Search results for: government data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27477

Search results for: government data

25917 Collaborative Governance and Quality Assurance of Higher Education Institutions for Association of Southeast Asian Nations (ASEAN) Integration: The Philippine Experience

Authors: Rowena R. De Guzman

Abstract:

Association of Southeast Asian Nations (ASEAN) integration requires that higher education institutions (HEIs) must adjust the quality of their educational services and develop a global mindset, through various quality assurance (QA) activities to a level producing global graduates and encouraging human resource mobility. For Philippine HEIs, QA involves enormous tasks and responsibilities, whereby the implementation of which involves various parties, agencies and stakeholders; and in that case innovations have to be installed to engage the whole system in the QA process. In this study, collaborative governance (CG), a concept from the field of public administration, is introduced in educational management, particularly in the area of QA management. The paper suggests that the exercise of and attitude toward CG in QA is relevant to the practice of activities across QA indicators in higher educational services among stakeholders from participating HEIs. Participants representing different interests are collectively empowered, and this compelled them to participate and support the QA activities of the HEIs. It is recommended to embed CG model in the system for HEIs undergoing or intending to undergo QA achieve their desired QA outcomes. The study supports the commitment of the Philippine government to the evolving policy and efforts to achieve comparable qualifications across the Asia-Pacific region under the auspices of the UNESCO.

Keywords: ASEAN integration, collaborative governance, global education, government policy, higher education, international demands, quality assurance

Procedia PDF Downloads 269
25916 Using Audit Tools to Maintain Data Quality for ACC/NCDR PCI Registry Abstraction

Authors: Vikrum Malhotra, Manpreet Kaur, Ayesha Ghotto

Abstract:

Background: Cardiac registries such as ACC Percutaneous Coronary Intervention Registry require high quality data to be abstracted, including data elements such as nuclear cardiology, diagnostic coronary angiography, and PCI. Introduction: The audit tool created is used by data abstractors to provide data audits and assess the accuracy and inter-rater reliability of abstraction performed by the abstractors for a health system. This audit tool solution has been developed across 13 registries, including ACC/NCDR registries, PCI, STS, Get with the Guidelines. Methodology: The data audit tool was used to audit internal registry abstraction for all data elements, including stress test performed, type of stress test, data of stress test, results of stress test, risk/extent of ischemia, diagnostic catheterization detail, and PCI data elements for ACC/NCDR PCI registries. This is being used across 20 hospital systems internally and providing abstraction and audit services for them. Results: The data audit tool had inter-rater reliability and accuracy greater than 95% data accuracy and IRR score for the PCI registry in 50 PCI registry cases in 2021. Conclusion: The tool is being used internally for surgical societies and across hospital systems. The audit tool enables the abstractor to be assessed by an external abstractor and includes all of the data dictionary fields for each registry.

Keywords: abstraction, cardiac registry, cardiovascular registry, registry, data

Procedia PDF Downloads 105
25915 Economics of Open and Distance Education in the University of Ibadan, Nigeria

Authors: Babatunde Kasim Oladele

Abstract:

One of the major objectives of the Nigeria national policy on education is the provision of equal educational opportunities to all citizens at different levels of education. With regards to higher education, an aspect of the policy encourages distance learning to be organized and delivered by tertiary institutions in Nigeria. This study therefore, determines how much of the Government resources are committed, how the resources are utilized and what alternative sources of funding are available for this system of education. This study investigated the trends in recurrent costs between 2004/2005 and 2013/2014 at University of Ibadan Distance Learning Centre (DLC). A descriptive survey research design was employed for the study. Questionnaire was the research instrument used for the collection of data. The population of the study was 280 current distance learning education students, 70 academic staff and 50 administrative staff. Only 354 questionnaires were correctly filled and returned. Data collected were analyzed and coded using the frequencies, ratio, average and percentages were used to answer all the research questions. The study revealed that staff salaries and allowances of academic and non-academic staff represent the most important variable that influences the cost of education. About 55% of resources were allocated to this sector alone. The study also indicates that costs rise every year with increase in enrolment representing a situation of diseconomies of scale. This study recommends that Universities who operates distance learning program should strive to explore other internally generated revenue option to boost their revenue. University of Ibadan, being the premier university in Nigeria, should be given foreign aid and home support, both financially and materially, to enable the institute to run a formidable distance education program that would measure up in planning and implementation with those of developed nation.

Keywords: open education, distance education, University of Ibadan, Nigeria, cost of education

Procedia PDF Downloads 178
25914 The Social Reaction to the Wadi Salib Riots (1959) as Reflected in Contemporary Israeli Press

Authors: Ada Yurman

Abstract:

Social reactions to deviant groups with political goals follow two central patterns; one that associates personal characteristics with deviant behavior, and the other that claims that society is to be blamed for deviant behavior. The establishment usually tends towards the former notion and thus disclaims any responsibility for the distress of the underprivileged, while it is usually those who oppose government policies who believe that the fault lies with society. The purpose of the present research was to examine social reactions to the Wadi Salib riots that occurred in Haifa in 1959. These riots represented the first ethnic protest within Israeli society with its ideology of the ingathering of the exiles. The central question was whether this ideology contributed to the development of a different reaction when compared to reactions to similar events abroad. This question was examined by means of analyzing articles in the Israeli press of that period. The Israeli press representing the views of the establishment was at pains to point out that the rioters were criminals, their object being to obstruct the development of society. Opposition party leaders claimed that the rioters lived in poor circumstances, which constituted a direct result of government policies. An analysis of press reports on the Wadi Salib riots indicates a correspondence between the reaction to these events and similar events abroad. Nevertheless, the reaction to the Wadi Salib riots did not only express a conflict between different political camps, but also different symbolic universes. Each group exploited the events at Wadi Salib to prove that their ideology was the legitimate one.

Keywords: riots, media, political deviance, symbolic universe

Procedia PDF Downloads 166
25913 Artificial Intelligence Based Comparative Analysis for Supplier Selection in Multi-Echelon Automotive Supply Chains via GEP and ANN Models

Authors: Seyed Esmail Seyedi Bariran, Laysheng Ewe, Amy Ling

Abstract:

Since supplier selection appears as a vital decision, selecting supplier based on the best and most accurate ways has a lot of importance for enterprises. In this study, a new Artificial Intelligence approach is exerted to remove weaknesses of supplier selection. The paper has three parts. First part is choosing the appropriate criteria for assessing the suppliers’ performance. Next one is collecting the data set based on experts. Afterwards, the data set is divided into two parts, the training data set and the testing data set. By the training data set the best structure of GEP and ANN are selected and to evaluate the power of the mentioned methods the testing data set is used. The result obtained shows that the accuracy of GEP is more than ANN. Moreover, unlike ANN, a mathematical equation is presented by GEP for the supplier selection.

Keywords: supplier selection, automotive supply chains, ANN, GEP

Procedia PDF Downloads 631
25912 Environmental Effect of Empty Nest Households in Germany: An Empirical Approach

Authors: Dominik Kowitzke

Abstract:

Housing constructions have direct and indirect environmental impacts especially caused by soil sealing and gray energy consumption related to the use of construction materials. Accordingly, the German government introduced regulations limiting additional annual soil sealing. At the same time, in many regions like metropolitan areas the demand for further housing is high and of current concern in the media and politics. It is argued that meeting this demand by making better use of the existing housing supply is more sustainable than the construction of new housing units. In this context, targeting the phenomenon of so-called over the housing of empty nest households seems worthwhile to investigate for its potential to free living space and thus, reduce the need for new housing constructions and related environmental harm. Over housing occurs if no space adjustment takes place in household lifecycle stages when children move out from home and the space formerly created for the offspring is from then on under-utilized. Although in some cases the housing space consumption might actually meet households’ equilibrium preferences, frequently space-wise adjustments to the living situation doesn’t take place due to transaction or information costs, habit formation, or government intervention leading to increasing costs of relocations like real estate transfer taxes or tenant protection laws keeping tenure rents below the market price. Moreover, many detached houses are not long-term designed in a way that freed up space could be rent out. Findings of this research based on socio-economic survey data, indeed, show a significant difference between the living space of empty nest and a comparison group of households which never had children. The approach used to estimate the average difference in living space is a linear regression model regressing the response variable living space on a two-dimensional categorical variable distinguishing the two groups of household types and further controls. This difference is assumed to be the under-utilized space and is extrapolated to the total amount of empty nests in the population. Supporting this result, it is found that households that move, despite market frictions impairing the relocation, after children left their home tend to decrease the living space. In the next step, only for areas with tight housing markets in Germany and high construction activity, the total under-utilized space in empty nests is estimated. Under the assumption of full substitutability of housing space in empty nests and space in new dwellings in these locations, it is argued that in a perfect market with empty nest households consuming their equilibrium demand quantity of housing space, dwelling constructions in the amount of the excess consumption of living space could be saved. This, on the other hand, would prevent environmental harm quantified in carbon dioxide equivalence units related to average constructions of detached or multi-family houses. This study would thus provide information on the amount of under-utilized space inside dwellings which is missing in public data and further estimates the external effect of over housing in environmental terms.

Keywords: empty nests, environment, Germany, households, over housing

Procedia PDF Downloads 171
25911 Barriers to the Use of Factoring Accounts Receivables: Ghanaian Contractor’s Perception

Authors: E. Kissi, V. K. Acheamfour, J. J. Gyimah, T. Adjei-Kumi

Abstract:

Factoring accounts receivable is widely accepted as an alternative financing source and utilized in almost every industry that sells business-to-business or business-to-government. However, its patronage in the construction industry is very limited as some barriers hinder its application in the construction industry. This study aims at assessing the barriers to the use of factoring accounts receivables in the Ghanaian construction industry. The study adopted the sequential exploratory research method where structured and unstructured questionnaires were conveniently distributed to D1K1 and D2K2 construction firms in Ghana. Using the one-sample t-test and Kendall’s Coefficient of concordance data was analyzed. The most severe challenge concluded is the high cost of factoring patronage. Other critical challenges identified were low knowledge on factoring processes, inadequate access to information on factoring, and high risks involved in factoring. Hence, it is recommended that contractors should be made aware of the prospects of factoring of accounts receivables in the construction industry. This study serves as basis for further rigorous research into factoring of accounts receivables in the industry.

Keywords: barriers, contractors, factoring accounts receivables, Ghanaian, perception

Procedia PDF Downloads 132
25910 Factors Affecting Citizens’ Behavioural Intention to Use E-voter Registration and Verification System Towards the Electoral Process in Nigeria

Authors: Aishatu Shuaibu

Abstract:

It is expected that electronic voter registration and verification in Nigeria will enhance the integrity of elections, which is vital for democratic development; it is also expected to enhance efficiency, transparency, and security. However, the reasons for citizens' intentions with respect to behavioral use of such platforms have not been studied in the literature much. This paper, therefore, intends to look into significant characteristics affecting the acceptance and use of e-voter technology among Nigerian residents. Data will be collected using a structured questionnaire from several local government areas (LGAs) around Nigeria to evaluate the influence of demographic characteristics, technology usability, security perceptions, and governmental education on the intention to implement e-voter systems. The results will offer vital insights into the barriers and drivers of voter technology acceptance, aiding in policy suggestions to enhance voter registration and verification processes within Nigeria's electoral framework. This study is designed to aid electoral stakeholders in devising successful strategies for encouraging the broad deployment of e-voter systems in Nigeria.

Keywords: e-governance, e-voting, e-democracy, INEC, Nigeria

Procedia PDF Downloads 20
25909 The Impact of International Student Mobility on Trade and Gross Domestic Product: The Case of China

Authors: Yasir Khan

Abstract:

The continued growth in international students coming to China for higher education had a significant positive impact on trade and GDP in China. Student mobility may expend trade with their country of origin, owing to superior knowledge, or preferential access to market opportunities. We test this hypothesis using Chinese trade data from 1999 to 2017. In fully-modify (OLS) and dynamic (OLS) testing estimation, we find that a 1.24 percent increase in student inward mobility is associated with a 1 percent increase in Chinese export trade. On the other hand, we find that a 1.18 percent increase in the student inward mobility to China is associated with a 1 percent increase in import trade. In addition, we find that a 1.13 percent increase in international student inward mobility is associated with a 1 percent increase in the GDP. The outcome suggests that international students have a strong influence on Gross Domestic Product (GDP), exports and imports trade. However, the study holds that the government should attach great attachment and importance to the role of international students in the export and import trade.

Keywords: international student mobility, China, export, import, GDP, FMOLS, DOLS

Procedia PDF Downloads 219
25908 Roof and Road Network Detection through Object Oriented SVM Approach Using Low Density LiDAR and Optical Imagery in Misamis Oriental, Philippines

Authors: Jigg L. Pelayo, Ricardo G. Villar, Einstine M. Opiso

Abstract:

The advances of aerial laser scanning in the Philippines has open-up entire fields of research in remote sensing and machine vision aspire to provide accurate timely information for the government and the public. Rapid mapping of polygonal roads and roof boundaries is one of its utilization offering application to disaster risk reduction, mitigation and development. The study uses low density LiDAR data and high resolution aerial imagery through object-oriented approach considering the theoretical concept of data analysis subjected to machine learning algorithm in minimizing the constraints of feature extraction. Since separating one class from another in distinct regions of a multi-dimensional feature-space, non-trivial computing for fitting distribution were implemented to formulate the learned ideal hyperplane. Generating customized hybrid feature which were then used in improving the classifier findings. Supplemental algorithms for filtering and reshaping object features are develop in the rule set for enhancing the final product. Several advantages in terms of simplicity, applicability, and process transferability is noticeable in the methodology. The algorithm was tested in the different random locations of Misamis Oriental province in the Philippines demonstrating robust performance in the overall accuracy with greater than 89% and potential to semi-automation. The extracted results will become a vital requirement for decision makers, urban planners and even the commercial sector in various assessment processes.

Keywords: feature extraction, machine learning, OBIA, remote sensing

Procedia PDF Downloads 362
25907 Increasing the Apparent Time Resolution of Tc-99m Diethylenetriamine Pentaacetic Acid Galactosyl Human Serum Albumin Dynamic SPECT by Use of an 180-Degree Interpolation Method

Authors: Yasuyuki Takahashi, Maya Yamashita, Kyoko Saito

Abstract:

In general, dynamic SPECT data acquisition needs a few minutes for one rotation. Thus, the time-activity curve (TAC) derived from the dynamic SPECT is relatively coarse. In order to effectively shorten the interval, between data points, we adopted a 180-degree interpolation method. This method is already used for reconstruction of the X-ray CT data. In this study, we applied this 180-degree interpolation method to SPECT and investigated its effectiveness.To briefly describe the 180-degree interpolation method: the 180-degree data in the second half of one rotation are combined with the 180-degree data in the first half of the next rotation to generate a 360-degree data set appropriate for the time halfway between the first and second rotations. In both a phantom and a patient study, the data points from the interpolated images fell in good agreement with the data points tracking the accumulation of 99mTc activity over time for appropriate region of interest. We conclude that data derived from interpolated images improves the apparent time resolution of dynamic SPECT.

Keywords: dynamic SPECT, time resolution, 180-degree interpolation method, 99mTc-GSA.

Procedia PDF Downloads 493
25906 Forecasting Market Share of Electric Vehicles in Taiwan Using Conjoint Models and Monte Carlo Simulation

Authors: Li-hsing Shih, Wei-Jen Hsu

Abstract:

Recently, the sale of electrical vehicles (EVs) has increased dramatically due to maturing technology development and decreasing cost. Governments of many countries have made regulations and policies in favor of EVs due to their long-term commitment to net zero carbon emissions. However, due to uncertain factors such as the future price of EVs, forecasting the future market share of EVs is a challenging subject for both the auto industry and local government. This study tries to forecast the market share of EVs using conjoint models and Monte Carlo simulation. The research is conducted in three phases. (1) A conjoint model is established to represent the customer preference structure on purchasing vehicles while five product attributes of both EV and internal combustion engine vehicles (ICEV) are selected. A questionnaire survey is conducted to collect responses from Taiwanese consumers and estimate the part-worth utility functions of all respondents. The resulting part-worth utility functions can be used to estimate the market share, assuming each respondent will purchase the product with the highest total utility. For example, attribute values of an ICEV and a competing EV are given respectively, two total utilities of the two vehicles of a respondent are calculated and then knowing his/her choice. Once the choices of all respondents are known, an estimate of market share can be obtained. (2) Among the attributes, future price is the key attribute that dominates consumers’ choice. This study adopts the assumption of a learning curve to predict the future price of EVs. Based on the learning curve method and past price data of EVs, a regression model is established and the probability distribution function of the price of EVs in 2030 is obtained. (3) Since the future price is a random variable from the results of phase 2, a Monte Carlo simulation is then conducted to simulate the choices of all respondents by using their part-worth utility functions. For instance, using one thousand generated future prices of an EV together with other forecasted attribute values of the EV and an ICEV, one thousand market shares can be obtained with a Monte Carlo simulation. The resulting probability distribution of the market share of EVs provides more information than a fixed number forecast, reflecting the uncertain nature of the future development of EVs. The research results can help the auto industry and local government make more appropriate decisions and future action plans.

Keywords: conjoint model, electrical vehicle, learning curve, Monte Carlo simulation

Procedia PDF Downloads 69
25905 AI-Driven Solutions for Optimizing Master Data Management

Authors: Srinivas Vangari

Abstract:

In the era of big data, ensuring the accuracy, consistency, and reliability of critical data assets is crucial for data-driven enterprises. Master Data Management (MDM) plays a crucial role in this endeavor. This paper investigates the role of Artificial Intelligence (AI) in enhancing MDM, focusing on how AI-driven solutions can automate and optimize various stages of the master data lifecycle. By integrating AI (Quantitative and Qualitative Analysis) into processes such as data creation, maintenance, enrichment, and usage, organizations can achieve significant improvements in data quality and operational efficiency. Quantitative analysis is employed to measure the impact of AI on key metrics, including data accuracy, processing speed, and error reduction. For instance, our study demonstrates an 18% improvement in data accuracy and a 75% reduction in duplicate records across multiple systems post-AI implementation. Furthermore, AI’s predictive maintenance capabilities reduced data obsolescence by 22%, as indicated by statistical analyses of data usage patterns over a 12-month period. Complementing this, a qualitative analysis delves into the specific AI-driven strategies that enhance MDM practices, such as automating data entry and validation, which resulted in a 28% decrease in manual errors. Insights from case studies highlight how AI-driven data cleansing processes reduced inconsistencies by 25% and how AI-powered enrichment strategies improved data relevance by 24%, thus boosting decision-making accuracy. The findings demonstrate that AI significantly enhances data quality and integrity, leading to improved enterprise performance through cost reduction, increased compliance, and more accurate, real-time decision-making. These insights underscore the value of AI as a critical tool in modern data management strategies, offering a competitive edge to organizations that leverage its capabilities.

Keywords: artificial intelligence, master data management, data governance, data quality

Procedia PDF Downloads 18
25904 Genetic Data of Deceased People: Solving the Gordian Knot

Authors: Inigo de Miguel Beriain

Abstract:

Genetic data of deceased persons are of great interest for both biomedical research and clinical use. This is due to several reasons. On the one hand, many of our diseases have a genetic component; on the other hand, we share genes with a good part of our biological family. Therefore, it would be possible to improve our response considerably to these pathologies if we could use these data. Unfortunately, at the present moment, the status of data on the deceased is far from being satisfactorily resolved by the EU data protection regulation. Indeed, the General Data Protection Regulation has explicitly excluded these data from the category of personal data. This decision has given rise to a fragmented legal framework on this issue. Consequently, each EU member state offers very different solutions. For instance, Denmark considers the data as personal data of the deceased person for a set period of time while some others, such as Spain, do not consider this data as such, but have introduced some specifically focused regulations on this type of data and their access by relatives. This is an extremely dysfunctional scenario from multiple angles, not least of which is scientific cooperation at the EU level. This contribution attempts to outline a solution to this dilemma through an alternative proposal. Its main hypothesis is that, in reality, health data are, in a sense, a rara avis within data in general because they do not refer to one person but to several. Hence, it is possible to think that all of them can be considered data subjects (although not all of them can exercise the corresponding rights in the same way). When the person from whom the data were obtained dies, the data remain as personal data of his or her biological relatives. Hence, the general regime provided for in the GDPR may apply to them. As these are personal data, we could go back to thinking in terms of a general prohibition of data processing, with the exceptions provided for in Article 9.2 and on the legal bases included in Article 6. This may be complicated in practice, given that, since we are dealing with data that refer to several data subjects, it may be complex to refer to some of these bases, such as consent. Furthermore, there are theoretical arguments that may oppose this hypothesis. In this contribution, it is shown, however, that none of these objections is of sufficient substance to delegitimize the argument exposed. Therefore, the conclusion of this contribution is that we can indeed build a general framework on the processing of personal data of deceased persons in the context of the GDPR. This would constitute a considerable improvement over the current regulatory framework, although it is true that some clarifications will be necessary for its practical application.

Keywords: collective data conceptual issues, data from deceased people, genetic data protection issues, GDPR and deceased people

Procedia PDF Downloads 154
25903 The Impact of Floods and Typhoons on Housing Welfare: Case Study of Thua Thien Hue Province, Vietnam

Authors: Seyeon Lee, Suyeon Lee, Julia Rogers

Abstract:

This research investigates and records post-flood and typhoon conditions of low income housing in the Thua Thien Hue Province, Vietnam; area prone to extreme flooding in Central Vietnam. The cost of rebuilding houses after flood and typhoon has been always a burden for low income households. These costs often lead to the elimination of essential construction practices for disaster resistance. Despite relief efforts from international non-profit organizations and Vietnam government, the impacts of flood and typhoon damages to residential construction has been reoccurring to the same neighborhood annually. Notwithstanding its importance, this topic has not been systematically investigated. The study is limited to assistance provided to low income households documenting existing conditions of low income homes impacted by post flood and typhoon conditions in the Thua Thien Hue Province. The research identifies leading causes of the building failure from the natural disasters. Relief efforts and progress made since the last typhoon is documented. The quality of construction and repairs are assessed based on Home Builders Guide to Coastal Construction by Federal Emergency Management Agency. Focus group discussions and individual interviews with local residents from four different communities were conducted to get incites on repair effort by the non-profit organizations and Vietnam government, and their needs post flood and typhoon. The findings from the field study informed that many of the local people are now aware of the importance of improving housing conditions as one of the key coping strategies to withstand flood and typhoon events as it makes housing and community more resilient to future events. While there has been a remarkable improvement of housing and infrastructure with the support from the local government as well as the non-profit organizations, many households in the study areas are found to still live in weak and fragile housing conditions without gaining access to the aid to repair and strengthen the houses. Given that the major immediate recovery action taken by the local people tends to focus on repairing damaged houses, and on this ground, low-income households spend a considerable amount of their income on housing repair, providing proper and applicable construction practices will not only improve the housing condition, but also contribute to reducing poverty in Vietnam.

Keywords: disaster coping mechanism, housing welfare, low-income housing, recovery reduction

Procedia PDF Downloads 271
25902 A Proposal for U-City (Smart City) Service Method Using Real-Time Digital Map

Authors: SangWon Han, MuWook Pyeon, Sujung Moon, DaeKyo Seo

Abstract:

Recently, technologies based on three-dimensional (3D) space information are being developed and quality of life is improving as a result. Research on real-time digital map (RDM) is being conducted now to provide 3D space information. RDM is a service that creates and supplies 3D space information in real time based on location/shape detection. Research subjects on RDM include the construction of 3D space information with matching image data, complementing the weaknesses of image acquisition using multi-source data, and data collection methods using big data. Using RDM will be effective for space analysis using 3D space information in a U-City and for other space information utilization technologies.

Keywords: RDM, multi-source data, big data, U-City

Procedia PDF Downloads 433
25901 Food Security of Migrants in a Regional Area of Australia: A Qualitative Study

Authors: Joanne Sin Wei Yeoh, Quynh Lê, Rosa McManamey

Abstract:

Food security indicates the ability of individuals, households and communities to acquire food that is healthy, sustainable, affordable, appropriate and accessible. Despite Australia’s current ability to produce enough food to feed a population larger than its current population, there has been substantial evidence over the last decades to demonstrate many Australians struggle to feed themselves, including those from a cultural and linguistically diverse (CALD) background. The study aimed to investigate migrants’ perceptions and experiences on food security in Tasmania. Semi-structured interviews were conducted with 33 migrants residing in North, South and North West Tasmania, who were recruited through purposive sampling. Thematic analysis was employed to analyse the interview data. Four main themes were identified from the interview data: (1) Understanding of food security; (2) Experiences with the food security in Tasmania; (3) Factors that influence migrants’ food security in Tasmania; and (4) Acculturation strategies. Various sub-themes have emerged under each of these four major themes. Though the findings indicate participants are satisfied with their current food security in Tasmania, they still encounter some challenges in food availability, accessibility, and affordability in Tasmania. Factors that influence migrants’ food security were educational background, language barrier, socioeconomic status, geographical isolation, and cultural background. By using different acculturation strategies, migrants managed to adapt to the new food culture. In addition, social and cultural capitals were also treated as vital roles in improving migrants’ food security. The findings indicate migrants residing in Tasmania face different challenges on food security. They use different strategies for food security while acculturating into a new environment. The findings may provide useful information for migrants in Australia and various private organisations or relevant government departments that address food security for migrants.

Keywords: experiences, food security, migrants, perceptions

Procedia PDF Downloads 424
25900 Agile Methodology for Modeling and Design of Data Warehouses -AM4DW-

Authors: Nieto Bernal Wilson, Carmona Suarez Edgar

Abstract:

The organizations have structured and unstructured information in different formats, sources, and systems. Part of these come from ERP under OLTP processing that support the information system, however these organizations in OLAP processing level, presented some deficiencies, part of this problematic lies in that does not exist interesting into extract knowledge from their data sources, as also the absence of operational capabilities to tackle with these kind of projects.  Data Warehouse and its applications are considered as non-proprietary tools, which are of great interest to business intelligence, since they are repositories basis for creating models or patterns (behavior of customers, suppliers, products, social networks and genomics) and facilitate corporate decision making and research. The following paper present a structured methodology, simple, inspired from the agile development models as Scrum, XP and AUP. Also the models object relational, spatial data models, and the base line of data modeling under UML and Big data, from this way sought to deliver an agile methodology for the developing of data warehouses, simple and of easy application. The methodology naturally take into account the application of process for the respectively information analysis, visualization and data mining, particularly for patterns generation and derived models from the objects facts structured.

Keywords: data warehouse, model data, big data, object fact, object relational fact, process developed data warehouse

Procedia PDF Downloads 409
25899 Identifying Model to Predict Deterioration of Water Mains Using Robust Analysis

Authors: Go Bong Choi, Shin Je Lee, Sung Jin Yoo, Gibaek Lee, Jong Min Lee

Abstract:

In South Korea, it is difficult to obtain data for statistical pipe assessment. In this paper, to address these issues, we find that various statistical model presented before is how data mixed with noise and are whether apply in South Korea. Three major type of model is studied and if data is presented in the paper, we add noise to data, which affects how model response changes. Moreover, we generate data from model in paper and analyse effect of noise. From this we can find robustness and applicability in Korea of each model.

Keywords: proportional hazard model, survival model, water main deterioration, ecological sciences

Procedia PDF Downloads 743
25898 Automated Testing to Detect Instance Data Loss in Android Applications

Authors: Anusha Konduru, Zhiyong Shan, Preethi Santhanam, Vinod Namboodiri, Rajiv Bagai

Abstract:

Mobile applications are increasing in a significant amount, each to address the requirements of many users. However, the quick developments and enhancements are resulting in many underlying defects. Android apps create and handle a large variety of 'instance' data that has to persist across runs, such as the current navigation route, workout results, antivirus settings, or game state. Due to the nature of Android, an app can be paused, sent into the background, or killed at any time. If the instance data is not saved and restored between runs, in addition to data loss, partially-saved or corrupted data can crash the app upon resume or restart. However, it is difficult for the programmer to manually test this issue for all the activities. This results in the issue of data loss that the data entered by the user are not saved when there is any interruption. This issue can degrade user experience because the user needs to reenter the information each time there is an interruption. Automated testing to detect such data loss is important to improve the user experience. This research proposes a tool, DroidDL, a data loss detector for Android, which detects the instance data loss from a given android application. We have tested 395 applications and found 12 applications with the issue of data loss. This approach is proved highly accurate and reliable to find the apps with this defect, which can be used by android developers to avoid such errors.

Keywords: Android, automated testing, activity, data loss

Procedia PDF Downloads 237
25897 Big Data: Appearance and Disappearance

Authors: James Moir

Abstract:

The mainstay of Big Data is prediction in that it allows practitioners, researchers, and policy analysts to predict trends based upon the analysis of large and varied sources of data. These can range from changing social and political opinions, patterns in crimes, and consumer behaviour. Big Data has therefore shifted the criterion of success in science from causal explanations to predictive modelling and simulation. The 19th-century science sought to capture phenomena and seek to show the appearance of it through causal mechanisms while 20th-century science attempted to save the appearance and relinquish causal explanations. Now 21st-century science in the form of Big Data is concerned with the prediction of appearances and nothing more. However, this pulls social science back in the direction of a more rule- or law-governed reality model of science and away from a consideration of the internal nature of rules in relation to various practices. In effect Big Data offers us no more than a world of surface appearance and in doing so it makes disappear any context-specific conceptual sensitivity.

Keywords: big data, appearance, disappearance, surface, epistemology

Procedia PDF Downloads 421
25896 From Data Processing to Experimental Design and Back Again: A Parameter Identification Problem Based on FRAP Images

Authors: Stepan Papacek, Jiri Jablonsky, Radek Kana, Ctirad Matonoha, Stefan Kindermann

Abstract:

FRAP (Fluorescence Recovery After Photobleaching) is a widely used measurement technique to determine the mobility of fluorescent molecules within living cells. While the experimental setup and protocol for FRAP experiments are usually fixed, data processing part is still under development. In this paper, we formulate and solve the problem of data selection which enhances the processing of FRAP images. We introduce the concept of the irrelevant data set, i.e., the data which are almost not reducing the confidence interval of the estimated parameters and thus could be neglected. Based on sensitivity analysis, we both solve the problem of the optimal data space selection and we find specific conditions for optimizing an important experimental design factor, e.g., the radius of bleach spot. Finally, a theorem announcing less precision of the integrated data approach compared to the full data case is proven; i.e., we claim that the data set represented by the FRAP recovery curve lead to a larger confidence interval compared to the spatio-temporal (full) data.

Keywords: FRAP, inverse problem, parameter identification, sensitivity analysis, optimal experimental design

Procedia PDF Downloads 278
25895 Exploring the Feasibility of Utilizing Blockchain in Cloud Computing and AI-Enabled BIM for Enhancing Data Exchange in Construction Supply Chain Management

Authors: Tran Duong Nguyen, Marwan Shagar, Qinghao Zeng, Aras Maqsoodi, Pardis Pishdad, Eunhwa Yang

Abstract:

Construction supply chain management (CSCM) involves the collaboration of many disciplines and actors, which generates vast amounts of data. However, inefficient, fragmented, and non-standardized data storage often hinders this data exchange. The industry has adopted building information modeling (BIM) -a digital representation of a facility's physical and functional characteristics to improve collaboration, enhance transmission security, and provide a common data exchange platform. Still, the volume and complexity of data require tailored information categorization, aligning with stakeholders' preferences and demands. To address this, artificial intelligence (AI) can be integrated to handle this data’s magnitude and complexities. This research aims to develop an integrated and efficient approach for data exchange in CSCM by utilizing AI. The paper covers five main objectives: (1) Investigate existing framework and BIM adoption; (2) Identify challenges in data exchange; (3) Propose an integrated framework; (4) Enhance data transmission security; and (5) Develop data exchange in CSCM. The proposed framework demonstrates how integrating BIM and other technologies, such as cloud computing, blockchain, and AI applications, can significantly improve the efficiency and accuracy of data exchange in CSCM.

Keywords: construction supply chain management, BIM, data exchange, artificial intelligence

Procedia PDF Downloads 26
25894 Representation Data without Lost Compression Properties in Time Series: A Review

Authors: Nabilah Filzah Mohd Radzuan, Zalinda Othman, Azuraliza Abu Bakar, Abdul Razak Hamdan

Abstract:

Uncertain data is believed to be an important issue in building up a prediction model. The main objective in the time series uncertainty analysis is to formulate uncertain data in order to gain knowledge and fit low dimensional model prior to a prediction task. This paper discusses the performance of a number of techniques in dealing with uncertain data specifically those which solve uncertain data condition by minimizing the loss of compression properties.

Keywords: compression properties, uncertainty, uncertain time series, mining technique, weather prediction

Procedia PDF Downloads 428
25893 Assessment of Ecosystem Readiness for Adoption of Circularity: A Multi-Case Study Analysis of Textile Supply Chain in Pakistan

Authors: Azhar Naila, Steuer Benjamin

Abstract:

Over-exploitation of resources and the burden on natural systems have provoked worldwide concerns about the potential resource as well as supply risks in the future. It has been estimated that the consumption of materials and resources will double by 2060, substantially mounting the amount of waste and emissions produced by individuals, organizations, and businesses, which necessitates sustainable technological innovations to address the problem. Therefore, there is a need to design products and services purposefully for material resource efficiency. This directs us toward the conceptualization and implementation of the ‘Circular Economy (CE),’ which has gained considerable attention among policymakers, researchers, and businesses in the past decade. A large amount of literature focuses on the concept of CE. However, contextual empirical research on the need to embrace CE in an emerging economy like Pakistan is still scarce, where the traditional economic model of take-make-dispose is quite common. Textile exports account for approximately 61% of Pakistan's total exports, and the industry provides employment for about 40% of the country's total industrial workforce. The industry provides job opportunities to above 10 million farmers, with cotton as the main crop of Pakistan. Consumers, companies, as well as the government have explored very limited CE potential in the country. This gap has motivated us to carry out the present study. The study is based on a mixed method approach, for which key informant interviews have been conducted to get insight into the present situation of the ecosystem readiness for the adoption of CE in 20 textile manufacturing industries. The subject study has been conducted on the following areas i) the level of understanding of the CE concept among key stakeholders in the textile manufacturing industry ii) Companies are pushing boundaries to invest in circularity-based initiatives, exploring the depths of risk-taking iii) the current national policy framework support the adoption of CE. Qualitative assessment has been undertaken using MAXQDA to analyze the data received after the key informant interviews. The data has been transcribed and coded for further analysis. The results show that most of the key stakeholders have a clear understanding of the concept, whereas few consider it to be only relevant to the end-of-life treatment of waste generated from the industry. Non-governmental organizations have been observed to be key players in creating awareness among the manufacturing industries. Maximum companies have shown their consent to invest in initiatives related to the adoption of CE. Whereas a few consider themselves far behind the race due to a lack of financial resources and support from responsible institutions. Mostly, the industries have an ambitious vision for integrating CE into the company’s policy but seem not to be ready to take any significant steps to nurture a culture for experimentation. However, the government is not playing any vital role in the transition towards CE; rather, they have been busy with the state’s uncertain political situation. Presently, Pakistan does not have any policy framework that supports the transition towards CE. Acknowledging the present landscape a well-informed CE transition is immediately required.

Keywords: circular economy, textile supply chain, textile manufacturing industries, resource efficiency, ecosystem readiness, multi-case study analysis

Procedia PDF Downloads 52
25892 A Comparative Study of Dengue Fever in Taiwan and Singapore Based on Open Data

Authors: Wei Wen Yang, Emily Chia Yu Su

Abstract:

Dengue fever is a mosquito-borne tropical infectious disease caused by the dengue virus. After infection, symptoms usually start from three to fourteen days. Dengue virus may cause a high fever and at least two of the following symptoms, severe headache, severe eye pain, joint pains, muscle or bone pain, vomiting, feature skin rash, and mild bleeding manifestation. In addition, recovery will take at least two to seven days. Dengue fever has rapidly spread in tropical and subtropical areas in recent years. Several phenomena around the world such as global warming, urbanization, and international travel are the main reasons in boosting the spread of dengue. In Taiwan, epidemics occur annually, especially during summer and fall seasons. On the other side, Singapore government also has announced the amounts number of dengue cases spreading in Singapore. As the serious epidemic of dengue fever outbreaks in Taiwan and Singapore, countries around the Asia-Pacific region are becoming high risks of susceptible to the outbreaks and local hub of spreading the virus. To improve public safety and public health issues, firstly, we are going to use Microsoft Excel and SAS EG to do data preprocessing. Secondly, using support vector machines and decision trees builds predict model, and analyzes the infectious cases between Taiwan and Singapore. By comparing different factors causing vector mosquito from model classification and regression, we can find similar spreading patterns where the disease occurred most frequently. The result can provide sufficient information to predict the future dengue infection outbreaks and control the diffusion of dengue fever among countries.

Keywords: dengue fever, Taiwan, Singapore, Aedes aegypti

Procedia PDF Downloads 234
25891 Poverty Reduction in European Cities: Local Governments’ Strategies and Programmes to Reduce Poverty; Interview Results from Austria

Authors: Melanie Schinnerl, Dorothea Greiling

Abstract:

In the context of the 2020 strategy, poverty and its fight returned to the center of national political efforts. This served as motivation for an Austrian research grant-funded project to focus on the under-researched local government level with the aim to identify municipal best-practice cases and to derive policy implications for Austria. Designing effective poverty reduction strategies is a complex challenge which calls for an integrated multi-actor in approach. Cities are increasingly confronted to combat poverty, even in rich EU-member states. By doing so cities face substantial demographic, cultural, economic and social challenges as well as changing welfare state regimes. Furthermore, there is a low willingness of (right-wing) governments to support the poor. Against this background, the research questions are: 1. How do local governments define poverty? 2. Who are the main risk groups and what are the most pressing problems when fighting urban poverty? 3. What is regarded as successful anti-poverty initiatives? 4. What is the underlying welfare state concept? To address the research questions a multi-method approach was chosen, consisting of a systematic literature analysis, a comprehensive document analysis, and expert interviews. For interpreting the data the project follows the qualitative-interpretive paradigm. Municipal approaches for reducing poverty are compared based on deductive, as well as inductive identified criteria. In addition to an intensive literature analysis, interviews (40) were conducted in Austria since the project started in March 2018. From the other countries, 14 responses have been collected, providing a first insight. Regarding the definition of poverty the EU SILC-definition as well as counting the persons who receive need-based minimum social benefits, the Austrian form of social welfare, are the predominant approaches in Austria. In addition to homeless people, single-parent families, un-skilled persons, long-term unemployed persons, migrants (first and second generation), refugees and families with at least 3 children were frequently mentioned. The most pressing challenges for Austrian cities are: expected reductions of social budgets, a great insecurity of the central government's social policy reform plans, the growing number of homeless people and a lack of affordable housing. Together with affordable housing, old-age poverty will gain more importance in the future. The Austrian best practice examples, suggested by interviewees, focused primarily on homeless, children and young people (till 25). Central government’s policy changes have already negative effects on programs for refugees and elderly unemployed. Social Housing in Vienna was frequently mentioned as an international best practice case, other growing cities can learn from. The results from Austria indicate a change towards the social investment state, which primarily focuses on children and labour market integration. The first insights from the other countries indicate that affordable housing and labor market integration are cross-cutting issues. Inherited poverty and old-age poverty seems to be more pressing outside Austria.

Keywords: anti-poverty policies, European cities, empirical study, social investment

Procedia PDF Downloads 117
25890 Analysis of National Science and Technology Policies: The Case of South Korea

Authors: Jeonghwan Jeon

Abstract:

As the science and technology (S&T) has been rapidly advanced, the national government attempts to reflect changes in the S&T for promoting public R&D activities and economic development. Amongst others, due to the rapid advances and changes of S&T, it becomes important to analyze the trends of S&T policies for formulating the new policy and investigating promising S&T fields. Thus, this paper aims to trace the national S&T policies during this decade for analyzing the change of major S&T fields in the case of South Korea. As one of the organization for S&T policy in South Korea, the National Science and Technology Council (NSTC) has been established to coordinate inter-ministerial policies and programs and to determine all of the national and public S&T policy of South Korea. In this regard, the items on national S&T policy determined by the NSTC are useful for understanding the needs for major S&T fields and adapting to the rapid change of S&T. To this end, we first gathered the data on 512 items on the S&T agenda from 1999 to 2013. Based on these items, the trend of S&T policies is monitored and the major S&T fields are derived. Differences of policy purposes between S&T fields are identified to provide guideline for policy making such as budget allocation or investment promotion as well.

Keywords: national science and technology, policy, trends, S&T field

Procedia PDF Downloads 551
25889 Mixed Method Analysis to Propose a Policy Action against Racism and Xenophobia in India

Authors: Anwesha Das

Abstract:

There are numerous cases of racism and discriminatory practices in India against the northeast citizens and the African migrants. The right-wing extremism of the presently ruling political party in India has resulted in increased cases of xenophobia and Afrophobia. The rigid Indian caste system contributes to such practices of racism. The establishment of the ‘Hindu race’ by the present right-wing government, leading to instilling pride among Hindus being of a superior race, has resulted in more atrocious racist practices. This paper argues that policy action is required against racist, discriminatory practices. Policy actors in India do not ask the right questions and fail to give the needed redirection. It critically analyses Acts 14 and 15 of the Indian constitution in order to examine the cause of a policy action. In proposing the need for policy action, this paper places its arguments as a vital extension of the existing scholarship on public policy studies in India. It uses mixed-method analysis to examine the factors responsible for the policy problem and aims to suggest specific points of intervention in a policy progression. The study finds that despite anti-discriminatory policies in the mentioned Acts of the Indian constitution, there are rampant cases of racism owing to religious and cultural factors. The major findings of the study show how the present right-wing government violated the constitution in aggravating xenophobia. This paper proposes a policy action required to stop such further practices.

Keywords: India, migrants, policy action, racism, xenophobia

Procedia PDF Downloads 47
25888 Data Mining As A Tool For Knowledge Management: A Review

Authors: Maram Saleh

Abstract:

Knowledge has become an essential resource in today’s economy and become the most important asset of maintaining competition advantage in organizations. The importance of knowledge has made organizations to manage their knowledge assets and resources through all multiple knowledge management stages such as: Knowledge Creation, knowledge storage, knowledge sharing and knowledge use. Researches on data mining are continues growing over recent years on both business and educational fields. Data mining is one of the most important steps of the knowledge discovery in databases process aiming to extract implicit, unknown but useful knowledge and it is considered as significant subfield in knowledge management. Data miming have the great potential to help organizations to focus on extracting the most important information on their data warehouses. Data mining tools and techniques can predict future trends and behaviors, allowing businesses to make proactive, knowledge-driven decisions. This review paper explores the applications of data mining techniques in supporting knowledge management process as an effective knowledge discovery technique. In this paper, we identify the relationship between data mining and knowledge management, and then focus on introducing some application of date mining techniques in knowledge management for some real life domains.

Keywords: Data Mining, Knowledge management, Knowledge discovery, Knowledge creation.

Procedia PDF Downloads 208