Search results for: CO₂ plant extracts
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4063

Search results for: CO₂ plant extracts

2503 Development of DNA Fingerprints in Selected Medicinal Plants of India

Authors: V. Verma, Hazi Raja

Abstract:

Conventionally, morphological descriptors are routinely used for establishing the identity of varieties. But these morphological descriptors suffer from many drawbacks such as influence of environment on trait expression, epistatic interactions, pleiotrophic effects etc. Furthermore, the paucity of a sufficient number of these descriptors for unequivocal identification of increasing number of reference collection varieties enforces to look for alternatives. Therefore, DNA based finger-print based techniques were selected to define the systematic position of the selected medicinal plants like Plumbago zeylanica, Desmodium gangeticum, Uraria picta. DNA fingerprinting of herbal plants can be useful in authenticating the various claims of medical uses related to the plants, in germplasm characterization and conservation. In plants it has not only helped in identifying species but also in defining a new realm in plant genomics, plant breeding and in conserving the biodiversity. With world paving way for developments in biotechnology, DNA fingerprinting promises a very powerful tool in our future endeavors. Data will be presented on the development of microsatellite markers (SSR) used to fingerprint, characterize, and assess genetic diversity among 12 accessions of both Plumbago zeylanica, 4 accessions of Desmodium gengaticum, 4 accessions of Uraria Picta.

Keywords: Plumbago zeylanica, Desmodium gangeticum, Uraria picta, microsaetllite markers

Procedia PDF Downloads 216
2502 Study Technical Possibilities of Agricultural Reuse of by-Products from Treatment Plant of Boumerdes, Algeria

Authors: Kadir Mokrane, Souag Doudja

Abstract:

In Algeria, one of the Mediterranean countries, water resources are limited and unevenly distributed in space and in time. Boumerdes, coastal town of Algeria, known for its farming and fishing activities. The region is also known for its semi-arid climate and a large water deficit. In order to preserve the quality of water bodies and to reduce withdrawals in the natural environment, it is necessary to seek alternative supplies. The reuse of treated wastewater seems to be a good alternative, especially for irrigation. In the framework of sustainable development, it is imperative to rationalize the use of water resources conventional and unconventional. That is why the re-use agricultural of by-products of the treatment is an alternative expected to preserve the environment and promotion of the agricultural sector. The present work aims, to search for the possibility of reuse of treated wastewater, and sludge resulting from treatment plant of the city of Boumerdes in agriculture, through the analysis of physical, chemical and bacteriological on the samples, and the continuous monitoring of the evolution of several elements during the period of study extended over 12 months, and then, the comparison of these test results to standards and guidelines established in the framework of irrigation and land application.

Keywords: treated water, sewage sludge, recycling, agriculture

Procedia PDF Downloads 248
2501 The Effect of Air Injection in Irrigation Water on Sugar Beet Yield

Authors: Yusuf Ersoy Yildirim, Ismail Tas, Ceren Gorgusen, Tugba Yeter, Aysegul Boyacioglu, K. Mehmet Tugrul, Murat Tugrul, Ayten Namli, H. Sabri Ozturk, M. Onur Akca

Abstract:

In recent years, a lot of research has been done for the sustainable use of scarce resources in the world. Especially, effective and sustainable use of water resources has been researched for many years. Sub-surface drip irrigation (SDI) is one of the most effective irrigation methods in which efficient and sustainable use of irrigation water can be achieved. When the literature is taken into consideration, it is often emphasized that, besides its numerous advantages, it also allows the application of irrigation water to the plant root zone along with air. It is stated in different studies that the air applied to the plant root zone with irrigation water has a positive effect on the root zone. Plants need sufficient oxygen for root respiration as well as for the metabolic functions of the roots. Decreased root respiration due to low oxygen content reduces transpiration, disrupts the flow of ions, and increases the ingress of salt reaching toxic levels, seriously affecting plant growth. Lack of oxygen (Hypoxia) can affect the survival of plants. The lack of oxygen in the soil is related to the exchange of gases in the soil with the gases in the atmosphere. Soil aeration is an important physical parameter of a soil. It is highly dynamic and is closely related to the amount of water in the soil and its bulk weight. Subsurface drip irrigation; It has higher water use efficiency compared to irrigation methods such as furrow irrigation and sprinkler irrigation. However, in heavy clay soils, subsurface drip irrigation creates continuous wetting fronts that predispose the rhizosphere region to hypoxia or anoxia. With subsurface drip irrigation, the oxygen is limited for root microbial respiration and root development, with the continuous spreading of water to a certain region of the root zone. In this study, the change in sugar beet yield caused by air application in the SDI system will be explained.

Keywords: sugar beet, subsurface drip irrigation, air application, irrigation efficiency

Procedia PDF Downloads 81
2500 Relationship Between Wildfire and Plant Species in Arasbaran Forest, Iran

Authors: Zhila Hemati, Seyed Sajjad Hosseni, Sohrab Zamzami

Abstract:

In nature, forests serve a multitude of functions. They stabilize and nourish soil, store carbon, clean the air and water, and support biodiverse ecosystems. A natural disaster that can affect forests and ecosystems locally or globally is wildfires. Iran experiences annual forest fires that affect roughly 6000 hectares, with the Arasbaran forest being the most affected. These fires may be generated unnaturally by human activity in the forests, or they could occur naturally as a result of climate change. These days, wildfires pose a major natural risk. Wildfires significantly reduce the amount of property and human life in ecosystems globally. Concerns regarding the immediate and longterm effects have been raised by the rise in fire activity in various Iranian regions in recent decades. Natural ecosystem abundance, quality, and health will all be impacted by pasture and forest fires. Monitoring is the first line of defense against and control for forest fires. To determine the spatial-temporal variations of these occurrences in the vegetation regions of Arasbaran, this study was carried out to estimate the areas affected by fires. The findings indicated that July through September, which spans over 130000 hectares, is when fires in Arasbaran's vegetation areas occur to their greatest extent. A significant portion of the nation's forests caught fire in 2024, particularly in the northwest of the Arasbaran vegetation area. On the other hand, January through March sees the least number of fire locations in the Arasbaran vegetation areas. The Arasbaran forest experiences its greatest number of forest fires during the hot, dry months of the year. As a result, the linear association between the burned and active fire regions in the Arasbaran forest indicates a substantial relationship between species abundance and plant species. This link demonstrates that some of the active forest fire centers are the burned regions in Arasbaran's vegetation areas.

Keywords: wildfire, vegetation, plant species, forest

Procedia PDF Downloads 44
2499 Development and Automation of Medium-Scale NFT Hydroponic Systems: Design Methodology and State of the Art Review

Authors: Oscar Armando González-Marin, Jhon F. Rodríguez-León, Oscar Mota-Pérez, Jorge Pineda-Piñón, Roberto S. Velázquez-González., Julio C. Sosa-Savedra

Abstract:

Over the past six years, the World Meteorological Organization (WMO) has recorded the warmest years since 1880, primarily attributed to climate change. In addition, the overexploitation of agricultural lands, combined with food and water scarcity, has highlighted the urgent need for sustainable cultivation methods. Hydroponics has emerged as a sustainable farming technique that enables plant cultivation using nutrient solutions without the requirement for traditional soil. Among hydroponic methods, the Nutrient Film Technique (NFT) facilitates plant growth by circulating a nutrient solution continuously. This approach allows the monitoring and precise control of nutritional parameters, with potential for automation and technological integration. This study aims to present the state of the art of automated NFT hydroponic systems, discussing their design methodologies and considerations for implementation. Moreover, a medium-scale NFT system developed at CICATA-QRO is introduced, detailing its current manual management and progress toward automation.

Keywords: automation, hydroponics, nutrient film technique, sustainability

Procedia PDF Downloads 39
2498 Biogenic Synthesis of ZnO Nanoparticles Using Annona muricata Plant Leaf Extract and Its Anti-Cancer Efficacy

Authors: Siva Chander Chabattula, Piyush Kumar Gupta, Debashis Chakraborty, Rama Shanker Verma

Abstract:

Green nanoparticles have gotten a lot of attention because of their potential applications in tissue regeneration, bioimaging, wound healing, and cancer therapy. The physical and chemical methods to synthesize metal oxide nanoparticles have an environmental impact, necessitating the development of an environmentally friendly green strategy for nanoparticle synthesis. In this study, we used Annona muricata plant leaf extract to synthesize Zinc Oxide nanoparticles (Am-ZnO NPs), which were evaluated using UV/Visible spectroscopy, FTIR spectroscopy, X-Ray Diffraction, DLS, and Zeta potential. Nanoparticles had an optical absorbance of 355 nm and a net negative surface charge of ~ - 2.59 mV. Transmission Electron Microscope characterizes the Shape and size of the nanoparticles. The obtained Am-ZnO NPs are biocompatible and hemocompatible in nature. These nanoparticles caused an anti-cancer therapeutic effect in MIA PaCa2 and MOLT4 cancer cells by inducing oxidative stress, and a change in mitochondrial membrane potential leads to programmed cell death. Further, we observed a reduction in the size of lung cancer spheroids (act as tumor micro-environment) with doxorubicin as a positive control.

Keywords: Biomaterials, nanoparticle, anticancer activity, ZnO nanoparticles

Procedia PDF Downloads 204
2497 Use of Transportation Networks to Optimize The Profit Dynamics of the Product Distribution

Authors: S. Jayasinghe, R. B. N. Dissanayake

Abstract:

Optimization modelling together with the Network models and Linear Programming techniques is a powerful tool in problem solving and decision making in real world applications. This study developed a mathematical model to optimize the net profit by minimizing the transportation cost. This model focuses the transportation among decentralized production plants to a centralized distribution centre and then the distribution among island wide agencies considering the customer satisfaction as a requirement. This company produces basically 9 types of food items with 82 different varieties and 4 types of non-food items with 34 different varieties. Among 6 production plants, 4 were located near the city of Mawanella and the other 2 were located in Galewala and Anuradhapura cities which are 80 km and 150 km away from Mawanella respectively. The warehouse located in the Mawanella was the main production plant and also the only distribution plant. This plant distributes manufactured products to 39 agencies island-wide. The average values and average amount of the goods for 6 consecutive months from May 2013 to October 2013 were collected and then average demand values were calculated. The following constraints are used as the necessary requirement to satisfy the optimum condition of the model; there was one source, 39 destinations and supply and demand for all the agencies are equal. Using transport cost for a kilometer, total transport cost was calculated. Then the model was formulated using distance and flow of the distribution. Network optimization and linear programming techniques were used to originate the model while excel solver is used in solving. Results showed that company requires total transport cost of Rs. 146, 943, 034.50 to fulfil the customers’ requirement for a month. This is very much less when compared with data without using the model. Model also proved that company can reduce their transportation cost by 6% when distributing to island-wide customers. Company generally satisfies their customers’ requirements by 85%. This satisfaction can be increased up to 97% by using this model. Therefore this model can be used by other similar companies in order to reduce the transportation cost.

Keywords: mathematical model, network optimization, linear programming

Procedia PDF Downloads 346
2496 Characterisation, Extraction of Secondary Metabolite from Perilla frutescens for Therapeutic Additives: A Phytogenic Approach

Authors: B. M. Vishal, Monamie Basu, Gopinath M., Rose Havilah Pulla

Abstract:

Though there are several methods of synthesizing silver nano particles, Green synthesis always has its own dignity. Ranging from the cost-effectiveness to the ease of synthesis, the process is simplified in the best possible way and is one of the most explored topics. This study of extracting secondary metabolites from Perilla frutescens and using them for therapeutic additives has its own significance. Unlike the other researches that have been done so far, this study aims to synthesize Silver nano particles from Perilla frutescens using three available forms of the plant: leaves, seed, and commercial leaf extract powder. Perilla frutescens, commonly known as 'Beefsteak Plant', is a perennial plant and belongs to the mint family. The plant has two varieties classed within itself. They are frutescens crispa and frutescens frutescens. The species, frutescens crispa (commonly known as 'Shisho' in Japanese), is generally used for edible purposes. Its leaves occur in two forms, varying on the colors. It is found in two different colors of red with purple streaks and green with crinkly pattern on it. This species is aromatic due to the presence of two major compounds: polyphenols and perillaldehyde. The red (purple streak) variety of this plant is due to the presence of a pigment, Perilla anthocyanin. The species, frutescens frutescens (commonly known as 'Egoma' in Japanese), is the main source for perilla oil. This species is also aromatic, but in this case, the major compound which gives the aroma is Perilla ketone or egoma ketone. Shisho grows short as compared with Wild Sesame and both produce seeds. The seeds of Wild Sesame are large and soft whereas that of Shisho is small and hard. The seeds have a large proportion of lipids, ranging about 38-45 percent. Excluding those, the seeds have a large quantity of Omega-3 fatty acids, linoleic acid, and an Omega-6 fatty acid. Other than these, Perilla leaf extract has gold and silver nano particles in it. The yield comparison in all the cases have been done, and the process’ optimal conditions were modified, keeping in mind the efficiencies. The characterization of secondary metabolites includes GC-MS and FTIR which can be used to identify the components of purpose that actually helps in synthesizing silver nano particles. The analysis of silver was done through a series of characterization tests that include XRD, UV-Vis, EDAX, and SEM. After the synthesis, for being used as therapeutic additives, the toxin analysis was done, and the results were tabulated. The synthesis of silver nano particles was done in a series of multiple cycles of extraction from leaves, seeds and commercially purchased leaf extract. The yield and efficiency comparison were done to bring out the best and the cheapest possible way of synthesizing silver nano particles using Perilla frutescens. The synthesized nano particles can be used in therapeutic drugs, which has a wide range of application from burn treatment to cancer treatment. This will, in turn, replace the traditional processes of synthesizing nano particles, as this method will prove effective in terms of cost and the environmental implications.

Keywords: nanoparticles, green synthesis, Perilla frutescens, characterisation, toxin analysis

Procedia PDF Downloads 233
2495 Phytoremediation; Pb, Cr and Cd Accumulation in Fruits and Leaves of Vitis Vinifera L. From Air Pollutions and Intraction between Their Uptake Based on the Distance from the Main Road

Authors: Fatemeh Mohsennezhad

Abstract:

Air pollution is one of major problems for environment. Providing healthy food and protecting water sources from pollution has been one of the concerns of human societies and decision-making centers so that protecting food from pollution, detecting sources of pollution and measuring them become important. Nutritive and political significance of grape in this area, extensive use of leaf and fruit of this plant and development of urban areas around grape gardens and construction of Tabriz – Miandoab road, which is the most important link between East and West Azarbaijan, led us to examine the impact of this road construction and urban environment pollutants such as lead chromium and cadmium on the quality of this valuable crop. First, the samples were taken from different adjacent places and medium distances from the road, each place being located exactly by Google earth and GPS. Digestion was done through burning dry material and hydrochloric acid and their ashes were analyzed by atomic absorption to determine (Pb, Cr, Cd) accumulations. In this experiments effects of 2 following factors were examined as a variable: Garden distance from the main road with levels 1: For 50 meters, 2: For 120-200 meters, 3: For above 800 meters, and plant organ with levels 1: For fruit, 2: For leaves. At the end, the results were processed by SPSS software. 3.54 ppm, the most lead quantity, was at sample No. 54 in fruits with 800 meters distance from the road and 1.00 ppm was the least lead quantity at sample No. 50 in fruits with 1000 meters from the road. In leaves, the most lead quantity was 19.16 ppm at sample No. 15 with 50 meters distance from the road and the least quantity was 1.41 ppm at sample No. 31 with 50 meters from the road. Pb uptake is significantly different at 50 meters and 200 meters distance. It means that Pb uptake near the main road is the highest. But this result is not true for others elements. Distance has not a meaningful effect on Cr uptake. The result of analysis of variation in distance and plant organ for Cd showed that between fruit and leaf, Cd uptake is significantly different. But distance and interaction between distance and plant organ is not meaningful. There is neither meaningful interaction between these elements uptakes in fruits nor in leaves. If leaves and fruits, assumed all together, showed a very meaningful integration between heavy metal accumulations. It means that each of these elements causes uptake others without considering special organs. In the tested area, it became clear that, from the accumulation of heavy metals perspective, there is no meaningful difference in existing distance between road and garden. There is a meaningful difference among heavy metals accumulation. In other words, increase ratio of one metal to another was different from the resulted differences shown in corresponding graphs. Interaction among elements and distance between garden and road was not meaningful.

Keywords: Vitis vinifera L., phytoremediation, heavy metals accumulation, lead, chromium, cadmium

Procedia PDF Downloads 354
2494 The Hypoglycaemic and Antioxidant Effects of Ethanolic Extract of Curcuma Longa Rhizomes Alone and with Two Pepper Adjuvants in Alloxan-Induced Diabetic Rats

Authors: J. O. Ezekwesili-Ofili, L. I. Okorafor, S. C. Nsofor

Abstract:

Diabetes mellitus is a carbohydrate metabolism disorder due to an absolute or relative deficiency of insulin secretion, action or both. Many known hypoglycaemic drugs are known to produce serious side effects. However, the search for safer and more effective agents has shifted to plant products, including foods and spices. One of such is the rhizome of Curcuma longa or turmeric, which is a spice with high medicinal value. A drawback in the use of C. longa is the poor bioavailability of curcumin, the active ingredient. It has been reported that piperine, an alkaloid present in peppers increases the bioavailability of curcumin. This work therefore investigated the hypoglycaemic and antioxidant effects of ethanolic extract of C. longa rhizomes, alone and with two pepper adjuvants in alloxan-induced diabetic rats. A total of 48 rats were divided into 6 groups of 8 rats each. Groups A–E were induced with diabetes using 150mg/kg body weight of alloxan monohydrate, while group F was normoglycaemic: Group A: Diabetic; fed with 400 mg/g body weight of turmeric extract; group B: Diabetic, fed with 400 mg/kg b. w. and 200mg/kg b. w of ethanolic extract of seeds of Piper guinensee; group C: Diabetic, fed with 400 mg/kg b. w. and 200 mg /kg b. w. of ethanolic extract of seeds of Capsicum annum var cameroun, group D: Diabetic, treated with standard drug, glibenclamide (0.3mg/kg body weight), group E: Diabetic; no treatment i.e. Positive control and group F: non diabetic, no treatment i.e. Negative control. Blood glucose levels were monitored for 14 days using a glucometer. The levels of the antioxidant enzymes; glutathione peroxidase, catalase and superoxide dismutase were also assayed in serum. The ethanolic extracts of C. longa rhizomes at the dose given (400 mg/kg b. w) significantly reduced the blood glucose levels of the diabetic rats (p<0.05) comparable to the standard drug. Co administration of extract of the peppers did not significantly increase the efficiency of the extract, although C. annum var cameroun showed greater effect, though not significantly. The antioxidant effect of the extract was significant in diabetic rats. The use of piperine-containing peppers enhanced the antioxidant effect. Phytochemical analyses of the ethanolic extract of C. longa showed the presence of alkaloids, flavonoids, steroids, saponins, tannins, glycosides, and terpenoids. These results suggest that the ethanolic extract of C. longa had antidiabetic with antioxidant effects and could thus be of benefit in the treatment and management of diabetes as well as ameliorate pro-oxidant effects that may lead to diabetic complications. However, while the addition of piperine did not affect the antidiabetic effect of C. longa, the antioxidant effect was greatly enhanced.

Keywords: antioxidant, Curcuma longa rhizome, hypoglycaemic, pepper adjuvants, piperine

Procedia PDF Downloads 236
2493 Exploration of in-situ Product Extraction to Increase Triterpenoid Production in Saccharomyces Cerevisiae

Authors: Mariam Dianat Sabet Gilani, Lars M. Blank, Birgitta E. Ebert

Abstract:

Plant-derived lupane-type, pentacyclic triterpenoids are biologically active compounds that are highly interesting for applications in medical, pharmaceutical, and cosmetic industries. Due to the low abundance of these valuable compounds in their natural sources, and the environmentally harmful downstream process, alternative production methods, such as microbial cell factories, are investigated. Engineered Saccharomyces cerevisiae strains, harboring the heterologous genes for betulinic acid synthesis, can produce up to 2 g L-1 triterpenoids, showing high potential for large-scale production of triterpenoids. One limitation of the microbial synthesis is the intracellular product accumulation. It not only makes cell disruption a necessary step in the downstream processing but also limits productivity and product yield per cell. To overcome these restrictions, the aim of this study is to develop an in-situ extraction method, which extracts triterpenoids into a second organic phase. Such a continuous or sequential product removal from the biomass keeps the cells in an active state and enables extended production time or biomass recycling. After screening of twelve different solvents, selected based on product solubility, biocompatibility, as well as environmental and health impact, isopropyl myristate (IPM) was chosen as a suitable solvent for in-situ product removal from S. cerevisiae. Impedance-based single-cell analysis and off-gas measurement of carbon dioxide emission showed that cell viability and physiology were not affected by the presence of IPM. Initial experiments demonstrated that after the addition of 20 vol % IPM to cultures in the stationary phase, 40 % of the total produced triterpenoids were extracted from the cells into the organic phase. In future experiments, the application of IPM in a repeated batch process will be tested, where IPM is added at the end of each batch run to remove triterpenoids from the cells, allowing the same biocatalysts to be used in several sequential batch steps. Due to its high biocompatibility, the amount of IPM added to the culture can also be increased to more than 20 vol % to extract more than 40 % triterpenoids in the organic phase, allowing the cells to produce more triterpenoids. This highlights the potential for the development of a continuous large-scale process, which allows biocatalysts to produce intracellular products continuously without the necessity of cell disruption and without limitation of the cell capacity.

Keywords: betulinic acid, biocompatible solvent, in-situ extraction, isopropyl myristate, process development, secondary metabolites, triterpenoids, yeast

Procedia PDF Downloads 153
2492 Phytochemical Screening, Anti-Microbial and Mineral Determination of Stachtarpheta indica Extract

Authors: Ibrahim Isah Lakan, Nasiru Ibrahim

Abstract:

These Phytochemical screening, Antimicrobial activities and mineral Determination of aqueous extract of Stachtarpheta indica were assessed. The result reveals the presence of flavonoids, tannins, saponins, alkaloids, glycosides and anthraquinones. The disc diffusion of aqueous extract showed Escherichia coli, 13 and antibiotic, 19 mm; Bacillus subtilis, 10 and anti –biotic, 17 mm; Klebsiller pnemuoniae , 14 and antibiotic, 24mm and Pseudmonas aeruginosa, 24 and antibiotic, 36 mm which are all comparable with the standard antibiotic cyprotomycin. The mineral content determination by flame photometer revealed that 1.25 (Na+), 0.85 (K +), 1.75 (Ca 2+) % which is a clear indication of the safety of the extract for the hypertensive patients and could be used to lower blood pressure.

Keywords: microbials, mineral, phytochemicals, stachtarpheta indica extracts

Procedia PDF Downloads 563
2491 Chemotrophic Signal Exchange between the Host Plant Helianthemum sessiliflorum and Terfezia boudieri

Authors: S. Ben-Shabat, T. Turgeman, O. Leubinski, N. Roth-Bejerano, V. Kagan-Zur, Y. Sitrit

Abstract:

The ectomycorrhizal (ECM) desert truffle Terfezia boudieri produces edible fruit bodies and forms symbiosis with its host plant Helianthemum sessiliflorum (Cistaceae) in the Negev desert of Israel. The symbiosis is vital for both partners' survival under desert conditions. Under desert habitat conditions, ECMs must form symbiosis before entering the dry season. To secure a successful encounter, in the course of evolution, both partners have responded by evolving special signals exchange that facilitates recognition. Members of the Cistaceae family serve as host plants for many important truffles. Conceivably, during evolution a common molecule present in Cistaceae plants was recruited to facilitate successful encounter with ectomycorrhizas. Arbuscular vesicular fungi (AM) are promiscuous in host preferences, in contrast, ECM fungi show specificity to host plants. Accordingly, we hypothesize that H. sessiliflorum secretes a chemotrophic-signaling, which is common to plants hosting ECM fungi belonging to the Pezizales. However, thus far no signaling molecules have been identified in ECM fungi. We developed a bioassay for chemotrophic activity. Fractionation of root exudates revealed a substance with chemotrophic activity and molecular mass of 534. Following the above concept, screening the transcriptome of Terfezia, grown under chemoattraction, discovered genes showing high homology to G proteins-coupled receptors of plant pathogens involved in positive chemotaxis and chemotaxis suppression. This study aimed to identify the active molecule using analytical methods (LC-MS, NMR etc.). This should contribute to our understanding of how ECM fungi communicate with their hosts in the rhizosphere. In line with the ability of Terfezia to form also endomycorrhizal symbiosis like AM fungi, analysis of the mechanisms may likewise be applicable to AM fungi. Developing methods to manipulate fungal growth by the chemoattractant can open new ways to improve inoculation of plants.

Keywords: chemotrophic signal, Helianthemum sessiliflorum, Terfezia boudieri, ECM

Procedia PDF Downloads 409
2490 Servitization in Machine and Plant Engineering: Leveraging Generative AI for Effective Product Portfolio Management Amidst Disruptive Innovations

Authors: Till Gramberg

Abstract:

In the dynamic world of machine and plant engineering, stagnation in the growth of new product sales compels companies to reconsider their business models. The increasing shift toward service orientation, known as "servitization," along with challenges posed by digitalization and sustainability, necessitates an adaptation of product portfolio management (PPM). Against this backdrop, this study investigates the current challenges and requirements of PPM in this industrial context and develops a framework for the application of generative artificial intelligence (AI) to enhance agility and efficiency in PPM processes. The research approach of this study is based on a mixed-method design. Initially, qualitative interviews with industry experts were conducted to gain a deep understanding of the specific challenges and requirements in PPM. These interviews were analyzed using the Gioia method, painting a detailed picture of the existing issues and needs within the sector. This was complemented by a quantitative online survey. The combination of qualitative and quantitative research enabled a comprehensive understanding of the current challenges in the practical application of machine and plant engineering PPM. Based on these insights, a specific framework for the application of generative AI in PPM was developed. This framework aims to assist companies in implementing faster and more agile processes, systematically integrating dynamic requirements from trends such as digitalization and sustainability into their PPM process. Utilizing generative AI technologies, companies can more quickly identify and respond to trends and market changes, allowing for a more efficient and targeted adaptation of the product portfolio. The study emphasizes the importance of an agile and reactive approach to PPM in a rapidly changing environment. It demonstrates how generative AI can serve as a powerful tool to manage the complexity of a diversified and continually evolving product portfolio. The developed framework offers practical guidelines and strategies for companies to improve their PPM processes by leveraging the latest technological advancements while maintaining ecological and social responsibility. This paper significantly contributes to deepening the understanding of the application of generative AI in PPM and provides a framework for companies to manage their product portfolios more effectively and adapt to changing market conditions. The findings underscore the relevance of continuous adaptation and innovation in PPM strategies and demonstrate the potential of generative AI for proactive and future-oriented business management.

Keywords: servitization, product portfolio management, generative AI, disruptive innovation, machine and plant engineering

Procedia PDF Downloads 82
2489 Phenolic Content and Antioxidant Potential of Selected Nigerian Herbs and Spices: A Justification for Consumption and Use in the Food Industry

Authors: Amarachi Delight Onyemachi, Gregory Ikechukwu Onwuka

Abstract:

The growing consumer trend for natural ingredients, functional foods with health benefits and the perceived risk of carcinogenesis associated with synthetic antioxidants have forced food manufacturers to look for alternatives for producing healthy and safe food. Herbs and spices are cheap, natural and harmless sources of antioxidants which can delay and prevent lipid oxidation of food products and also confer its unique organoleptic properties and health benefits to food products. The Nigerian climate has been proven to be conducive for the production of spices and herbs and is blessed bountifully with a wide range of them. Five selected Nigerian herbs and spices Piper guieense, Xylopia aethopica, Gongronema latifolium and Ocimum gratissimum were evaluated for their ability to act as radical scavengers. The spices were extracted with 80% ethanol and evaluated using total phenolic capacity (TPC), DPPH (1,1-diph diphenyl-2-picrylhydrazyl radical) ABTS (2,2’azinobis-(3-ethylbenzthiazoline-6-sulfonic acid)), total antioxidant capacity (TAC), reducing power (RP) assays. The TPC ranged from 5.33 µg GAE/mg (in Gongronema latifolium) to 15.55 µg GAE/mg (in Ocimum gratissimum). The DPPH and ABTS scavenging activity of the extracts ranged from 0.23-0.36 IC50 mg/ml and 2.32-7.25 Trolox equivalent % respectively. The TAC and RP of the extract ranged from 6.73-10.64 µg AAE/mg and 3.52-10.19 µg AAE/mg. The result of percentage yield of the extract ranged from as low as 9.94% in Gongronema latifolium and to as high as 23.85% in Xylopia aethopica. A very strong positive relationship existed between the total antioxidant capacity and total phenolic content of the tested herbs and spices (R2=0.96). All of the extracts exhibited different extent of strong antioxidant activity, high antioxidant activity was found in Ocimum gratissimum and Gongronema latifolium with the least. However, Gongronema latifolium possessed the highest total antioxidant capacity. These data confirm the appreciable antioxidant potentials and high phenolic content of Nigerian herbs and spices, thereby providing justification for their use in dishes and functional foods, prevention of cellular damage caused by free radicals and use as natural antioxidants in the food industry for prevention of lipid oxidation in food products. However, to utilize these natural antioxidants in food products, further analysis and studies of their behaviour in food systems at varying temperature, pH conditions and ionic concentrations should be carried out to displace the use of synthetic antioxidants like BHT and BHA.

Keywords: Antioxidant, free radicals, herbs, phenolic, spices

Procedia PDF Downloads 256
2488 Environmental Quality On-Line Monitoring Based on Enterprises Resource Planning on Implementation ISO 14001:2004

Authors: Ahmad Badawi Saluy

Abstract:

This study aims to develop strategies for the prevention or elimination of environmental pollution as well as changes in external variables of the environment in order to implement the environmental management system ISO 14001:2004 by integrating analysis of environmental issues data, RKL-RPL transactional data and regulation as part of ERP on the management dashboard. This research uses a quantitative descriptive approach with analysis method comparing with air quality standard (PP 42/1999, LH 21/2008), water quality standard (permenkes RI 416/1990, KepmenLH 51/2004, kepmenLH 55/2013 ), and biodiversity indicators. Based on the research, the parameters of RPL monitoring have been identified, among others, the quality of emission air (SO₂, NO₂, dust, particulate) due to the influence of fuel quality, combustion performance in a combustor and the effect of development change around the generating area. While in water quality (TSS, TDS) there was an increase due to the flow of water in the cooling intake carrying sedimentation from the flow of Banjir Kanal Timur. Including compliance with the ISO 14001:2004 clause on application design significantly contributes to the improvement of the quality of power plant management.

Keywords: environmental management systems, power plant management, regulatory compliance , enterprises resource planning

Procedia PDF Downloads 179
2487 Tomato Quality Produced in Saline Soils Using Irrigation with Treated Electromagnetic Water

Authors: Angela Vacaro de Souza, Fernando Ferrari Putti

Abstract:

One of the main plants cultivated in protected environment is tomato crop, which presents significant growth in its demand, because it is a tasty fruit, rich in nutrients and of high added value, however, poor management of fertilizers induces the process of soil salinization, causing several consequences, from reduced productivity to even soil infertility. These facts are derived from the increased concentration of salts, which hampers the process of water absorption by the plant, resulting in a biochemical and nutritional imbalance in the plant. Thus, this study aimed to investigate the effects of untreated and electromagnetically treated water in salinized soils on physical, physicochemical, and biochemical parameters in tomato fruits. The experiment was conducted at the Faculty of Science and Engineering, Tupã Campus (FCE/UNESP). A randomized complete block design with two types of treated water was adopted, with five different levels of initial salinity (0; 1.5; 2.5; 4; 5.5; 7 dS m⁻¹) by fertigation. Although the effects of salinity on fruit quality parameters are evident, no beneficial effects on increasing or maintaining postharvest quality of fruits whose plants were treated with electromagnetized water were evidenced.

Keywords: Solanum lycopersicum, soil salinization, protected environment, fertigation

Procedia PDF Downloads 117
2486 EDTA Assisted Phytoremediation of Cadmium by Enhancing Growth and Antioxidant Defense System in Brassica napus L.

Authors: Mujahid Farid, Shafaqat Ali, Muhammad Bilal Shakoor

Abstract:

Heavy metals pollution of soil is a prevalent global problem and oilseed rape (Brassica napus L.) are considered useful for the restoration of metal contaminated soils. Phytoextraction is an in-situ environment-friendly technique for the clean-up of contaminated soils. Response to cadmium (Cd) toxicity in combination with a chelator, Ethylenediamminetetraacetic acid (EDTA) was studied in oilseed rape grown hydroponically in greenhouse conditions under three levels of Cd (0, 10, and 50 µM) and two levels of EDTA (0 and 2.5 mM). Cd decreased plant growth, biomass and chlorophyll concentrations while the application of EDTA enhanced plant growth by reducing Cd-induced effects in Cd-stressed plants. Significant decrease in photosynthetic parameters was found by the Cd alone. Addition of EDTA improved the net photosynthetic and gas exchange capacity of plants under Cd stress. Cd at 10 and 50 μM significantly increased electrolyte leakage, the production of hydrogen peroxidase (H2O2) and malondialdehyde (MDA) and a significant reduction was observed in the activities of catalase (CAT), guaiacol peroxidase (POD), ascorbate peroxidase (APX), and superoxide dismutase under Cd stress plants. Application of EDTA at the rate of 2.5 mM alone and with combination of Cd increased the antioxidant enzymes activities and reduced the electrolyte leakage and production of H2O2 and MDA. Oilseed rape (Brassica napus L.) actively accumulated Cd in roots, stems and leaves and the addition of EDTA boosted the uptake and accumulation of Cd in oil seed rape by dissociating Cd in culture media. The present results suggest that under 8 weeks Cd-induced stress, application of EDTA significantly improve plant growth, chlorophyll content, photosynthetic, gas exchange capacity, improving enzymes activities and increased the metal uptake in roots, stems and leaves of oilseed rape (Brassica napus L.) respectively.

Keywords: antioxidant enzymes, cadmium, chelator, EDTA, growth, oilseed rape

Procedia PDF Downloads 392
2485 Influence of Cucurbitacin-Containing Phytonematicides on Nematode Biocontrol Agent: Trichoderma harzianum

Authors: Jacqueline T. Madaure, Phatu W. Mashela

Abstract:

Cucurbitacin-containing phytonematicides consistently suppress root-knot (Meloidogyne species) nematode population densities. However, the impact of these products on nematode biocontrol agents is not documented. The objective of this study was to determine the influence of Nemarioc-AL and Nemafric-BL phytonematicides on growth of Trichoderma harzianum under in vitro conditions. The two phytonematicides were separately prepared to concentrations of 3% and used in poison plate assays. After exposure at different times from 0 to 72 h, there was 100% mycelial growth of T. harzianum. In conclusion, at the recommended concentrations of phytonematicides used in managing nematode population densities, there was no evidence of suppressive effects on growth of T. harzianum by the two phytonematicides.

Keywords: botanicals, crude extracts, cucumis africanus, cucumis myriocarpus, cucurbitacin a, cucurbitacin b, ethnomedicinal plants

Procedia PDF Downloads 219
2484 The Study of the Absorption and Translocation of Chromium by Lygeum spartum in the Mining Region of Djebel Hamimat and Soil-Plant Interaction

Authors: H. Khomri, A. Bentellis

Abstract:

Since century of the Development Activities extraction and a dispersed mineral processing Toxic metals and much more contaminated vast areas occupied by what they natural outcrops. New types of metalliferous habitats are so appeared. A species that is Lygeum spartum attracted our curiosity because apart from its valuable role in desertification, it is apparently able to exclude antimony and other metals can be. This species, green leaf blades which are provided as cattle feed, would be a good subject for phytoremediation of mineral soils. The study of absorption and translocation of chromium by the Lygeum spartum in the mining region of Djebel Hamimat and the interaction soil-plant, revealed that soils of this species living in this region are alkaline, calcareous majority in their fine texture medium and saline in their minority. They have normal levels of organic matter. They are moderately rich in nitrogen. They contain total chromium content reaches a maximum of 66,80 mg Kg^(-1) and a total absence of soluble chromium. The results of the analysis of variance of the difference between bare soils and soils appear Lygeum spartum made a significant difference only for the silt and organic matter. But for the other variables analyzed this difference is not significant. Thus, this plant has only one action on the amendment, only the levels of silt and organic matter in soils. The results of the multiple regression of the chromium content of the roots according to all soil variables studied did appear that among the studied variables included in the model, only the electrical conductivity and clay occur in the explanation of contents chromium in roots. The chromium content of the aerial parts analyzed by regression based on all studied soil variables allows us to see only the variables: electrical conductivity and content of chromium in the root portion involved in the explanation of the content chromium in the aerial part.

Keywords: absorption, translocation, analysis of variance, chrome, Lygeum spartum, multiple regression, the soil variables

Procedia PDF Downloads 270
2483 Prediction of Metals Available to Maize Seedlings in Crude Oil Contaminated Soil

Authors: Stella O. Olubodun, George E. Eriyamremu

Abstract:

The study assessed the effect of crude oil applied at rates, 0, 2, 5, and 10% on the fractional chemical forms and availability of some metals in soils from Usen, Edo State, with no known crude oil contamination and soil from a crude oil spill site in Ubeji, Delta State, Nigeria. Three methods were used to determine the bioavailability of metals in the soils: maize (Zea mays) plant, EDTA and BCR sequential extraction. The sequential extract acid soluble fraction of the BCR extraction (most labile fraction of the soils, normally associated with bioavailability) were compared with total metal concentration in maize seedlings as a means to compare the chemical and biological measures of bioavailability. Total Fe was higher in comparison to other metals for the crude oil contaminated soils. The metal concentrations were below the limits of 4.7% Fe, 190mg/kg Cu and 720mg/kg Zn intervention values and 36mg/kg Cu and 140mg/kg Zn target values for soils provided by the Department of Petroleum Resources (DPR) guidelines. The concentration of the metals in maize seedlings increased with increasing rates of crude oil contamination. Comparison of the metal concentrations in maize seedlings with EDTA extractable concentrations showed that EDTA extracted more metals than maize plant.

Keywords: availability, crude oil contamination, EDTA, maize, metals

Procedia PDF Downloads 229
2482 Synthesis and Characterization of Renewable Resource Based Green Epoxy Coating

Authors: Sukanya Pradhan, Smita Mohanty, S. K Nayak

Abstract:

Plant oils are a great renewable source for being a reliable starting material to access new products with a wide spectrum of structural and functional variations. Even though petroleum products might also render the same, but it would also impose a high risk factor of environmental and health hazard. Since epoxidized vegetable oils are easily available, eco-compatible, non-toxic and renewable, hence these have drawn much of the attentions in the polymer industrial sector especially for the development of eco-friendly coating materials. In this study a waterborne epoxy coating was prepared from epoxidized soyabean oil by using triethanolamine. Because of its hydrophobic nature, it was a tough and tedius task to make it hydrophilic. The hydrophobic biobased epoxy was modified into waterborne epoxy by the help of a plant based anhydride as curing agent. Physico-mechanical, chemical resistance tests and thermal analysis of the green coating material were carried out which showed good physic-mechanical, chemical resistance properties as well as environment friendly. The complete characterization of the final material was done in terms of scratch hardness, gloss test, impact resistance, adhesion and bend test.

Keywords: epoxidized soybean oil, waterborne, curing agent, green coating

Procedia PDF Downloads 541
2481 Grape Seed Extract in Prevention and Treatment of Liver Toxic Cirrhosis in Rats

Authors: S. Buloyan, V. Mamikonyan, H. Hakobyan, H. Harutyunyan, H. Gasparyan

Abstract:

The liver is the strongest regenerating organ of the organism, and even with 2/3 surgically removed, it can regenerate completely. Hence, liver cirrhosis may only develop when the regenerating system is off. We present the results of a comparative study of structural and functional characteristics of rat liver tissue under the conditions of toxic liver cirrhosis development, induced by carbon tetrachloride, and its prevention/treatment by natural compounds with antioxidant and immune stimulating action. Studies were made on Wister rats, weighing 120~140 g. Grape seeds extracts, separately and in combination with well known anticirrhotic drug ursodeoxycholic acid (ursodiol) have demonstrated effectiveness in prevention of liver cirrhosis development and its treatment.

Keywords: carbon tetrachloride, GSE, liver cirrhosis, prevention, treatment

Procedia PDF Downloads 486
2480 Incorporating Spatial Selection Criteria with Decision-Maker Preferences of A Precast Manufacturing Plant

Authors: M. N. A. Azman, M. S. S. Ahamad

Abstract:

The Construction Industry Development Board of Malaysia has been actively promoting the use of precast manufacturing in the local construction industry over the last decade. In an era of rapid technological changes, precast manufacturing significantly contributes to improving construction activities and ensuring sustainable economic growth. Current studies on the location decision of precast manufacturing plants aimed to enhanced local economic development are scarce. To address this gap, the present research establishes a new set of spatial criteria, such as attribute maps and preference weights, derived from a survey of local industry decision makers. These data represent the input parameters for the MCE-GIS site selection model, for which the weighted linear combination method is used. Verification tests on the model were conducted to determine the potential precast manufacturing sites in the state of Penang, Malaysia. The tests yield a predicted area of 12.87 acres located within a designated industrial zone. Although, the model is developed specifically for precast manufacturing plant but nevertheless it can be employed to other types of industries by following the methodology and guidelines proposed in the present research.

Keywords: geographical information system, multi criteria evaluation, industrialised building system, civil engineering

Procedia PDF Downloads 287
2479 Reclaiming Properties of Bituminous Concrete Using Cold Mix Design Technology

Authors: Pradeep Kumar, Shalinee Shukla

Abstract:

Pavement plays a vital role in the socio-economic development of a country. Bituminous roads construction with conventional paving grade bitumen obtained from hot mix plant creates pollution and involves emission of greenhouse gases, also the construction of pavements at very high temperature is not feasible or desirable for high rainfall and snowfall areas. This problem of overheating can be eliminated by the construction of pavements with the usage of emulsified cold mixes which will eliminate emissions and help in the reduction of fuel requirement at mixing plant, which leads to energy conservation. Cold mix is a mixture of unheated aggregate and emulsion or cutback and filler. The primary objective of this research is to assess the volumetric mix design parameters of recycled aggregates with cold mixing technology and also to assess the impact of additives on volumetric mix characteristics. In this present study, bituminous pavement materials are reclaimed using cold mix technology, and Marshall specimens are prepared with the help of slow setting type 2 (SS-2) cationic bitumen emulsion as a binder for recycled aggregates. This technique of road construction is more environmentally friendly and can be done in adverse weather conditions.

Keywords: cold mixes, bitumen emulsion, recycled aggregates, volumetric properties

Procedia PDF Downloads 137
2478 Protective Effect of Wheat Grass (Triticum Durum) against Oxidative Damage Induced by Lead: Study of Some Biomarkers and Histological Few Organs in Males Wistar Rats

Authors: Mansouri Ouarda, Abdennour Cherif, Saidi Malika

Abstract:

Since the industrial revolution, many anthropogenic activities have caused environmental, considerable and overall changes. The lead represents a very dangerous disruptive for the functioning of the body. In this context the current study aims at evaluating a natural therapy by the use of the plant grass in wheat (Triticum durum) against the toxicity of lead in rat wistar male. The rats were divided into three groups: the control group, the group treated with 600 mg /kg food of lead only (Pb) is the group treated with the combination of 600 mg/kg of food and 9g/rat /day of the plant grass in wheat (Pb-bl). The duration of the treatment is 6 weeks. The results of the biometrics of the organs (thyroid, kidney, testis and epididymis) show no significant difference between the three groups. The dosage of a few parameters and hormonal biochemical shows a decrease in the concentration of the hormone T3 and TSH levels among the group pb alone compared to the control and Pb-Bl. These results have been confirmed by the study of histological slices. A morphological changes represented by a shrinking volume of vesicles with the group treated with Pb alone. A return to the normal state of the structure of the follicles was observed. The concentration in serum testosterone, urea and creatinine was significantly increased among the group treated by Pb only in relation to the control and Pb-Bl. whereas the rate of glucose did not show any significant difference. The histology study of the kidney, testis and epididymal weights show no modification at the group Pb-bl comparing to the control. The parenchyma of the kidney shows a dilation of tubes distal and proximal causing a tubular nephropathy for the batch processed by Pb only. The testicles have marked a destruction or absence of germ cells and the light of some seminiferous are almost empty. Conclusion: The supplementation of the plant Triticum durum has caused a considerable improvement which ensures the return of parameters investigated in the normal state.

Keywords: creatinine, glucose, histological sections, T3, TSH, testosterone

Procedia PDF Downloads 380
2477 Salt Stress Affects Growth, Nutrition and Anatomy of Stipa lagascae: A Psammophile Grass in Southern Tunisia

Authors: Raoudha Abdellaoui, Faycal Boughalleb, Zohra Chebil

Abstract:

In arid and semi-arid regions, salinity represents a major constraint towards plants’ growth. Stipa lagascae, a psammophile grass, is a promised species since its economic and ecological interests. Our study aims to explore the effects of different salt concentrations (0; 100; 200; 300 and 400 mM) on physiological, biochemical and anatomic parameters. Salt stress was applied on S. lagascae plants cultivated under controlled conditions. Results show that salinity reduces biomass production especially when plants are subjected to severe stress (>200 mM NaCl). Concerning the nutritional level, the fact of enriching soil with NaCl, leads to an accumulation of Na+ against other nutritional elements (K+, Ca2+). To maintain tissues hydration, S. lagascae established osmotic adaptation by accumulation of proline and soluble sugars. Salt stress affected significantly root and foliar anatomy. Indeed, plants increased their vessels’ diameter and mesophyll surface. S. lagascae plants reduced also the surface of the belluforme cells to defeat dehydration. According to our results, S. lagascae seems to be a tolerant plant at acceptable concentrations that do not exceed 6g/l.

Keywords: anatomical adaptations, mineral nutrition, plant growth, salt stress, stipa lagascae

Procedia PDF Downloads 265
2476 Biostimulant Activity of Chitooligomers: Effect of Different Degrees of Acetylation and Polymerization on Wheat Seedlings under Salt Stress

Authors: Xiaoqian Zhang, Ping Zou, Pengcheng Li

Abstract:

Salt stress is one of the most serious abiotic stresses, and it can lead to the reduction of agricultural productivity. High salt concentration makes it more difficult for roots to absorb water and disturbs the homeostasis of cellular ions resulting in osmotic stress, ion toxicity and generation of reactive oxygen species (ROS). Compared with the normal physiological conditions, salt stress could inhibit the photosynthesis, break metabolic balance and damage cellular structures, and ultimately results in the reduction of crop yield. Therefore it is vital to develop practical methods for improving the salt tolerance of plants. Chitooligomers (COS) is partially depolymerized products of chitosan, which is consisted of D-glucosamine and N-acetyl-D-glucosamine. In agriculture, COS has the ability to promote plant growth and induce plant innate immunity. The bioactivity of COS closely related to its degree of polymerization (DP) and acetylation (DA). However, most of the previous reports fail to mention the function of COS with different DP and DAs in improving the capacity of plants against salt stress. Accordingly, in this study, chitooligomers (COS) with different degrees of DAs were used to test wheat seedlings response to salt stress. In addition, the determined degrees of polymerization (DPs) COS(DP 4-12) and a heterogeneous COS mixture were applied to explore the relationship between the DP of COSs and its effect on the growth of wheat seedlings in response to salt stress. It showed that COSs, the exogenous elicitor, could promote the growth of wheat seedling, reduce the malondialdehyde (MDA) concentration, and increase the activities of antioxidant enzymes. The results of mRNA expression level test for salt stress-responsive genes indicated that COS keep plants away from being hurt by the salt stress via the regulation of the concentration and the increased antioxidant enzymes activities. Moreover, it was found that the activities of COS was closely related to its Das and COS (DA: 50%) displayed the best salt resistance activity to wheat seedlings. The results also showed that COS with different DP could promote the growth of wheat seedlings under salt stress. COS with a DP (6-8) showed better activities than the other tested samples, implied its activity had a close relationship with its DP. After treatment with chitohexaose, chitoheptaose, and chitooctaose, the photosynthetic parameters were improved obviously. The soluble sugar and proline contents were improved by 26.7%-53.3% and 43.6.0%-70.2%, respectively, while the concentration of malondialdehyde (MDA) was reduced by 36.8% - 49.6%. In addition, the antioxidant enzymes activities were clearly activated. At the molecular level, the results revealed that they could obviously induce the expression of Na+/H+ antiporter genes. In general, these results were fundamental to the study of action mechanism of COS on promoting plant growth under salt stress and the preparation of plant growth regulator.

Keywords: chitooligomers (COS), degree of polymerization (DP), degree of acetylation (DA), salt stress

Procedia PDF Downloads 175
2475 The Genotoxic Effect of Coal Fly Ash of Thermal Power Plant on Raphanus sativus L. (Radish)

Authors: Patel Kailash P, Patel Parimal M

Abstract:

The effect of coal fly ash treatment on the chromosomes of Raphanus sativus L. was investigated. The seeds of Raphanus sativusL. were placed in petri dishes in three replicates and allowed to germinate for five days in different concentration of coal fly ash solution. The root was treated with the diluted, semidiluted, and concentrated solution of fly ash while the control group had distilled water.The total aberration were examined. The mitotic index was calculated and the results were statically evaluated by the analysis of variance 5% significant level. The mitotic index decreased as the concentration increased. The highest mitotic index value was diluted fly ash solution while the least was concentrated fly ash treatment. The results show the most frequent chromosomal abnormalities observed included: chromatid bridge, c-mitosis, and stickiness. Concentrated fly ash solution is much more genotoxic than semidiluted fly ash solution, as it induced more aberrations having percentage abnormalities for the highest concentration tested. Increased fly ash pollution can lead to some irreversible cytogenetic effect in plants. The study is an attempt to corroborate the toxic effect of coal fly ash of thermal power plant on the chromosome of plants. These results will be useful in environmental monitoring of the cytotoxicity of coal fly ash.

Keywords: coal fly-ash, genotoxic, cytogenetic, mitotic index, Raphanus sativus L.

Procedia PDF Downloads 311
2474 Development of Agricultural Robotic Platform for Inter-Row Plant: An Autonomous Navigation Based on Machine Vision

Authors: Alaa El-Din Rezk

Abstract:

In Egypt, management of crops still away from what is being used today by utilizing the advances of mechanical design capabilities, sensing and electronics technology. These technologies have been introduced in many places and recorm, for Straight Path, Curved Path, Sine Wave ded high accuracy in different field operations. So, an autonomous robotic platform based on machine vision has been developed and constructed to be implemented in Egyptian conditions as self-propelled mobile vehicle for carrying tools for inter/intra-row crop management based on different control modules. The experiments were carried out at plant protection research institute (PPRI) during 2014-2015 to optimize the accuracy of agricultural robotic platform control using machine vision in term of the autonomous navigation and performance of the robot’s guidance system. Results showed that the robotic platform' guidance system with machine vision was able to adequately distinguish the path and resisted image noise and did better than human operators for getting less lateral offset error. The average error of autonomous was 2.75, 19.33, 21.22, 34.18, and 16.69 mm. while the human operator was 32.70, 4.85, 7.85, 38.35 and 14.75 mm Path, Offset Discontinuity and Angle Discontinuity respectively.

Keywords: autonomous robotic, Hough transform, image processing, machine vision

Procedia PDF Downloads 315