter-story drifts and the Fourier spectra for the EW and NS motions during 2010 Chile earthquake are presented. The results for the NS motions suggest the coupling of translation and torsion responses. The system frequencies (estimated from the relative displacement response of the 8th-floor with respect to the basement from recorded data) were detected initially decreasing approximately 24% in the EW motion. Near the end of shaking, an increase of about 17% was detected. These analysis and results serve as baseline indicators of the occurrence of structural damage. The detected changes in wave velocities of the shear beam model are consistent with the observed damage. However, the 1-D shear beam model is not sufficient to simulate the coupling of translation and torsion responses in the NS motion. The wave method is proven for actual implementation in structural health monitoring systems based on carefully assessing the resolution and accuracy of the model for its effectiveness on post-earthquake damage detection in buildings.

Keywords: Chile earthquake, damage detection, earthquake response, impulse response function, shear beam model, shear wave velocity, structural health monitoring, torre central building, wave method

Procedia PDF Downloads 368
1919 Cadmium Telluride Quantum Dots (CdTe QDs)-Thymine Conjugate Based Fluorescence Biosensor for Sensitive Determination of Nucleobases/Nucleosides

Authors: Lucja Rodzik, Joanna Lewandowska-Lancucka, Michal Szuwarzynski, Krzysztof Szczubialka, Maria Nowakowska

Abstract:

The analysis of nucleobases is of great importance for bioscience since their abnormal concentration in body fluids suggests the deficiency and mutation of the immune system, and it is considered to be an important parameter for diagnosis of various diseases. The presented conjugate meets the need for development of the effective, selective and highly sensitive sensor for nucleobase/nucleoside detection. The novel, highly fluorescent cadmium telluride quantum dots (CdTe QDs) functionalized with thymine and stabilized with thioglycolic acid (TGA) conjugates has been developed and thoroughly characterized. Successful formation of the material was confirmed by elemental analysis, and UV–Vis fluorescence and FTIR spectroscopies. The crystalline structure of the obtained product was characterized with X-ray diffraction (XRD) method. The composition of CdTe QDs and their thymine conjugate was also examined using X-ray photoelectron spectroscopy (XPS). The size of the CdTe-thymine was 3-6 nm as demonstrated using atomic force microscopy (AFM) and high resolution transmission electron microscopy (HRTEM) imaging. The plasmon resonance fluorescence band at 540 nm on excitation at 351 nm was observed for these nanoparticles. The intensity of this band increased with the increase in the amount of conjugated thymine with no shift in its position. Based on the fluorescence measurements, it was found that the CdTe-thymine conjugate interacted efficiently and selectively not only with adenine, a nucleobase complementary to thymine, but also with nucleosides and adenine-containing modified nucleosides, i.e., 5′-deoxy-5′-(methylthio)adenosine (MTA) and 2’-O-methyladenosine, the urinary tumor markers which allow monitoring of the disease progression. The applicability of the CdTe-thymine sensor for the real sample analysis was also investigated in simulated urine conditions. High sensitivity and selectivity of CdTe-thymine fluorescence towards adenine, adenosine and modified adenosine suggest that obtained conjugate can be potentially useful for development of the biosensor for complementary nucleobase/nucleoside detection.

Keywords: CdTe quantum dots, conjugate, sensor, thymine

Procedia PDF Downloads 412
1918 Algorithm for Improved Tree Counting and Detection through Adaptive Machine Learning Approach with the Integration of Watershed Transformation and Local Maxima Analysis

Authors: Jigg Pelayo, Ricardo Villar

Abstract:

The Philippines is long considered as a valuable producer of high value crops globally. The country’s employment and economy have been dependent on agriculture, thus increasing its demand for the efficient agricultural mechanism. Remote sensing and geographic information technology have proven to effectively provide applications for precision agriculture through image-processing technique considering the development of the aerial scanning technology in the country. Accurate information concerning the spatial correlation within the field is very important for precision farming of high value crops, especially. The availability of height information and high spatial resolution images obtained from aerial scanning together with the development of new image analysis methods are offering relevant influence to precision agriculture techniques and applications. In this study, an algorithm was developed and implemented to detect and count high value crops simultaneously through adaptive scaling of support vector machine (SVM) algorithm subjected to object-oriented approach combining watershed transformation and local maxima filter in enhancing tree counting and detection. The methodology is compared to cutting-edge template matching algorithm procedures to demonstrate its effectiveness on a demanding tree is counting recognition and delineation problem. Since common data and image processing techniques are utilized, thus can be easily implemented in production processes to cover large agricultural areas. The algorithm is tested on high value crops like Palm, Mango and Coconut located in Misamis Oriental, Philippines - showing a good performance in particular for young adult and adult trees, significantly 90% above. The s inventories or database updating, allowing for the reduction of field work and manual interpretation tasks.

Keywords: high value crop, LiDAR, OBIA, precision agriculture

Procedia PDF Downloads 402
1917 Extraction and Quantification of Triclosan in Wastewater Samples Using Molecularly Imprinted Membrane Adsorbent

Authors: Siyabonga Aubrey Mhlongo, Linda Lunga Sibali, Phumlane Selby Mdluli, Peter Papoh Ndibewu, Kholofelo Clifford Malematja

Abstract:

This paper reports on the successful extraction and quantification of an antibacterial and antifungal agent present in some consumer products (Triclosan: C₁₂H₇Cl₃O₂)generally found in wastewater or effluents using molecularly imprinted membrane adsorbent (MIMs) followed by quantification and removal on a high-performance liquid chromatography (HPLC). Triclosan is an antibacterial and antifungal agent present in some consumer products like toothpaste, soaps, detergents, toys, and surgical cleaning treatments. The MIMs was fabricated usingpolyvinylidene fluoride (PVDF) polymer with selective micro composite particles known as molecularly imprinted polymers (MIPs)via a phase inversion by immersion precipitation technique. This resulted in an improved hydrophilicity and mechanical behaviour of the membranes. Wastewater samples were collected from the Umbogintwini Industrial Complex (UIC) (south coast of Durban, KwaZulu-Natal in South Africa). central UIC effluent treatment plant and pre-treated before analysis. Experimental parameters such as sample size, contact time, stirring speed were optimised. The resultant MIMs had an adsorption efficiency of 97% of TCS with reference to NIMs and bare membrane, which had 92%, 88%, respectively. The analytical method utilized in this review had limits of detection (LoD) and limits of quantification (LoQ) of 0.22, 0.71µgL-1 in wastewater effluent, respectively. The percentage recovery for the effluent samples was 68%. The detection of TCS was monitored for 10 consecutive days, where optimum TCS traces detected in the treated wastewater was 55.0μg/L inday 9 of the monitored days, while the lowest detected was 6.0μg/L. As the concentrations of analytefound in effluent water samples were not so diverse, this study suggested that MIMs could be the best potential adsorbent for the development and continuous progress in membrane technologyand environmental sciences, lending its capability to desalination.

Keywords: molecularly imprinted membrane, triclosan, phase inversion, wastewater

Procedia PDF Downloads 124
1916 Development and Validation of a Liquid Chromatographic Method for the Quantification of Related Substance in Gentamicin Drug Substances

Authors: Sofiqul Islam, V. Murugan, Prema Kumari, Hari

Abstract:

Gentamicin is a broad spectrum water-soluble aminoglycoside antibiotics produced by the fermentation process of microorganism known as Micromonospora purpurea. It is widely used for the treatment of infection caused by both gram positive and gram negative bacteria. Gentamicin consists of a mixture of aminoglycoside components like C1, C1a, C2a, and C2. The molecular structure of Gentamicin and its related substances showed that it has lack of presence of chromophore group in the molecule due to which the detection of such components were quite critical and challenging. In this study, a simple Reversed Phase-High Performance Liquid Chromatographic (RP-HPLC) method using ultraviolet (UV) detector was developed and validated for quantification of the related substances present in Gentamicin drug substances. The method was achieved by using Thermo Scientific Hypersil Gold analytical column (150 x 4.6 mm, 5 µm particle size) with isocratic elution composed of methanol: water: glacial acetic acid: sodium hexane sulfonate in the ratio 70:25:5:3 % v/v/v/w as a mobile phase at a flow rate of 0.5 mL/min, column temperature was maintained at 30 °C and detection wavelength of 330 nm. The four components of Gentamicin namely Gentamicin C1, C1a, C2a, and C2 were well separated along with the related substance present in Gentamicin. The Limit of Quantification (LOQ) values were found to be at 0.0075 mg/mL. The accuracy of the method was quite satisfactory in which the % recovery was resulted between 95-105% for the related substances. The correlation coefficient (≥ 0.995) shows the linearity response against concentration over the range of Limit of Quantification (LOQ). Precision studies showed the % Relative Standard Deviation (RSD) values less than 5% for its related substance. The method was validated in accordance with the International Conference of Harmonization (ICH) guideline with various parameters like system suitability, specificity, precision, linearity, accuracy, limit of quantification, and robustness. This proposed method was easy and suitable for use for the quantification of related substances in routine analysis of Gentamicin formulations.

Keywords: reversed phase-high performance liquid chromatographic (RP-HPLC), high performance liquid chromatography, gentamicin, isocratic, ultraviolet

Procedia PDF Downloads 162
1915 “CheckPrivate”: Artificial Intelligence Powered Mobile Application to Enhance the Well-Being of Sextual Transmitted Diseases Patients in Sri Lanka under Cultural Barriers

Authors: Warnakulasuriya Arachichige Malisha Ann Rosary Fernando, Udalamatta Gamage Omila Chalanka Jinadasa, Bihini Pabasara Amandi Amarasinghe, Manul Thisuraka Mandalawatta, Uthpala Samarakoon, Manori Gamage

Abstract:

The surge in sexually transmitted diseases (STDs) has become a critical public health crisis demanding urgent attention and action. Like many other nations, Sri Lanka is grappling with a significant increase in STDs due to a lack of education and awareness regarding their dangers. Presently, the available applications for tracking and managing STDs cover only a limited number of easily detectable infections, resulting in a significant gap in effectively controlling their spread. To address this gap and combat the rising STD rates, it is essential to leverage technology and data. Employing technology to enhance the tracking and management of STDs is vital to prevent their further propagation and to enable early intervention and treatment. This requires adopting a comprehensive approach that involves raising public awareness about the perils of STDs, improving access to affordable healthcare services for early detection and treatment, and utilizing advanced technology and data analysis. The proposed mobile application aims to cater to a broad range of users, including STD patients, recovered individuals, and those unaware of their STD status. By harnessing cutting-edge technologies like image detection, symptom-based identification, prevention methods, doctor and clinic recommendations, and virtual counselor chat, the application offers a holistic approach to STD management. In conclusion, the escalating STD rates in Sri Lanka and across the globe require immediate action. The integration of technology-driven solutions, along with comprehensive education and healthcare accessibility, is the key to curbing the spread of STDs and promoting better overall public health.

Keywords: STD, machine learning, NLP, artificial intelligence

Procedia PDF Downloads 81
1914 Neighbor Caring Environment System (NCE) Using Parallel Replication Mechanism

Authors: Ahmad Shukri Mohd Noor, Emma Ahmad Sirajudin, Rabiei Mamat

Abstract:

Pertaining to a particular Marine interest, the process of data sampling could take years before a study can be concluded. Therefore, the need for a robust backup system for the data is invariably implicit. In recent advancement of Marine applications, more functionalities and tools are integrated to assist the work of the researchers. It is anticipated that this modality will continue as research scope widens and intensifies and at the same to follow suit with current technologies and lifestyles. The convenience to collect and share information these days also applies to the work in Marine research. Therefore, Marine system designers should be aware that high availability is a necessary attribute in Marine repository applications as well as a robust backup system for the data. In this paper, the approach to high availability is related both to hardware and software but the focus is more on software. We consider a NABTIC repository system that is primitively built on a single server and does not have replicated components. First, the system is decomposed into separate modules. The modules are placed on multiple servers to create a distributed system. Redundancy is added by placing the copies of the modules on different servers using Neighbor Caring Environment System(NCES) technique. NCER is utilizing parallel replication components mechanism. A background monitoring is established to check servers’ heartbeats to confirm their aliveness. At the same time, a critical adaptive threshold is maintained to make sure a failure is timely detected using Adaptive Fault Detection (AFD). A confirmed failure will set the recovery mode where a selection process will be done before a fail-over server is instructed. In effect, the Marine repository service is continued as the fail-over masks a recent failure. The performance of the new prototype is tested and is confirmed to be more highly available. Furthermore, the downtime is not noticeable as service is immediately restored automatically. The Marine repository system is said to have achieved fault tolerance.

Keywords: availability, fault detection, replication, fault tolerance, marine application

Procedia PDF Downloads 321
1913 Low-Cost, Portable Optical Sensor with Regression Algorithm Models for Accurate Monitoring of Nitrites in Environments

Authors: David X. Dong, Qingming Zhang, Meng Lu

Abstract:

Nitrites enter waterways as runoff from croplands and are discharged from many industrial sites. Excessive nitrite inputs to water bodies lead to eutrophication. On-site rapid detection of nitrite is of increasing interest for managing fertilizer application and monitoring water source quality. Existing methods for detecting nitrites use spectrophotometry, ion chromatography, electrochemical sensors, ion-selective electrodes, chemiluminescence, and colorimetric methods. However, these methods either suffer from high cost or provide low measurement accuracy due to their poor selectivity to nitrites. Therefore, it is desired to develop an accurate and economical method to monitor nitrites in environments. We report a low-cost optical sensor, in conjunction with a machine learning (ML) approach to enable high-accuracy detection of nitrites in water sources. The sensor works under the principle of measuring molecular absorptions of nitrites at three narrowband wavelengths (295 nm, 310 nm, and 357 nm) in the ultraviolet (UV) region. These wavelengths are chosen because they have relatively high sensitivity to nitrites; low-cost light-emitting devices (LEDs) and photodetectors are also available at these wavelengths. A regression model is built, trained, and utilized to minimize cross-sensitivities of these wavelengths to the same analyte, thus achieving precise and reliable measurements with various interference ions. The measured absorbance data is input to the trained model that can provide nitrite concentration prediction for the sample. The sensor is built with i) a miniature quartz cuvette as the test cell that contains a liquid sample under test, ii) three low-cost UV LEDs placed on one side of the cell as light sources, with each LED providing a narrowband light, and iii) a photodetector with a built-in amplifier and an analog-to-digital converter placed on the other side of the test cell to measure the power of transmitted light. This simple optical design allows measuring the absorbance data of the sample at the three wavelengths. To train the regression model, absorbances of nitrite ions and their combination with various interference ions are first obtained at the three UV wavelengths using a conventional spectrophotometer. Then, the spectrophotometric data are inputs to different regression algorithm models for training and evaluating high-accuracy nitrite concentration prediction. Our experimental results show that the proposed approach enables instantaneous nitrite detection within several seconds. The sensor hardware costs about one hundred dollars, which is much cheaper than a commercial spectrophotometer. The ML algorithm helps to reduce the average relative errors to below 3.5% over a concentration range from 0.1 ppm to 100 ppm of nitrites. The sensor has been validated to measure nitrites at three sites in Ames, Iowa, USA. This work demonstrates an economical and effective approach to the rapid, reagent-free determination of nitrites with high accuracy. The integration of the low-cost optical sensor and ML data processing can find a wide range of applications in environmental monitoring and management.

Keywords: optical sensor, regression model, nitrites, water quality

Procedia PDF Downloads 72
1912 Emotion Recognition in Video and Images in the Wild

Authors: Faizan Tariq, Moayid Ali Zaidi

Abstract:

Facial emotion recognition algorithms are expanding rapidly now a day. People are using different algorithms with different combinations to generate best results. There are six basic emotions which are being studied in this area. Author tried to recognize the facial expressions using object detector algorithms instead of traditional algorithms. Two object detection algorithms were chosen which are Faster R-CNN and YOLO. For pre-processing we used image rotation and batch normalization. The dataset I have chosen for the experiments is Static Facial Expression in Wild (SFEW). Our approach worked well but there is still a lot of room to improve it, which will be a future direction.

Keywords: face recognition, emotion recognition, deep learning, CNN

Procedia PDF Downloads 187
1911 Fault-Tolerant Control Study and Classification: Case Study of a Hydraulic-Press Model Simulated in Real-Time

Authors: Jorge Rodriguez-Guerra, Carlos Calleja, Aron Pujana, Iker Elorza, Ana Maria Macarulla

Abstract:

Society demands more reliable manufacturing processes capable of producing high quality products in shorter production cycles. New control algorithms have been studied to satisfy this paradigm, in which Fault-Tolerant Control (FTC) plays a significant role. It is suitable to detect, isolate and adapt a system when a harmful or faulty situation appears. In this paper, a general overview about FTC characteristics are exposed; highlighting the properties a system must ensure to be considered faultless. In addition, a research to identify which are the main FTC techniques and a classification based on their characteristics is presented in two main groups: Active Fault-Tolerant Controllers (AFTCs) and Passive Fault-Tolerant Controllers (PFTCs). AFTC encompasses the techniques capable of re-configuring the process control algorithm after the fault has been detected, while PFTC comprehends the algorithms robust enough to bypass the fault without further modifications. The mentioned re-configuration requires two stages, one focused on detection, isolation and identification of the fault source and the other one in charge of re-designing the control algorithm by two approaches: fault accommodation and control re-design. From the algorithms studied, one has been selected and applied to a case study based on an industrial hydraulic-press. The developed model has been embedded under a real-time validation platform, which allows testing the FTC algorithms and analyse how the system will respond when a fault arises in similar conditions as a machine will have on factory. One AFTC approach has been picked up as the methodology the system will follow in the fault recovery process. In a first instance, the fault will be detected, isolated and identified by means of a neural network. In a second instance, the control algorithm will be re-configured to overcome the fault and continue working without human interaction.

Keywords: fault-tolerant control, electro-hydraulic actuator, fault detection and isolation, control re-design, real-time

Procedia PDF Downloads 178
1910 Development of Wide Bandgap Semiconductor Based Particle Detector

Authors: Rupa Jeena, Pankaj Chetry, Pradeep Sarin

Abstract:

The study of fundamental particles and the forces governing them has always remained an attractive field of theoretical study to pursue. With the advancement and development of new technologies and instruments, it is possible now to perform particle physics experiments on a large scale for the validation of theoretical predictions. These experiments are generally carried out in a highly intense beam environment. This, in turn, requires the development of a detector prototype possessing properties like radiation tolerance, thermal stability, and fast timing response. Semiconductors like Silicon, Germanium, Diamond, and Gallium Nitride (GaN) have been widely used for particle detection applications. Silicon and germanium being narrow bandgap semiconductors, require pre-cooling to suppress the effect of noise by thermally generated intrinsic charge carriers. The application of diamond in large-scale experiments is rare owing to its high cost of fabrication, while GaN is one of the most extensively explored potential candidates. But we are aiming to introduce another wide bandgap semiconductor in this active area of research by considering all the requirements. We have made an attempt by utilizing the wide bandgap of rutile Titanium dioxide (TiO2) and other properties to use it for particle detection purposes. The thermal evaporation-oxidation (in PID furnace) technique is used for the deposition of the film, and the Metal Semiconductor Metal (MSM) electrical contacts are made using Titanium+Gold (Ti+Au) (20/80nm). The characterization comprising X-Ray Diffraction (XRD), Atomic Force Microscopy (AFM), Ultraviolet (UV)-Visible spectroscopy, and Laser Raman Spectroscopy (LRS) has been performed on the film to get detailed information about surface morphology. On the other hand, electrical characterizations like Current Voltage (IV) measurement in dark and light and test with laser are performed to have a better understanding of the working of the detector prototype. All these preliminary tests of the detector will be presented.

Keywords: particle detector, rutile titanium dioxide, thermal evaporation, wide bandgap semiconductors

Procedia PDF Downloads 79
1909 Detection of Temporal Change of Fishery and Island Activities by DNB and SAR on the South China Sea

Authors: I. Asanuma, T. Yamaguchi, J. Park, K. J. Mackin

Abstract:

Fishery lights on the surface could be detected by the Day and Night Band (DNB) of the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (Suomi-NPP). The DNB covers the spectral range of 500 to 900 nm and realized a higher sensitivity. The DNB has a difficulty of identification of fishing lights from lunar lights reflected by clouds, which affects observations for the half of the month. Fishery lights and lights of the surface are identified from lunar lights reflected by clouds by a method using the DNB and the infrared band, where the detection limits are defined as a function of the brightness temperature with a difference from the maximum temperature for each level of DNB radiance and with the contrast of DNB radiance against the background radiance. Fishery boats or structures on islands could be detected by the Synthetic Aperture Radar (SAR) on the polar orbit satellites using the reflected microwave by the surface reflecting targets. The SAR has a difficulty of tradeoff between spatial resolution and coverage while detecting the small targets like fishery boats. A distribution of fishery boats and island activities were detected by the scan-SAR narrow mode of Radarsat-2, which covers 300 km by 300 km with various combinations of polarizations. The fishing boats were detected as a single pixel of highly scattering targets with the scan-SAR narrow mode of which spatial resolution is 30 m. As the look angle dependent scattering signals exhibits the significant differences, the standard deviations of scattered signals for each look angles were taken into account as a threshold to identify the signal from fishing boats and structures on the island from background noise. It was difficult to validate the detected targets by DNB with SAR data because of time lag of observations for 6 hours between midnight by DNB and morning or evening by SAR. The temporal changes of island activities were detected as a change of mean intensity of DNB for circular area for a certain scale of activities. The increase of DNB mean intensity was corresponding to the beginning of dredging and the change of intensity indicated the ending of reclamation and following constructions of facilities.

Keywords: day night band, SAR, fishery, South China Sea

Procedia PDF Downloads 235
1908 Modern Detection and Description Methods for Natural Plants Recognition

Authors: Masoud Fathi Kazerouni, Jens Schlemper, Klaus-Dieter Kuhnert

Abstract:

Green planet is one of the Earth’s names which is known as a terrestrial planet and also can be named the fifth largest planet of the solar system as another scientific interpretation. Plants do not have a constant and steady distribution all around the world, and even plant species’ variations are not the same in one specific region. Presence of plants is not only limited to one field like botany; they exist in different fields such as literature and mythology and they hold useful and inestimable historical records. No one can imagine the world without oxygen which is produced mostly by plants. Their influences become more manifest since no other live species can exist on earth without plants as they form the basic food staples too. Regulation of water cycle and oxygen production are the other roles of plants. The roles affect environment and climate. Plants are the main components of agricultural activities. Many countries benefit from these activities. Therefore, plants have impacts on political and economic situations and future of countries. Due to importance of plants and their roles, study of plants is essential in various fields. Consideration of their different applications leads to focus on details of them too. Automatic recognition of plants is a novel field to contribute other researches and future of studies. Moreover, plants can survive their life in different places and regions by means of adaptations. Therefore, adaptations are their special factors to help them in hard life situations. Weather condition is one of the parameters which affect plants life and their existence in one area. Recognition of plants in different weather conditions is a new window of research in the field. Only natural images are usable to consider weather conditions as new factors. Thus, it will be a generalized and useful system. In order to have a general system, distance from the camera to plants is considered as another factor. The other considered factor is change of light intensity in environment as it changes during the day. Adding these factors leads to a huge challenge to invent an accurate and secure system. Development of an efficient plant recognition system is essential and effective. One important component of plant is leaf which can be used to implement automatic systems for plant recognition without any human interface and interaction. Due to the nature of used images, characteristic investigation of plants is done. Leaves of plants are the first characteristics to select as trusty parts. Four different plant species are specified for the goal to classify them with an accurate system. The current paper is devoted to principal directions of the proposed methods and implemented system, image dataset, and results. The procedure of algorithm and classification is explained in details. First steps, feature detection and description of visual information, are outperformed by using Scale invariant feature transform (SIFT), HARRIS-SIFT, and FAST-SIFT methods. The accuracy of the implemented methods is computed. In addition to comparison, robustness and efficiency of results in different conditions are investigated and explained.

Keywords: SIFT combination, feature extraction, feature detection, natural images, natural plant recognition, HARRIS-SIFT, FAST-SIFT

Procedia PDF Downloads 276