Search results for: neural perception.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3800

Search results for: neural perception.

2240 Interdisciplinary Teaching for Nursing Students: A Key to Understanding Teamwork

Authors: Ilana Margalith, Yaron Niv

Abstract:

One of the most important factors of professional health treatment is teamwork, in which each discipline contributes its expert knowledge, thus ensuring quality and a high standard of care as well as efficient communication (one of the International Patient Safety Goals). However, in most countries, students are educated separately by each health discipline. They are exposed to teamwork only during their clinical experience, which in some cases is short and skill-oriented. In addition, health organizations in most countries are hierarchical and although changes have occurred in the hierarchy of the medical system, there are still disciplines that underrate the unique contributions of other health professionals, thus, young graduates of health professions develop and base their perception of their peers from other disciplines on insufficient knowledge. In order to establish a wide-ranging perception among nursing students as to the contribution of different health professionals to the health of their patients, students at the Clalit Nursing Academy, Rabin Campus (Dina), Israel, participated in an interdisciplinary clinical discussion with students from several different professions, other than nursing, who were completing their clinical experience at Rabin Medical Center in medicine, health psychology, social work, audiology, physiotherapy and occupational therapy. The discussion was led by a medical-surgical nursing instructor. Their tutors received in advance, a case report enabling them to prepare the students as to how to present their professional theories and interventions regarding the case. Mutual stimulation and acknowledgment of the unique contribution of each part of the team enriched the nursing students' understanding as to how their own nursing interventions could be integrated into the entire process towards a safe and speedy recovery of the patient.

Keywords: health professions' students, interdisciplinary clinical discussion, nursing education, patient safety

Procedia PDF Downloads 172
2239 Implicit U-Net Enhanced Fourier Neural Operator for Long-Term Dynamics Prediction in Turbulence

Authors: Zhijie Li, Wenhui Peng, Zelong Yuan, Jianchun Wang

Abstract:

Turbulence is a complex phenomenon that plays a crucial role in various fields, such as engineering, atmospheric science, and fluid dynamics. Predicting and understanding its behavior over long time scales have been challenging tasks. Traditional methods, such as large-eddy simulation (LES), have provided valuable insights but are computationally expensive. In the past few years, machine learning methods have experienced rapid development, leading to significant improvements in computational speed. However, ensuring stable and accurate long-term predictions remains a challenging task for these methods. In this study, we introduce the implicit U-net enhanced Fourier neural operator (IU-FNO) as a solution for stable and efficient long-term predictions of the nonlinear dynamics in three-dimensional (3D) turbulence. The IU-FNO model combines implicit re-current Fourier layers to deepen the network and incorporates the U-Net architecture to accurately capture small-scale flow structures. We evaluate the performance of the IU-FNO model through extensive large-eddy simulations of three types of 3D turbulence: forced homogeneous isotropic turbulence (HIT), temporally evolving turbulent mixing layer, and decaying homogeneous isotropic turbulence. The results demonstrate that the IU-FNO model outperforms other FNO-based models, including vanilla FNO, implicit FNO (IFNO), and U-net enhanced FNO (U-FNO), as well as the dynamic Smagorinsky model (DSM), in predicting various turbulence statistics. Specifically, the IU-FNO model exhibits improved accuracy in predicting the velocity spectrum, probability density functions (PDFs) of vorticity and velocity increments, and instantaneous spatial structures of the flow field. Furthermore, the IU-FNO model addresses the stability issues encountered in long-term predictions, which were limitations of previous FNO models. In addition to its superior performance, the IU-FNO model offers faster computational speed compared to traditional large-eddy simulations using the DSM model. It also demonstrates generalization capabilities to higher Taylor-Reynolds numbers and unseen flow regimes, such as decaying turbulence. Overall, the IU-FNO model presents a promising approach for long-term dynamics prediction in 3D turbulence, providing improved accuracy, stability, and computational efficiency compared to existing methods.

Keywords: data-driven, Fourier neural operator, large eddy simulation, fluid dynamics

Procedia PDF Downloads 74
2238 Body-Worn Camera Use in the Emergency Department: Patient and Provider Satisfaction

Authors: Jeffrey Ho, Scott Joing, Paul Nystrom, William Heegaard, Danielle Hart, David Plummer, James Miner

Abstract:

Body-Worn Cameras (BWCs) are used in public safety to record encounters. They are shown to enhance the accuracy of documentation in virtually every situation. They are not widely used in medical encounters in part because of concern for patient acceptance. The goal of this pilot study was to determine if BWC use is acceptable to the patient. This was a prospective, observational study of the AXON Flex BWC (TASER International, Scottsdale, AZ) conducted at an urban, Level 1 Trauma Center Emergency Department (ED). The BWC was worn by Emergency Physicians (EPs) on their shifts during a 30-day period. The BWC was worn at eye-level mounted on a pair of clear safety glasses. Patients seen by the EP were enrolled in the study by a trained research associate. Patients who were <18 years old, who were with other people in the exam room, did not speak English, were critically ill, had chief complaints involving genitalia or sexual assault, were considered to be vulnerable adults, or with an altered mental status were excluded. Consented patients were given a survey after the encounter to determine their perception of the BWC. The questions asked involved the patients’ perceptions of a BWC being present during their interaction with their EP. Data were analyzed with descriptive statistics. There were 417 patients enrolled in the study. 3/417 (0.7%) patients were intimidated by the BWC, 1/417 (0.2%) was nervous because of the BWC, 0/417 (0%) were inhibited from telling the EP certain things because of the BWC, 57/417 (13.7%) patients did not notice the device, and 305/417 (73.1%) patients were had a favorable perception about the BWC being used during their encounter. The use of BWCs appears feasible in the ED, with largely favorable perceptions and acceptance of the device by the patients. Further study is needed to determine the best use and practices of BWCs during ED patient encounters.

Keywords: body-worn camera, documentation, patient satisfaction, video

Procedia PDF Downloads 373
2237 An Evaluative Study of Services Provided in Community Based Rehabilitation Centres in Jordan

Authors: Wesam Darawsheh

Abstract:

Purpose: There is an absence of studies directed to evaluate the effectiveness of Community Based Rehabilitation (CBR) programs in Jordan. This research study is aimed at investigating the effectiveness of the services of CBR programmes in Jordan. Method: A questionnaire anonymized survey was carried out with forty-seven participants (stakeholders and volunteers) from four CBR centres in Jordan. It comprised eighteen questions that collected both qualitative and quantitative data with both closed- and open-ended questions. The survey assessed participants’ knowledge of CBR and perception of the effectiveness of services provided. The quantitative data were analyzed using SPSS Version 22.0 (2016, IBM Corporation New York). Qualitative data were analyzed through thematic content and analysis and open coding to identify emergent themes. Results: The ROC curve revealed that the AUC for questions of the survey to be (AUC=0.846) which indicated a good specificity and sensitivity of the questions of the survey. The MANOVA revealed insignificant results in the effect of the CBR site (p= 0.157), and the level of education of participants (p=0.549), on the perception of the effectiveness of CBR services. There were insignificant differences between the scores of PWDs and volunteers (p=0.781). 40.4% evaluated the effectiveness of CBR services to be low. This mainly stemmed out from the lack of efforts of the CBR programmes to raise the knowledge of the local community about CBR, disability and the role toward PWDs. Conclusions: A speculation for priorities of CBR programmes in Jordan was offered where efforts need to be directed at promoting livelihood and the empowerment components, in order to actualize the main three principles of CBR mainly by promoting multispectral collaboration as a way of operation.

Keywords: community based rehabilitation (CBR), people with disabilities (PWDS), CBR centres, rehabilitation services, Jordan, mixed-methods, evaluative study

Procedia PDF Downloads 253
2236 Cyber-Victimization among Higher Education Students as Related to Academic and Personal Factors

Authors: T. Heiman, D. Olenik-Shemesh

Abstract:

Over the past decade, with the rapid growth of electronic communication, the internet and, in particular, social networking has become an inseparable part of people's daily lives. Along with its benefits, a new type of online aggression has emerged, defined as cyber bullying, a form of interpersonal aggressive behavior that takes place through electronic means. Cyber-bullying is characterized by repetitive behavior over time of maladaptive authority and power usage using computers and cell phones via sending insulting messages and hurtful pictures. Preliminary findings suggest that the prevalence of involvement in cyber-bullying among higher education students varies between 10 and 35%. As to date, universities are facing an uphill effort in trying to restrain online misbehavior. As no studies examined the relationships between cyber-bullying involvement with personal aspects, and its impacts on academic achievement and work functioning, this present study examined the nature of cyber-bullying involvement among 1,052 undergraduate students (mean age = 27.25, S.D = 4.81; 66.2% female), coping with, as well as the effects of social support, perceived self-efficacy, well-being, and body-perception, in relation to cyber-victimization. We assume that students in higher education are a vulnerable population and at high risk of being cyber-victims. We hypothesize that social support might serve as a protective factor and will moderate the relationships between the socio-emotional variables and the occurrence of cyber- victimization. The findings of this study will present the relationships between cyber-victimization and the social-emotional aspects, which constitute risk and protective factors. After receiving approval from the Ethics Committee of the University, a Google Drive questionnaire was sent to a random sample of students, studying in the various University study centers. Students' participation was voluntary, and they completed the five questionnaires anonymously: Cyber-bullying, perceived self-efficacy, subjective well-being, social support and body perception. Results revealed that 11.6% of the students reported being cyber-victims during last year. Examining the emotional and behavioral reactions to cyber-victimization revealed that female emotional and behavioral reactions were significantly greater than the male reactions (p < .001). Moreover, females reported on a significant higher social support compared to men; male reported significantly on a lower social capability than female; and men's body perception was significantly more positive than women's scores. No gender differences were observed for subjective well-being scale. Significant positive correlations were found between cyber-victimization and fewer friends, lower grades, and work ineffectiveness (r = 0.37- .40, p < 0 .001). The results of the Hierarchical regression indicated significantly that cyber-victimization can be predicted by lower social support, lower body perception, and gender (female), that explained 5.6% of the variance (R2 = 0.056, F(5,1047) = 12.47, p < 0.001). The findings deepen our understanding of the students' involvement in cyber-bullying, and present the relationships of the social-emotional and academic aspects on cyber-victim students. In view of our findings, higher education policy could help facilitate coping with cyber-bullying incidents, and student support units could develop intervention programs aimed at reducing cyber-bullying and its impacts.

Keywords: academic and personal factors, cyber-victimization, social support, higher education

Procedia PDF Downloads 289
2235 Aerodynamic Modeling Using Flight Data at High Angle of Attack

Authors: Rakesh Kumar, A. K. Ghosh

Abstract:

The paper presents the modeling of linear and nonlinear longitudinal aerodynamics using real flight data of Hansa-3 aircraft gathered at low and high angles of attack. The Neural-Gauss-Newton (NGN) method has been applied to model the linear and nonlinear longitudinal dynamics and estimate parameters from flight data. Unsteady aerodynamics due to flow separation at high angles of attack near stall has been included in the aerodynamic model using Kirchhoff’s quasi-steady stall model. NGN method is an algorithm that utilizes Feed Forward Neural Network (FFNN) and Gauss-Newton optimization to estimate the parameters and it does not require any a priori postulation of mathematical model or solving of equations of motion. NGN method was validated on real flight data generated at moderate angles of attack before application to the data at high angles of attack. The estimates obtained from compatible flight data using NGN method were validated by comparing with wind tunnel values and the maximum likelihood estimates. Validation was also carried out by comparing the response of measured motion variables with the response generated by using estimates a different control input. Next, NGN method was applied to real flight data generated by executing a well-designed quasi-steady stall maneuver. The results obtained in terms of stall characteristics and aerodynamic parameters were encouraging and reasonably accurate to establish NGN as a method for modeling nonlinear aerodynamics from real flight data at high angles of attack.

Keywords: parameter estimation, NGN method, linear and nonlinear, aerodynamic modeling

Procedia PDF Downloads 446
2234 A Hybrid Simulation Approach to Evaluate Cooling Energy Consumption for Public Housings of Subtropics

Authors: Kwok W. Mui, Ling T. Wong, Chi T. Cheung

Abstract:

Cooling energy consumption in the residential sector, different from shopping mall, office or commercial buildings, is significantly subject to occupant decisions where in-depth investigations are found limited. It shows that energy consumptions could be associated with housing types. Surveys have been conducted in existing Hong Kong public housings to understand the housing characteristics, apartment electricity demands, occupant’s thermal expectations, and air–conditioning usage patterns for further cooling energy-saving assessments. The aim of this study is to develop a hybrid cooling energy prediction model, which integrated by EnergyPlus (EP) and artificial neural network (ANN) to estimate cooling energy consumption in public residential sector. Sensitivity tests are conducted to find out the energy impacts with changing building parameters regarding to external wall and window material selection, window size reduction, shading extension, building orientation and apartment size control respectively. Assessments are performed to investigate the relationships between cooling demands and occupant behavior on thermal environment criteria and air-conditioning operation patterns. The results are summarized into a cooling energy calculator for layman use to enhance the cooling energy saving awareness in their own living environment. The findings can be used as a directory framework for future cooling energy evaluation in residential buildings, especially focus on the occupant behavioral air–conditioning operation and criteria of energy-saving incentives.

Keywords: artificial neural network, cooling energy, occupant behavior, residential buildings, thermal environment

Procedia PDF Downloads 168
2233 A Study on Employer Branding and Its Impact on Employee

Authors: Kvnkc Sharma

Abstract:

Globalization, coupled with increase in competition is compelling organizations to adopt innovative strategies and identify core competencies in order to distinguish themselves from the competition. The capability of an organization is no longer determined by their products or services alone. The intellectual assets and quality of the human resource are fast emerging as key differentiators. Corporations are now positioning themselves as ‘brands’ not solely to market their products and services, but also to lure and to retain the best talent in the business. This paper identifies leadership as the ‘key element’ in developing an organization’s brand, which has a significant influence on the employee’s eventual perception of this external brand as portrayed by the organization. External branding incorporates innovation, consumer concern, trust, quality and sustainability. The paper contends that employees are indeed an organization’s ‘brand ambassadors. Internal branding involves taking care of these ambassadors of corporate brand i.e. human resource. If employees of an organization are not exposed to the organization’s branding (an ongoing process that functionally aligns, motivates and empower employees at all levels to consistently provide a satisfying customer experience), the external brand could be jeopardized. Internal branding, on the other hand, refers to employee’s perception of the organization’s brand. The current business environment can at best, be termed as volatile. Employees with the right technical and behavioral skills remain a scarce resource and the employers need to be ready to capture the attention, interest and commitment of the best and brightest candidates. This paper attempts to review and understand the relationship between employer branding and employee retention. The paper also seeks to identify potential impact of employer branding across all the factors affecting employees.

Keywords: external branding, human resource, internal branding, leadership

Procedia PDF Downloads 248
2232 Prediction of Terrorist Activities in Nigeria using Bayesian Neural Network with Heterogeneous Transfer Functions

Authors: Tayo P. Ogundunmade, Adedayo A. Adepoju

Abstract:

Terrorist attacks in liberal democracies bring about a few pessimistic results, for example, sabotaged public support in the governments they target, disturbing the peace of a protected environment underwritten by the state, and a limitation of individuals from adding to the advancement of the country, among others. Hence, seeking for techniques to understand the different factors involved in terrorism and how to deal with those factors in order to completely stop or reduce terrorist activities is the topmost priority of the government in every country. This research aim is to develop an efficient deep learning-based predictive model for the prediction of future terrorist activities in Nigeria, addressing low-quality prediction accuracy problems associated with the existing solution methods. The proposed predictive AI-based model as a counterterrorism tool will be useful by governments and law enforcement agencies to protect the lives of individuals in society and to improve the quality of life in general. A Heterogeneous Bayesian Neural Network (HETBNN) model was derived with Gaussian error normal distribution. Three primary transfer functions (HOTTFs), as well as two derived transfer functions (HETTFs) arising from the convolution of the HOTTFs, are namely; Symmetric Saturated Linear transfer function (SATLINS ), Hyperbolic Tangent transfer function (TANH), Hyperbolic Tangent sigmoid transfer function (TANSIG), Symmetric Saturated Linear and Hyperbolic Tangent transfer function (SATLINS-TANH) and Symmetric Saturated Linear and Hyperbolic Tangent Sigmoid transfer function (SATLINS-TANSIG). Data on the Terrorist activities in Nigeria gathered through questionnaires for the purpose of this study were used. Mean Square Error (MSE), Mean Absolute Error (MAE) and Test Error are the forecast prediction criteria. The results showed that the HETFs performed better in terms of prediction and factors associated with terrorist activities in Nigeria were determined. The proposed predictive deep learning-based model will be useful to governments and law enforcement agencies as an effective counterterrorism mechanism to understand the parameters of terrorism and to design strategies to deal with terrorism before an incident actually happens and potentially causes the loss of precious lives. The proposed predictive AI-based model will reduce the chances of terrorist activities and is particularly helpful for security agencies to predict future terrorist activities.

Keywords: activation functions, Bayesian neural network, mean square error, test error, terrorism

Procedia PDF Downloads 165
2231 DUSP16 Inhibition Rescues Neurogenic and Cognitive Deficits in Alzheimer's Disease Mice Models

Authors: Huimin Zhao, Xiaoquan Liu, Haochen Liu

Abstract:

The major challenge facing Alzheimer's Disease (AD) drug development is how to effectively improve cognitive function in clinical practice. Growing evidence indicates that stimulating hippocampal neurogenesis is a strategy for restoring cognition in animal models of AD. The mitogen-activated protein kinase (MAPK) pathway is a crucial factor in neurogenesis, which is negatively regulated by Dual-specificity phosphatase 16 (DUSP16). Transcriptome analysis of post-mortem brain tissue revealed up-regulation of DUSP16 expression in AD patients. Additionally, DUSP16 was involved in regulating the proliferation and neural differentiation of neural progenitor cells (NPCs). Nevertheless, whether the effect of DUSP16 on ameliorating cognitive disorders by influencing NPCs differentiation in AD mice remains unclear. Our study demonstrates an association between DUSP16 SNPs and clinical progression in individuals with mild cognitive impairment (MCI). Besides, we found that increased DUSP16 expression in both 3×Tg and SAMP8 models of AD led to NPC differentiation impairments. By silencing DUSP16, cognitive benefits, the induction of AHN and synaptic plasticity, were observed in AD mice. Furthermore, we found that DUSP16 is involved in the process of NPC differentiation by regulating c-Jun N-terminal kinase (JNK) phosphorylation. Moreover, the increased DUSP16 may be regulated by the ETS transcription factor (ELK1), which binds to the promoter region of DUSP16. Loss of ELK1 resulted in decreased DUSP16 mRNA and protein levels. Our data uncover a potential regulatory role for DUSP16 in adult hippocampal neurogenesis and provide a possibility to find the target of AD intervention.

Keywords: alzheimer's disease, cognitive function, DUSP16, hippocampal neurogenesis

Procedia PDF Downloads 72
2230 Omni-Modeler: Dynamic Learning for Pedestrian Redetection

Authors: Michael Karnes, Alper Yilmaz

Abstract:

This paper presents the application of the omni-modeler towards pedestrian redetection. The pedestrian redetection task creates several challenges when applying deep neural networks (DNN) due to the variety of pedestrian appearance with camera position, the variety of environmental conditions, and the specificity required to recognize one pedestrian from another. DNNs require significant training sets and are not easily adapted for changes in class appearances or changes in the set of classes held in its knowledge domain. Pedestrian redetection requires an algorithm that can actively manage its knowledge domain as individuals move in and out of the scene, as well as learn individual appearances from a few frames of a video. The Omni-Modeler is a dynamically learning few-shot visual recognition algorithm developed for tasks with limited training data availability. The Omni-Modeler adapts the knowledge domain of pre-trained deep neural networks to novel concepts with a calculated localized language encoder. The Omni-Modeler knowledge domain is generated by creating a dynamic dictionary of concept definitions, which are directly updatable as new information becomes available. Query images are identified through nearest neighbor comparison to the learned object definitions. The study presented in this paper evaluates its performance in re-identifying individuals as they move through a scene in both single-camera and multi-camera tracking applications. The results demonstrate that the Omni-Modeler shows potential for across-camera view pedestrian redetection and is highly effective for single-camera redetection with a 93% accuracy across 30 individuals using 64 example images for each individual.

Keywords: dynamic learning, few-shot learning, pedestrian redetection, visual recognition

Procedia PDF Downloads 76
2229 Machine Learning Prediction of Compressive Damage and Energy Absorption in Carbon Fiber-Reinforced Polymer Tubular Structures

Authors: Milad Abbasi

Abstract:

Carbon fiber-reinforced polymer (CFRP) composite structures are increasingly being utilized in the automotive industry due to their lightweight and specific energy absorption capabilities. Although it is impossible to predict composite mechanical properties directly using theoretical methods, various research has been conducted so far in the literature for accurate simulation of CFRP structures' energy-absorbing behavior. In this research, axial compression experiments were carried out on hand lay-up unidirectional CFRP composite tubes. The fabrication method allowed the authors to extract the material properties of the CFRPs using ASTM D3039, D3410, and D3518 standards. A neural network machine learning algorithm was then utilized to build a robust prediction model to forecast the axial compressive properties of CFRP tubes while reducing high-cost experimental efforts. The predicted results have been compared with the experimental outcomes in terms of load-carrying capacity and energy absorption capability. The results showed high accuracy and precision in the prediction of the energy-absorption capacity of the CFRP tubes. This research also demonstrates the effectiveness and challenges of machine learning techniques in the robust simulation of composites' energy-absorption behavior. Interestingly, the proposed method considerably condensed numerical and experimental efforts in the simulation and calibration of CFRP composite tubes subjected to compressive loading.

Keywords: CFRP composite tubes, energy absorption, crushing behavior, machine learning, neural network

Procedia PDF Downloads 153
2228 Lung HRCT Pattern Classification for Cystic Fibrosis Using a Convolutional Neural Network

Authors: Parisa Mansour

Abstract:

Cystic fibrosis (CF) is one of the most common autosomal recessive diseases among whites. It mostly affects the lungs, causing infections and inflammation that account for 90% of deaths in CF patients. Because of this high variability in clinical presentation and organ involvement, investigating treatment responses and evaluating lung changes over time is critical to preventing CF progression. High-resolution computed tomography (HRCT) greatly facilitates the assessment of lung disease progression in CF patients. Recently, artificial intelligence was used to analyze chest CT scans of CF patients. In this paper, we propose a convolutional neural network (CNN) approach to classify CF lung patterns in HRCT images. The proposed network consists of two convolutional layers with 3 × 3 kernels and maximally connected in each layer, followed by two dense layers with 1024 and 10 neurons, respectively. The softmax layer prepares a predicted output probability distribution between classes. This layer has three exits corresponding to the categories of normal (healthy), bronchitis and inflammation. To train and evaluate the network, we constructed a patch-based dataset extracted from more than 1100 lung HRCT slices obtained from 45 CF patients. Comparative evaluation showed the effectiveness of the proposed CNN compared to its close peers. Classification accuracy, average sensitivity and specificity of 93.64%, 93.47% and 96.61% were achieved, indicating the potential of CNNs in analyzing lung CF patterns and monitoring lung health. In addition, the visual features extracted by our proposed method can be useful for automatic measurement and finally evaluation of the severity of CF patterns in lung HRCT images.

Keywords: HRCT, CF, cystic fibrosis, chest CT, artificial intelligence

Procedia PDF Downloads 65
2227 Utilizing Temporal and Frequency Features in Fault Detection of Electric Motor Bearings with Advanced Methods

Authors: Mohammad Arabi

Abstract:

The development of advanced technologies in the field of signal processing and vibration analysis has enabled more accurate analysis and fault detection in electrical systems. This research investigates the application of temporal and frequency features in detecting faults in electric motor bearings, aiming to enhance fault detection accuracy and prevent unexpected failures. The use of methods such as deep learning algorithms and neural networks in this process can yield better results. The main objective of this research is to evaluate the efficiency and accuracy of methods based on temporal and frequency features in identifying faults in electric motor bearings to prevent sudden breakdowns and operational issues. Additionally, the feasibility of using techniques such as machine learning and optimization algorithms to improve the fault detection process is also considered. This research employed an experimental method and random sampling. Vibration signals were collected from electric motors under normal and faulty conditions. After standardizing the data, temporal and frequency features were extracted. These features were then analyzed using statistical methods such as analysis of variance (ANOVA) and t-tests, as well as machine learning algorithms like artificial neural networks and support vector machines (SVM). The results showed that using temporal and frequency features significantly improves the accuracy of fault detection in electric motor bearings. ANOVA indicated significant differences between normal and faulty signals. Additionally, t-tests confirmed statistically significant differences between the features extracted from normal and faulty signals. Machine learning algorithms such as neural networks and SVM also significantly increased detection accuracy, demonstrating high effectiveness in timely and accurate fault detection. This study demonstrates that using temporal and frequency features combined with machine learning algorithms can serve as an effective tool for detecting faults in electric motor bearings. This approach not only enhances fault detection accuracy but also simplifies and streamlines the detection process. However, challenges such as data standardization and the cost of implementing advanced monitoring systems must also be considered. Utilizing temporal and frequency features in fault detection of electric motor bearings, along with advanced machine learning methods, offers an effective solution for preventing failures and ensuring the operational health of electric motors. Given the promising results of this research, it is recommended that this technology be more widely adopted in industrial maintenance processes.

Keywords: electric motor, fault detection, frequency features, temporal features

Procedia PDF Downloads 48
2226 Marketing Parameters on Consumer's Perceptions of Farmed Sea Bass in Greece

Authors: Sophia Anastasiou, Cosmas Nathanailides, Fotini Kakali, Kostas Karipoglou

Abstract:

Wild fish are considered as testier and in fish restaurants are offered at twice the price of farmed fish. Several chemical and structural differences can affect the consumer's attitudes for farmed fish. The structure and chemical composition of fish muscle is also important for the performance of farmed fish during handling, storage and processing. In the present work we present the chemical and sensory parameters which are used as indicators of fish flesh quality and we investigated the perceptions of consumers for farmed sea bass and the organoleptic differences between samples of wild and farmed sea bass. A questionnaire was distributed to a group of various ages that were regular consumers of sea bass. The questionnaire included a survey on the perceptions on taste and appearance differences between wild and farmed sea bass. A significant percentage (>40%) of the participants stated their perception of superior taste of wild sea bass versus the farmed fish. The participants took part in an organoleptic assessment of wild and farmed sea bass prepared and cooked by a local fish restaurant. Portions were evaluated for intensity of sensorial attributes from 1 (low intensity) to 5 (high intensity). The results indicate that contrary to the assessor's perception, farmed sea bass scored better in al organoleptic parameters assessed with marked superiority in texture and taste over the wild sea bass. This research has been co-financed by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: ARCHIMEDES III. Investing in knowledge society through the European Social Fund.

Keywords: fish marketing, farmed fish, seafood quality, wild fish

Procedia PDF Downloads 403
2225 Permeability Prediction Based on Hydraulic Flow Unit Identification and Artificial Neural Networks

Authors: Emad A. Mohammed

Abstract:

The concept of hydraulic flow units (HFU) has been used for decades in the petroleum industry to improve the prediction of permeability. This concept is strongly related to the flow zone indicator (FZI) which is a function of the reservoir rock quality index (RQI). Both indices are based on reservoir porosity and permeability of core samples. It is assumed that core samples with similar FZI values belong to the same HFU. Thus, after dividing the porosity-permeability data based on the HFU, transformations can be done in order to estimate the permeability from the porosity. The conventional practice is to use the power law transformation using conventional HFU where percentage of error is considerably high. In this paper, neural network technique is employed as a soft computing transformation method to predict permeability instead of power law method to avoid higher percentage of error. This technique is based on HFU identification where Amaefule et al. (1993) method is utilized. In this regard, Kozeny and Carman (K–C) model, and modified K–C model by Hasan and Hossain (2011) are employed. A comparison is made between the two transformation techniques for the two porosity-permeability models. Results show that the modified K-C model helps in getting better results with lower percentage of error in predicting permeability. The results also show that the use of artificial intelligence techniques give more accurate prediction than power law method. This study was conducted on a heterogeneous complex carbonate reservoir in Oman. Data were collected from seven wells to obtain the permeability correlations for the whole field. The findings of this study will help in getting better estimation of permeability of a complex reservoir.

Keywords: permeability, hydraulic flow units, artificial intelligence, correlation

Procedia PDF Downloads 136
2224 I Look Powerful So You Will Yield to Me: The Effects of Embodied Power and the Perception of Power on Conflict Management

Authors: Fai-Ho E. Choi, Wing-Tung Au

Abstract:

This study investigated the effects of embodiment on conflict management. As shown in the research literature, the physiological (i.e. bodily postures) can affect the emotional and cognitive proceedings of human beings, but little has been shown on whether such effects would have ramifications in decision-making related to other individuals. In this study, conflict is defined as when two parties have seemingly incompatible goals, and the two have to deal with each other in order to maximize one’s own gain. In a matched-gender experiment, university undergraduate students were randomly assigned to either the high power condition or the low power condition, with participants in each condition instructed to perform a fix set of bodily postures that would either embody them with a high sense of power or a low sense of power. One high-power participant would pair up with a low-power participant to engage in an integrative bargaining task and a dictator game. Participants also filled out a pre-trial questionnaire and a post-trial questionnaire measuring general sense of power, self-esteem and self-efficacy. Personality was controlled for. Results are expected to support our hypotheses that people who are embodied with power will be more unyielding in a conflict management situation, and that people who are dealing with another person embodied with power will be more yielding in a conflict management situation. As conflicts arise frequently both within and between organizations, a better understanding of how human beings function in conflicts is important. This study should provide evidence that bodily postures can influence the perceived sense of power of the parties involved and hence influence the conflict outcomes. Future research needs to be conducted to investigate further how people perceive themselves and how they perceive their opponents in conflicts, such that we can come up with a behavioral theory of conflict management.

Keywords: conflict management, embodiment, negotiation, perception

Procedia PDF Downloads 445
2223 Colored Image Classification Using Quantum Convolutional Neural Networks Approach

Authors: Farina Riaz, Shahab Abdulla, Srinjoy Ganguly, Hajime Suzuki, Ravinesh C. Deo, Susan Hopkins

Abstract:

Recently, quantum machine learning has received significant attention. For various types of data, including text and images, numerous quantum machine learning (QML) models have been created and are being tested. Images are exceedingly complex data components that demand more processing power. Despite being mature, classical machine learning still has difficulties with big data applications. Furthermore, quantum technology has revolutionized how machine learning is thought of, by employing quantum features to address optimization issues. Since quantum hardware is currently extremely noisy, it is not practicable to run machine learning algorithms on it without risking the production of inaccurate results. To discover the advantages of quantum versus classical approaches, this research has concentrated on colored image data. Deep learning classification models are currently being created on Quantum platforms, but they are still in a very early stage. Black and white benchmark image datasets like MNIST and Fashion MINIST have been used in recent research. MNIST and CIFAR-10 were compared for binary classification, but the comparison showed that MNIST performed more accurately than colored CIFAR-10. This research will evaluate the performance of the QML algorithm on the colored benchmark dataset CIFAR-10 to advance QML's real-time applicability. However, deep learning classification models have not been developed to compare colored images like Quantum Convolutional Neural Network (QCNN) to determine how much it is better to classical. Only a few models, such as quantum variational circuits, take colored images. The methodology adopted in this research is a hybrid approach by using penny lane as a simulator. To process the 10 classes of CIFAR-10, the image data has been translated into grey scale and the 28 × 28-pixel image containing 10,000 test and 50,000 training images were used. The objective of this work is to determine how much the quantum approach can outperform a classical approach for a comprehensive dataset of color images. After pre-processing 50,000 images from a classical computer, the QCNN model adopted a hybrid method and encoded the images into a quantum simulator for feature extraction using quantum gate rotations. The measurements were carried out on the classical computer after the rotations were applied. According to the results, we note that the QCNN approach is ~12% more effective than the traditional classical CNN approaches and it is possible that applying data augmentation may increase the accuracy. This study has demonstrated that quantum machine and deep learning models can be relatively superior to the classical machine learning approaches in terms of their processing speed and accuracy when used to perform classification on colored classes.

Keywords: CIFAR-10, quantum convolutional neural networks, quantum deep learning, quantum machine learning

Procedia PDF Downloads 129
2222 A Study on Employer Branding and Its Impacts on Employee’s

Authors: KVNKC Sharma, Soujanya Pasumarthi

Abstract:

Globalization, coupled with increase in competition is compelling organizations to adopt innovative strategies and identify core competencies in order to distinguish themselves from the competition. The capability of an organization is no longer determined by their products or services alone. The intellectual assets and quality of the human resource are fast emerging as key differentiators. Corporations are now positioning themselves as ‘brands’ not solely to market their products and services, but also to lure and to retain the best talent in the business. This paper identifies leadership as the ‘key element’ in developing an organization’s brand, which has a significant influence on the employee’s eventual perception of this external brand as portrayed by the organization. External branding incorporates innovation, consumer concern, trust, quality and sustainability. The paper contends that employees are indeed an organization’s ‘brand ambassadors. Internal branding involves taking care of these ambassadors of corporate brand i.e. human resource. If employees of an organization are not exposed to the organization’s branding (an ongoing process that functionally aligns, motivates and empower employees at all levels to consistently provide a satisfying customer experience), the external brand could be jeopardized. Internal branding, on the other hand, refers to employee’s perception of the organization’s brand. The current business environment can at best, be termed as volatile. Employees with the right technical and behavioral skills remain a scarce resource and the employers need to be ready to capture the attention, interest and commitment of the best and brightest candidates. This paper attempts to review and understand the relationship between employer branding and employee retention. The paper also seeks to identify potential impact of employer branding across all the factors affecting employees.

Keywords: alignment, external branding, internal branding, leadership

Procedia PDF Downloads 303
2221 A Hybrid Artificial Intelligence and Two Dimensional Depth Averaged Numerical Model for Solving Shallow Water and Exner Equations Simultaneously

Authors: S. Mehrab Amiri, Nasser Talebbeydokhti

Abstract:

Modeling sediment transport processes by means of numerical approach often poses severe challenges. In this way, a number of techniques have been suggested to solve flow and sediment equations in decoupled, semi-coupled or fully coupled forms. Furthermore, in order to capture flow discontinuities, a number of techniques, like artificial viscosity and shock fitting, have been proposed for solving these equations which are mostly required careful calibration processes. In this research, a numerical scheme for solving shallow water and Exner equations in fully coupled form is presented. First-Order Centered scheme is applied for producing required numerical fluxes and the reconstruction process is carried out toward using Monotonic Upstream Scheme for Conservation Laws to achieve a high order scheme.  In order to satisfy C-property of the scheme in presence of bed topography, Surface Gradient Method is proposed. Combining the presented scheme with fourth order Runge-Kutta algorithm for time integration yields a competent numerical scheme. In addition, to handle non-prismatic channels problems, Cartesian Cut Cell Method is employed. A trained Multi-Layer Perceptron Artificial Neural Network which is of Feed Forward Back Propagation (FFBP) type estimates sediment flow discharge in the model rather than usual empirical formulas. Hydrodynamic part of the model is tested for showing its capability in simulation of flow discontinuities, transcritical flows, wetting/drying conditions and non-prismatic channel flows. In this end, dam-break flow onto a locally non-prismatic converging-diverging channel with initially dry bed conditions is modeled. The morphodynamic part of the model is verified simulating dam break on a dry movable bed and bed level variations in an alluvial junction. The results show that the model is capable in capturing the flow discontinuities, solving wetting/drying problems even in non-prismatic channels and presenting proper results for movable bed situations. It can also be deducted that applying Artificial Neural Network, instead of common empirical formulas for estimating sediment flow discharge, leads to more accurate results.

Keywords: artificial neural network, morphodynamic model, sediment continuity equation, shallow water equations

Procedia PDF Downloads 187
2220 A Review of the Potential Impact of Employer Branding on Employee

Authors: K. V. N. K. C. Sharma

Abstract:

Globalization, coupled with increase in competition is compelling organizations to adopt innovative strategies and identify core competencies in order to distinguish themselves from the competition. The capability of an organization is no longer determined by their products or services alone. The intellectual assets and quality of the human resource are fast emerging as key differentiators. Corporations are now positioning themselves as ‘brands’ not solely to market their products and services, but also to lure and to retain the best talent in the business. This paper identifies leadership as the ‘key element’ in developing an organization’s brand, which has a significant influence on the employee’s eventual perception of this external brand as portrayed by the organization. External branding incorporates innovation, consumer concern, trust, quality and sustainability. The paper contends that employees are indeed an organization’s ‘brand ambassadors. Internal branding involves taking care of these ambassadors of corporate brand i.e. human resource. If employees of an organization are not exposed to the organization’s branding (an ongoing process that functionally aligns, motivates and empower employees at all levels to consistently provide a satisfying customer experience), the external brand could be jeopardized. Internal branding, on the other hand, refers to employee’s perception of the organization’s brand. The current business environment can at best, be termed as volatile. Employees with the right technical and behavioral skills remain a scarce resource and the employers need to be ready to capture the attention, interest and commitment of the best and brightest candidates. This paper attempts to review and understand the relationship between employer branding and employee retention. The paper also seeks to identify potential impact of employer branding across all the factors affecting employees.

Keywords: external branding, organisation personnel, internal branding, leadership

Procedia PDF Downloads 239
2219 A Sense of Home: Study of Walk-up Apartment Housing Units In Yangon, Myanmar

Authors: Phyo Kyaw Kyaw

Abstract:

In the Yangon urban landscape, one could not help, but notice old buildings from the colonial period along with condominium developments recently, and many walk-up apartment buildings to accommodate the urbanization, growing population and social-economic status of Myanmar people. Walk-up apartments were built and popular after the British colonial period (around 1950s) and are still built up to today due to its cost-effectiveness and to accommodate low to mid-income residents in the metropolitan Yangon. Approximately 90% of apartment buildings are walk-up apartments. The common impression of walk-up apartments in Yangon appears to be old rectangular box shape, homogenous envelope and limited square feet dull interior small space. In other words, the buildings are full of constraints, lack of good user experiences, and they are not well-fitted in the modern days. Therefore, the resident suffers consequently many years, some may live in the apartment their entire lives. Thousands of people living in the walk-up apartment on a daily basis are being shaped by the space and its inadequate quality of living. Can it be called “Home” by the dwellers or is the place a temporary shelter?. Online semi-structured interviews of 15 apartments’ residents and online questionnaire surveys of 70 apartment residents are conducted. This research aims to explore what makes “Home” “A sense of Home” for walk-up apartment users in Yangon, Myanmar by studying subjective responses shaped by the interior and experience of the spaces in apartment to understand the perception of the residents and improve the quality of living. The result reflects the priority level of important factors in relation to the sense of home framework.

Keywords: home, living quality, space, perception, residents, walk-up apartment, Yangon

Procedia PDF Downloads 108
2218 Moderating and Mediating Effects of Business Model Innovation Barriers during Crises: A Structural Equation Model Tested on German Chemical Start-Ups

Authors: Sarah Mueller-Saegebrecht, André Brendler

Abstract:

Business model innovation (BMI) as an intentional change of an existing business model (BM) or the design of a new BM is essential to a firm's development in dynamic markets. The relevance of BMI is also evident in the ongoing COVID-19 pandemic, in which start-ups, in particular, are affected by limited access to resources. However, first studies also show that they react faster to the pandemic than established firms. A strategy to successfully handle such threatening dynamic changes represents BMI. Entrepreneurship literature shows how and when firms should utilize BMI in times of crisis and which barriers one can expect during the BMI process. Nevertheless, research merging BMI barriers and crises is still underexplored. Specifically, further knowledge about antecedents and the effect of moderators on the BMI process is necessary for advancing BMI research. The addressed research gap of this study is two-folded: First, foundations to the subject on how different crises impact BM change intention exist, yet their analysis lacks the inclusion of barriers. Especially, entrepreneurship literature lacks knowledge about the individual perception of BMI barriers, which is essential to predict managerial reactions. Moreover, internal BMI barriers have been the focal point of current research, while external BMI barriers remain virtually understudied. Second, to date, BMI research is based on qualitative methodologies. Thus, a lack of quantitative work can specify and confirm these qualitative findings. By focusing on the crisis context, this study contributes to BMI literature by offering a first quantitative attempt to embed BMI barriers into a structural equation model. It measures managers' perception of BMI development and implementation barriers in the BMI process, asking the following research question: How does a manager's perception of BMI barriers influence BMI development and implementation in times of crisis? Two distinct research streams in economic literature explain how individuals react when perceiving a threat. "Prospect Theory" claims that managers demonstrate risk-seeking tendencies when facing a potential loss, and opposing "Threat-Rigidity Theory" suggests that managers demonstrate risk-averse behavior when facing a potential loss. This study quantitively tests which theory can best predict managers' BM reaction to a perceived crisis. Out of three in-depth interviews in the German chemical industry, 60 past BMIs were identified. The participating start-up managers gave insights into their start-up's strategic and operational functioning. After, each interviewee described crises that had already affected their BM. The participants explained how they conducted BMI to overcome these crises, which development and implementation barriers they faced, and how severe they perceived them, assessed on a 5-point Likert scale. In contrast to current research, results reveal that a higher perceived threat level of a crisis harms BM experimentation. Managers seem to conduct less BMI in times of crisis, whereby BMI development barriers dampen this relation. The structural equation model unveils a mediating role of BMI implementation barriers on the link between the intention to change a BM and the concrete BMI implementation. In conclusion, this study confirms the threat-rigidity theory.

Keywords: barrier perception, business model innovation, business model innovation barriers, crises, prospect theory, start-ups, structural equation model, threat-rigidity theory

Procedia PDF Downloads 94
2217 Artificial Intelligence Based Predictive Models for Short Term Global Horizontal Irradiation Prediction

Authors: Kudzanayi Chiteka, Wellington Makondo

Abstract:

The whole world is on the drive to go green owing to the negative effects of burning fossil fuels. Therefore, there is immediate need to identify and utilise alternative renewable energy sources. Among these energy sources solar energy is one of the most dominant in Zimbabwe. Solar power plants used to generate electricity are entirely dependent on solar radiation. For planning purposes, solar radiation values should be known in advance to make necessary arrangements to minimise the negative effects of the absence of solar radiation due to cloud cover and other naturally occurring phenomena. This research focused on the prediction of Global Horizontal Irradiation values for the sixth day given values for the past five days. Artificial intelligence techniques were used in this research. Three models were developed based on Support Vector Machines, Radial Basis Function, and Feed Forward Back-Propagation Artificial neural network. Results revealed that Support Vector Machines gives the best results compared to the other two with a mean absolute percentage error (MAPE) of 2%, Mean Absolute Error (MAE) of 0.05kWh/m²/day root mean square (RMS) error of 0.15kWh/m²/day and a coefficient of determination of 0.990. The other predictive models had prediction accuracies of MAPEs of 4.5% and 6% respectively for Radial Basis Function and Feed Forward Back-propagation Artificial neural network. These two models also had coefficients of determination of 0.975 and 0.970 respectively. It was found that prediction of GHI values for the future days is possible using artificial intelligence-based predictive models.

Keywords: solar energy, global horizontal irradiation, artificial intelligence, predictive models

Procedia PDF Downloads 274
2216 Knowledge Sharing Model Based on Individual and Organizational Factors Related to Faculty Members of University

Authors: Mitra Sadoughi

Abstract:

This study presents the knowledge-sharing model based on individual and organizational factors related to faculty members. To achieve this goal, individual and organizational factors were presented through qualitative research in the form of open codes, axial, and selective observations; then, the final model was obtained using structural equation model. Participants included 1,719 faculty members of the Azad Universities, Mazandaran Province, Region 3. The samples related to the qualitative survey included 25 faculty members experienced at teaching and the samples related to the quantitative survey included 326 faculty members selected by multistage cluster sampling. A 72-item questionnaire was used to measure the quantitative variables. The reliability of the questionnaire was 0.93. Its content and face validity was determined with the help of faculty members, consultants, and other experts. For the analysis of quantitative data obtained from structural model and regression, SPSS and LISREL were used. The results showed that the status of knowledge sharing is moderate in the universities. Individual factors influencing knowledge sharing included the sharing of educational materials, perception, confidence and knowledge self-efficiency, and organizational factors influencing knowledge sharing included structural social capital, cognitive social capital, social capital relations, organizational communication, organizational structure, organizational culture, IT infrastructure and systems of rewards. Finally, it was found that the contribution of individual factors on knowledge sharing was more than organizational factors; therefore, a model was presented in which contribution of individual and organizational factors were determined.

Keywords: knowledge sharing, social capital, organizational communication, knowledge self-efficiency, perception, trust, organizational culture

Procedia PDF Downloads 392
2215 Drape Simulation by Commercial Software and Subjective Assessment of Virtual Drape

Authors: Evrim Buyukaslan, Simona Jevsnik, Fatma Kalaoglu

Abstract:

Simulation of fabrics is more difficult than any other simulation due to complex mechanics of fabrics. Most of the virtual garment simulation software use mass-spring model and incorporate fabric mechanics into simulation models. The accuracy and fidelity of these virtual garment simulation software is a question mark. Drape is a subjective phenomenon and evaluation of drape has been studied since 1950’s. On the other hand, fabric and garment simulation is relatively new. Understanding drape perception of subjects when looking at fabric simulations is critical as virtual try-on becomes more of an issue by enhanced online apparel sales. Projected future of online apparel retailing is that users may view their avatars and try-on the garment on their avatars in the virtual environment. It is a well-known fact that users will not be eager to accept this innovative technology unless it is realistic enough. Therefore, it is essential to understand what users see when they are displaying fabrics in a virtual environment. Are they able to distinguish the differences between various fabrics in virtual environment? The purpose of this study is to investigate human perception when looking at a virtual fabric and determine the most visually noticeable drape parameter. To this end, five different fabrics are mechanically tested, and their drape simulations are generated by commercial garment simulation software (Optitex®). The simulation images are processed by an image analysis software to calculate drape parameters namely; drape coefficient, node severity, and peak angles. A questionnaire is developed to evaluate drape properties subjectively in a virtual environment. Drape simulation images are shown to 27 subjects and asked to rank the samples according to their questioned drape property. The answers are compared to the calculated drape parameters. The results show that subjects are quite sensitive to drape coefficient changes while they are not very sensitive to changes in node dimensions and node distributions.

Keywords: drape simulation, drape evaluation, fabric mechanics, virtual fabric

Procedia PDF Downloads 339
2214 Comparison of Different Machine Learning Algorithms for Solubility Prediction

Authors: Muhammet Baldan, Emel Timuçin

Abstract:

Molecular solubility prediction plays a crucial role in various fields, such as drug discovery, environmental science, and material science. In this study, we compare the performance of five machine learning algorithms—linear regression, support vector machines (SVM), random forests, gradient boosting machines (GBM), and neural networks—for predicting molecular solubility using the AqSolDB dataset. The dataset consists of 9981 data points with their corresponding solubility values. MACCS keys (166 bits), RDKit properties (20 properties), and structural properties(3) features are extracted for every smile representation in the dataset. A total of 189 features were used for training and testing for every molecule. Each algorithm is trained on a subset of the dataset and evaluated using metrics accuracy scores. Additionally, computational time for training and testing is recorded to assess the efficiency of each algorithm. Our results demonstrate that random forest model outperformed other algorithms in terms of predictive accuracy, achieving an 0.93 accuracy score. Gradient boosting machines and neural networks also exhibit strong performance, closely followed by support vector machines. Linear regression, while simpler in nature, demonstrates competitive performance but with slightly higher errors compared to ensemble methods. Overall, this study provides valuable insights into the performance of machine learning algorithms for molecular solubility prediction, highlighting the importance of algorithm selection in achieving accurate and efficient predictions in practical applications.

Keywords: random forest, machine learning, comparison, feature extraction

Procedia PDF Downloads 41
2213 Integration of Edible Insects into the Animal Husbandry Curriculum in Senior Secondary Schools in Nigeria: Teachers’ Perception

Authors: Ali Christian Chinedu, Asogwa Vincent Chidindu, Ejiofor Toochukwu Eleazar, Okadi Ashagwu Ojang

Abstract:

The increasing rate of Boko Haram insurgency, farmer-herder clashes, and kidnapping in Nigeria has resulted in food shortages and high cost of protein sources like beef and fish. This challenge could be curbed with the production of edible insects, which contain several nutritional benefits like calories, protein, fat, vitamins, and minerals, depending on their species, metamorphic stage, and diet. Unfortunately, the benefits and competencies in producing, preserving, and marketing edible insects are still unknown to the public, including prospective farmers in Nigeria. Hence, this study determined teachers’ perception of integrating edible insects into the Animal Husbandry Curriculum in Senior Secondary Schools in Nigeria to equip the future generation with the relevant competencies for alternative sustainable protein supply. The study was carried out in Enugu State, Nigeria. The participants for the study comprised 162 agricultural science teachers. A questionnaire titled: Edible Insects Integration in Animal Husbandry Curriculum Questionnaire (EIIAHCQ) was used to collect data using a descriptive survey research design. We conducted data collection with the help of six research assistants. The study identified 11 objectives, 11 contents, 10 teaching methods, and 9 evaluation methods that could be integrated into the existing curriculum of animal husbandry in Nigeria. Among others, the Ministry of Education should integrate the finding of this study into the curriculum of Animal Husbandry in Nigeria to enhance the protein supply and curb food insecurity now and in the future.

Keywords: animal husbandry curriculum, edible insects, entomophagy, integration, secondary school, Nigeria

Procedia PDF Downloads 92
2212 Advancing Trustworthy Human-robot Collaboration: Challenges and Opportunities in Diverse European Industrial Settings

Authors: Margarida Porfírio Tomás, Paula Pereira, José Manuel Palma Oliveira

Abstract:

The decline in employment rates across sectors like industry and construction is exacerbated by an aging workforce. This has far-reaching implications for the economy, including skills gaps, labour shortages, productivity challenges due to physical limitations, and workplace safety concerns. To sustain the workforce and pension systems, technology plays a pivotal role. Robots provide valuable support to human workers, and effective human-robot interaction is essential. FORTIS, a Horizon project, aims to address these challenges by creating a comprehensive Human-Robot Interaction (HRI) solution. This solution focuses on multi-modal communication and multi-aspect interaction, with a primary goal of maintaining a human-centric approach. By meeting the needs of both human workers and robots, FORTIS aims to facilitate efficient and safe collaboration. The project encompasses three key activities: 1) A Human-Centric Approach involving data collection, annotation, understanding human behavioural cognition, and contextual human-robot information exchange. 2) A Robotic-Centric Focus addressing the unique requirements of robots during the perception and evaluation of human behaviour. 3) Ensuring Human-Robot Trustworthiness through measures such as human-robot digital twins, safety protocols, and resource allocation. Factor Social, a project partner, will analyse psycho-physiological signals that influence human factors, particularly in hazardous working conditions. The analysis will be conducted using a combination of case studies, structured interviews, questionnaires, and a comprehensive literature review. However, the adoption of novel technologies, particularly those involving human-robot interaction, often faces hurdles related to acceptance. To address this challenge, FORTIS will draw upon insights from Social Sciences and Humanities (SSH), including risk perception and technology acceptance models. Throughout its lifecycle, FORTIS will uphold a human-centric approach, leveraging SSH methodologies to inform the design and development of solutions. This project received funding from European Union’s Horizon 2020/Horizon Europe research and innovation program under grant agreement No 101135707 (FORTIS).

Keywords: skills gaps, productivity challenges, workplace safety, human-robot interaction, human-centric approach, social sciences and humanities, risk perception

Procedia PDF Downloads 52
2211 The Hybridization of Muslim Spaces in Germany: A Historical Perspective on the Perception of Muslims

Authors: Alex Konrad

Abstract:

In 2017, about 4.5 million Muslims live in Germany. They can practice their faith openly, mostly in well-equipped community centers. At the same time, right-wing politicians and media allege that all Muslims tend to be radical and undemocratic. Both perspectives are rooted in an interacting development since the 1970s. German authorities closed the 'King Fahd Academy' international school in Bonn in summer 2017 because they accused the school administration of attracting Islamists. Only 30 years ago, German authorities and labor unions directed their requests for pastoral care of the Muslim communities in Germany to the Turkish and Saudi administrations. This study shows the leading and misleading tracks of Muslim life and its perception in Germany from a historical point of view. Most of the Muslims came as so-called 'Gastarbeiter' (migrant workers) from Turkey and Morocco to West Germany in the 1960s and 1970s. Until the late 1970s, German society recognized them as workforce solely and ignored their religious needs broadly. The Iranian Revolution of 1979 caused widespread hysteria about Islamic radicalization. Likewise, it shifted the German perception of migrant workers in Germany. For the first time, the majority society saw them as religious people. Media and self-proclaimed 'experts' on Islam suspected Muslims in Germany of subversive and undemocratic belief. On the upside, they obtained the opportunity to be heard by German society and authorities. In the ensuing decades, Muslims and Islamophiles fought a discursive struggle against right-wing politicians, 'experts' and media with monolithic views. In the 1990s, Muslims achieved to establish a solid infrastructure of Islamic community center throughout Germany. Their religious life became present and contributed to diversifying the common monolithic images of Muslims as insane fundamentalists in Germany. However, the media and many 'experts' promoted the fundamentalist narrative, which gained more and more acceptance in German society at the same time. This study uses archival sources from German authorities, Islamic communities, together with local and national media to get a close approach to the contemporary historical debates. In addition, contributions by Muslims and Islamophiles in Germany, for example in magazines, event reports, and internal communication, revealing their quotidian struggle for more acceptance are being used as sources. The inclusion of widely publicized books, documentaries and newspaper articles about Islam as a menace to Europe conduces to a balanced analysis of the contemporary debates and views. Theoretically, the study applies the Third Space approach. Muslims in Germany fight the othering by the German majority society. It was their chief purpose not to be marginalized in both spatial meanings, discursively and physically. Therefore, they established realities of life as hybrids in Germany. This study reconstructs the development of the perception of Muslims in Germany. It claims that self-proclaimed experts and politicians with monolithic views maintained the hegemonic discursive positions and coined the German images of Muslims. Nevertheless, Muslims in Germany accomplished that Muslim presence in Germany’s everyday life became an integral part of society and the public sphere. This is how Muslims hybridized religious spaces in Germany.

Keywords: experts, fundamentalism, Germany, hybridization, Islamophobia, migrant workers

Procedia PDF Downloads 226