Search results for: structural equation model
5063 A Genetic Algorithm for the Load Balance of Parallel Computational Fluid Dynamics Computation with Multi-Block Structured Mesh
Authors: Chunye Gong, Ming Tie, Jie Liu, Weimin Bao, Xinbiao Gan, Shengguo Li, Bo Yang, Xuguang Chen, Tiaojie Xiao, Yang Sun
Abstract:
Large-scale CFD simulation relies on high-performance parallel computing, and the load balance is the key role which affects the parallel efficiency. This paper focuses on the load-balancing problem of parallel CFD simulation with structured mesh. A mathematical model for this load-balancing problem is presented. The genetic algorithm, fitness computing, two-level code are designed. Optimal selector, robust operator, and local optimization operator are designed. The properties of the presented genetic algorithm are discussed in-depth. The effects of optimal selector, robust operator, and local optimization operator are proved by experiments. The experimental results of different test sets, DLR-F4, and aircraft design applications show the presented load-balancing algorithm is robust, quickly converged, and is useful in real engineering problems.Keywords: genetic algorithm, load-balancing algorithm, optimal variation, local optimization
Procedia PDF Downloads 1855062 Optimization of Lean Methodologies in the Textile Industry Using Design of Experiments
Authors: Ahmad Yame, Ahad Ali, Badih Jawad, Daw Al-Werfalli Mohamed Nasser, Sabah Abro
Abstract:
Industries in general have a lot of waste. Wool textile company, Baniwalid, Libya has many complex problems that led to enormous waste generated due to the lack of lean strategies, expertise, technical support and commitment. To successfully address waste at wool textile company, this study will attempt to develop a methodical approach that integrates lean manufacturing tools to optimize performance characteristics such as lead time and delivery. This methodology will utilize Value Stream Mapping (VSM) techniques to identify the process variables that affect production. Once these variables are identified, Design of Experiments (DOE) Methodology will be used to determine the significantly influential process variables, these variables are then controlled and set at their optimal to achieve optimal levels of productivity, quality, agility, efficiency and delivery to analyze the outputs of the simulation model for different lean configurations. The goal of this research is to investigate how the tools of lean manufacturing can be adapted from the discrete to the continuous manufacturing environment and to evaluate their benefits at a specific industrial.Keywords: lean manufacturing, DOE, value stream mapping, textiles
Procedia PDF Downloads 4555061 The Impact of Technology on Sales Researches and Distribution
Authors: Nady Farag Faragalla Hanna
Abstract:
In the car dealership industry in Japan, the sales specialist is a key factor in the success of the company. I hypothesize that when a company understands the characteristics of sales professionals in its industry, it is easier to recruit and train salespeople effectively. Lean human resources management ensures the economic success and performance of companies, especially small and medium-sized companies.The purpose of the article is to determine the characteristics of sales specialists for small and medium-sized car dealerships using the chi-square test and the proximate variable model. Accordingly, the results show that career change experience, learning ability and product knowledge are important, while university education, career building through internal transfer, leadership experience and people development are not important for becoming a sales professional. I also show that the characteristics of sales specialists are perseverance, humility, improvisation and passion for business.Keywords: electronics engineering, marketing, sales, E-commerce digitalization, interactive systems, sales process ARIMA models, sales demand forecasting, time series, R codetraits of sales professionals, variable precision rough sets theory, sales professional, sales professionals
Procedia PDF Downloads 525060 Dietary Gluten and the Balance of Gut Microbiota in the Dextran Sulphate Sodium Induced Colitis Model
Authors: Austin Belfiori, Kevin Rinek, Zach Barcroft, Jennifer Berglind
Abstract:
Diet influences the composition of the gut microbiota and host's health. Disruption of the balance among the microbiota, epithelial cells, and resident immune cells in the intestine is involved in the pathogenesis of inflammatory bowel disease (IBD). To study the role of gut microbiota in intestinal inflammation, the microbiome of control mice (C57BL6) given a gluten-containing standard diet versus C57BL6 mice given the gluten-free (GF) feed (n=10 in each group) was examined. All mice received the 3% DSS for 5 days. Throughout the study, feces were collected and processed for DNA extraction and MiSeq Illumina sequencing of V4 region of bacterial 16S rRNA gene. Alpha and beta diversities and compositional differences at phylum and genus levels were determined in intestinal microbiota. The mice receiving the GF diet showed a significantly increased abundance of Firmicutes and a decrease of Bacteroides and Lactobacillus at phylum level. Therefore, the gluten free diet led to reductions in beneficial gut bacteria populations. These findings indicate a role of wheat gluten in dysbiosis of the intestinal microbiota.Keywords: gluten, colitis, microbiota, DSS, dextran sulphate sodium
Procedia PDF Downloads 2125059 Parameter Selection for Computationally Efficient Use of the Bfvrns Fully Homomorphic Encryption Scheme
Authors: Cavidan Yakupoglu, Kurt Rohloff
Abstract:
In this study, we aim to provide a novel parameter selection model for the BFVrns scheme, which is one of the prominent FHE schemes. Parameter selection in lattice-based FHE schemes is a practical challenges for experts or non-experts. Towards a solution to this problem, we introduce a hybrid principles-based approach that combines theoretical with experimental analyses. To begin, we use regression analysis to examine the parameters on the performance and security. The fact that the FHE parameters induce different behaviors on performance, security and Ciphertext Expansion Factor (CEF) that makes the process of parameter selection more challenging. To address this issue, We use a multi-objective optimization algorithm to select the optimum parameter set for performance, CEF and security at the same time. As a result of this optimization, we get an improved parameter set for better performance at a given security level by ensuring correctness and security against lattice attacks by providing at least 128-bit security. Our result enables average ~ 5x smaller CEF and mostly better performance in comparison to the parameter sets given in [1]. This approach can be considered a semiautomated parameter selection. These studies are conducted using the PALISADE homomorphic encryption library, which is a well-known HE library. The abstract goes here.Keywords: lattice cryptography, fully homomorphic encryption, parameter selection, LWE, RLWE
Procedia PDF Downloads 1575058 Modelling Operational Risk Using Extreme Value Theory and Skew t-Copulas via Bayesian Inference
Authors: Betty Johanna Garzon Rozo, Jonathan Crook, Fernando Moreira
Abstract:
Operational risk losses are heavy tailed and are likely to be asymmetric and extremely dependent among business lines/event types. We propose a new methodology to assess, in a multivariate way, the asymmetry and extreme dependence between severity distributions, and to calculate the capital for Operational Risk. This methodology simultaneously uses (i) several parametric distributions and an alternative mix distribution (the Lognormal for the body of losses and the Generalized Pareto Distribution for the tail) via extreme value theory using SAS®, (ii) the multivariate skew t-copula applied for the first time for operational losses and (iii) Bayesian theory to estimate new n-dimensional skew t-copula models via Markov chain Monte Carlo (MCMC) simulation. This paper analyses a newly operational loss data set, SAS Global Operational Risk Data [SAS OpRisk], to model operational risk at international financial institutions. All the severity models are constructed in SAS® 9.2. We implement the procedure PROC SEVERITY and PROC NLMIXED. This paper focuses in describing this implementation.Keywords: operational risk, loss distribution approach, extreme value theory, copulas
Procedia PDF Downloads 6035057 The Science of Health Care Delivery: Improving Patient-Centered Care through an Innovative Education Model
Authors: Alison C. Essary, Victor Trastek
Abstract:
Introduction: The current state of the health care system in the U.S. is characterized by an unprecedented number of people living with multiple chronic conditions, unsustainable rise in health care costs, inadequate access to care, and wide variation in health outcomes throughout the country. An estimated two-thirds of Americans are living with two or more chronic conditions, contributing to 75% of all health care spending. In 2013, the School for the Science of Health Care Delivery (SHCD) was charged with redesigning the health care system through education and research. Faculty in business, law, and public policy, and thought leaders in health care delivery, administration, public health and health IT created undergraduate, graduate, and executive academic programs to address this pressing need. Faculty and students work across disciplines, and with community partners and employers to improve care delivery and increase value for patients. Methods: Curricula apply content in health care administration and operations within the clinical context. Graduate modules are team-taught by faculty across academic units to model team-based practice. Seminars, team-based assignments, faculty mentoring, and applied projects are integral to student success. Cohort-driven models enhance networking and collaboration. This observational study evaluated two years of admissions data, and one year of graduate data to assess program outcomes and inform the current graduate-level curricula. Descriptive statistics includes means, percentages. Results: Fall 2013, the program received 51 applications. The mean GPA of the entering class of 37 students was 3.38. Ninety-seven percent of the fall 2013 cohort successfully completed the program (n=35). Sixty-six percent are currently employed in the health care industry (n=23). Of the remaining 12 graduates, two successfully matriculated to medical school; one works in the original field of study; four await results on the MCAT or DAT, and five were lost to follow up. Attrition of one student was attributed to non-academic reasons. Fall 2014, the program expanded to include both on-ground and online cohorts. Applications were evenly distributed between on-ground (n=70) and online (n=68). Thirty-eight students enrolled in the on-ground program. The mean GPA was 3.95. Ninety-five percent of students successfully completed the program (n=36). Thirty-six students enrolled in the online program. The mean GPA was 3.85. Graduate outcomes are pending. Discussion: Challenges include demographic variability between online and on-ground students; yet, both profiles are similar in that students intend to become change agents in the health care system. In the past two years, on-ground applications increased by 31%, persistence to graduation is > 95%, mean GPA is 3.67, graduates report admission to six U.S. medical schools, the Mayo Medical School integrates SHCD content within their curricula, and there is national interest in collaborating on industry and academic partnerships. This places SHCD at the forefront of developing innovative curricula in order to improve high-value, patient-centered care.Keywords: delivery science, education, health care delivery, high-value care, innovation in education, patient-centered
Procedia PDF Downloads 2825056 The Relationship between the Environmental and Financial Performance of Australian Electricity Producers
Authors: S. Forughi, A. De Zoysa, S. Bhati
Abstract:
The present study focuses on the environmental performance of the companies in the electricity-producing sector and its relationship with their financial performance. We will review the major studies that examined the relationship between the environmental and financial performance of firms in various industries. While the classical economic debates consider the environmental friendly activities costly and harmful to a firm’s profitability, it is claimed that firms will be rewarded with higher profitability in long run through the investments in environmental friendly activities. In this context, prior studies have examined the relationship between the environmental and financial performance of firms operating in different industry sectors. Our study will employ an environmental indicator to increase the accuracy of the results and be employed as an independent variable in our developed econometric model to evaluate the impact of the financial performance of the firms on their environmental friendly activities in the context of companies operating in the Australian electricity-producing sector. As a result, we expect our methodology to contribute to the literature and the findings of the study will help us to provide recommendations and policy implications to the electricity producers.Keywords: Australian electricity sector, efficiency measurement, environmental-financial performance interaction, environmental index
Procedia PDF Downloads 3265055 Fluorescent Imaging with Hoechst 34580 and Propidium Iodide in Determination of Toxic Changes of Cyanobacterial Oligopeptides in Rotifers
Authors: Adam Bownik, Małgorzata Adamczuk, Barbara Pawlik-Skowrońska
Abstract:
Certain strains of cyanobacteria, microorganisms forming water blooms, produce toxic secondary metabolites. Although various effects of cyanotoxins in aquatic animals are known, little data can be found on the influence of some cyanobacterial oligopeptides beyond microcystins. The aim of the present study was to determine the toxicity of novel pure cyanobacterial oligopeptides: microginin FR-1 (MGFR1) and anabaenopeptin-A (ANA-A) on a transparent model rotifer Brachionus calyciflorus with the use of fluorescent double staining with Hoechst 34580 and propidium iodide. The obtained results showed that both studied oligopeptides decreased the fluorescence intensity of animals stained with Hoechst 34580 in a concentration-dependent manner. On the other hand, a concentration-dependent increase of propidium iodide fluorescence was noted in the exposed rotifers. The results suggest that MGFR-1 and ANA-A should be considered as a potent toxic agent to freshwater rotifers, and fluorescent staining with Hoechst and propidium iodide may be a valuable tool for determination of toxicity of cyanobacterial oligopeptides in rotifers.Keywords: cyanobacteria, brachionus, oligopeptides, fluorescent staining, hoechst, propidium iodide
Procedia PDF Downloads 1305054 (In)Visibility of Afghan Migrants in Turkey's Informal Labour Market
Authors: Rezzan Alagoz, Seda Gonul
Abstract:
This study examines the migration, work, and social life experiences of undocumented Afghan migrants employed as shepherds in Igdır. Despite their high visibility in informal labor markets, their undocumented status renders them invisible in everyday life. Their invisibility in both official status and social life, coupled with their vulnerability to exploitation in the labor market, renders them particularly susceptible to marginalization. This research employs the concept of the subaltern to examine the characteristics of Afghan migrants as unrepresented, unheard, and invisible. It also analyzes their experiences in the labor market based on the concept of biopolitics. Undocumented Afghan migrants are engaged in labor-intensive occupations such as shepherding, thereby addressing an essential gap in the workforce that local workers are reluctant to undertake. The reliance of employers on the labor of these employees is significant; however, the undocumented status of these workers leaves them vulnerable to exploitation. In addition to serving as a critical source of low-cost labor, these individuals are susceptible to exploitation in the form of non-payment for their work, extended and intensive work schedules, and, on some occasions, physical violence. In the event of a conflict between shepherds and their employers, undocumented workers are unable to seek legal recourse, which serves to reinforce their marginalized status further. The predominant practice among Afghan shepherds is to utilize the workplace as a place of residence. In the context of shepherding work, the prevailing conditions at the workplace frequently pose a significant threat to the health and well-being of the individuals engaged in such activities. As a result of their lack of official status, these individuals lack access to basic services such as healthcare, which has the consequence of rendering them invisible in public and institutional spaces. Attempts to engage with public systems carry the risk of deportation, reinforcing the already fragile and precarious nature of their existence. This study examines the socio-political implications of undocumented status and addresses these experiences in the context of national and international migration policies. In line with Agamben's concept of the "state of exception" undocumented migrants exist in a state where fundamental rights are effectively nullified, and they are rendered outside the protection of the law. This exclusion is further exacerbated by the intersection of economic exploitation, political and physical invisibility, and limited access to basic services, which collectively contribute to a cycle of vulnerability. This research is based on in-depth interviews with 18 Afghan shepherds in Igdir province in August 2024. The research contributes to the ongoing critical debates on migration, labor exploitation, and biopolitics by focusing on the experiences of Afghan shepherds. The article examines how undocumented migrants maneuver between visibility and invisibility within the context of a system that relies on exploitation in the labor market and migration policies. The research findings demonstrate the necessity for policy intervention to address the structural exclusion of undocumented Afghan migrants from national and international protection systems, as well as their indispensable role in local economies.Keywords: Afghan migrants, biopolitics, border economy, informal labour market, migration policy, sheepherding, Subaltern
Procedia PDF Downloads 165053 Using Analytical Hierarchy Process and TOPSIS Approaches in Designing a Finite Element Analysis Automation Program
Authors: Ming Wen, Nasim Nezamoddini
Abstract:
Sophisticated numerical simulations like finite element analysis (FEA) involve a complicated process from model setup to post-processing tasks that require replication of time-consuming steps. Utilizing FEA automation program simplifies the complexity of the involved steps while minimizing human errors in analysis set up, calculations, and results processing. One of the main challenges in designing FEA automation programs is to identify user requirements and link them to possible design alternatives. This paper presents a decision-making framework to design a Python based FEA automation program for modal analysis, frequency response analysis, and random vibration fatigue (RVF) analysis procedures. Analytical hierarchy process (AHP) and technique for order preference by similarity to ideal solution (TOPSIS) are applied to evaluate design alternatives considering the feedback received from experts and program users.Keywords: finite element analysis, FEA, random vibration fatigue, process automation, analytical hierarchy process, AHP, TOPSIS, multiple-criteria decision-making, MCDM
Procedia PDF Downloads 1125052 Neural Network Approach to Classifying Truck Traffic
Authors: Ren Moses
Abstract:
The process of classifying vehicles on a highway is hereby viewed as a pattern recognition problem in which connectionist techniques such as artificial neural networks (ANN) can be used to assign vehicles to their correct classes and hence to establish optimum axle spacing thresholds. In the United States, vehicles are typically classified into 13 classes using a methodology commonly referred to as “Scheme F”. In this research, the ANN model was developed, trained, and applied to field data of vehicles. The data comprised of three vehicular features—axle spacing, number of axles per vehicle, and overall vehicle weight. The ANN reduced the classification error rate from 9.5 percent to 6.2 percent when compared to an existing classification algorithm that is not ANN-based and which uses two vehicular features for classification, that is, axle spacing and number of axles. The inclusion of overall vehicle weight as a third classification variable further reduced the error rate from 6.2 percent to only 3.0 percent. The promising results from the neural networks were used to set up new thresholds that reduce classification error rate.Keywords: artificial neural networks, vehicle classification, traffic flow, traffic analysis, and highway opera-tions
Procedia PDF Downloads 3115051 Energy-Efficient Internet of Things Communications: A Comparative Study of Long-Term Evolution for Machines and Narrowband Internet of Things Technologies
Authors: Nassim Labdaoui, Fabienne Nouvel, Stéphane Dutertre
Abstract:
The Internet of Things (IoT) is emerging as a crucial communication technology for the future. Many solutions have been proposed, and among them, licensed operators have put forward LTE-M and NB-IoT. However, implementing these technologies requires a good understanding of the device energy requirements, which can vary depending on the coverage conditions. In this paper, we investigate the power consumption of LTE-M and NB-IoT devices using Ublox SARA-R422S modules based on relevant standards from two French operators. The measurements were conducted under different coverage conditions, and we also present an empirical consumption model based on the different states of the radio modem as per the RRC protocol specifications. Our findings indicate that these technologies can achieve a 5 years operational battery life under certain conditions. Moreover, we conclude that the size of transmitted data does not have a significant impact on the total power consumption of the device under favorable coverage conditions. However, it can quickly influence the battery life of the device under harsh coverage conditions. Overall, this paper offers insights into the power consumption of LTE-M and NBIoT devices and provides useful information for those considering the use of these technologies.Keywords: internet of things, LTE-M, NB-IoT, MQTT, cellular IoT, power consumption
Procedia PDF Downloads 1425050 Simulation of Wind Generator with Fixed Wind Turbine under Matlab-Simulink
Authors: Mahdi Motahari, Mojtaba Farzaneh, Armin Parsian Nejad
Abstract:
The rapidly growing wind industry is highly expressing the need for education and training worldwide, particularly on the system level. Modelling and simulating wind generator system using Matlab-Simulink provides expert help in understanding wind systems engineering and system design. Working under Matlab-Simulink we present the integration of the developed WECS model with public electrical grid. A test of the calculated power and Cp related to the experimental equivalent data, using statistical analysis is performed. The statistical indicators of accuracy show better results of the presented method with RMSE: 21%, 22%, MBE : 0.77%, 0.12 % and MAE :3%, 4%.On the other hand we study its behavior when integrated in whole power system. Three level of wind speeds have been chosen: low with 5m/s as the mean value, medium with 8m/s as the mean value and high speed with 12m/s as the mean value. These allowed predicting and supervising the active power produced by the system, characterized respectively by the middle powers of -150 kW, -250kW and -480 kW which will be injected directly into the public electrical grid and the reactive power, characterized respectively by the middle powers of 60 kW, 180 kW and 320 kW and will be consumed by the wind generator.Keywords: modelling, simulation, wind generator, fixed speed wind turbine, Matlab-Simulink
Procedia PDF Downloads 6285049 Female Entrepreneurship in the Creative Industry: The Antecedents of Their Ventures' Performance
Authors: Naoum Mylonas, Eugenia Petridou
Abstract:
Objectives: The objectives of this research are firstly, to develop an integrated model of predicting factors to new ventures performance, taking into account certain issues and specificities related to creative industry and female entrepreneurship based on the prior research; secondly, to determine the appropriate measures of venture performance in a creative industry context, drawing upon previous surveys; thirdly, to illustrate the importance of entrepreneurial orientation, networking ties, environment dynamism and access to financial capital on new ventures performance. Prior Work: An extant review of the creative industry literature highlights the special nature of entrepreneurship in this field. Entrepreneurs in creative industry share certain specific characteristics and intensions, such as to produce something aesthetic, to enrich their talents and their creativity, and to combine their entrepreneurial with their artistic orientation. Thus, assessing venture performance and success in creative industry entails an examination of how creative people or artists conceptualize success. Moreover, female entrepreneurs manifest more positive attitudes towards sectors primarily based on creativity, rather than innovation in which males outbalance. As creative industry entrepreneurship based mainly on the creative personality of the creator / artist, a high interest is accrued to examine female entrepreneurship in the creative industry. Hypotheses development: H1a: Female entrepreneurs who are more entrepreneurially-oriented show a higher financial performance. H1b: Female entrepreneurs who are more artistically-oriented show a higher creative performance. H2: Female entrepreneurs who have personality that is more creative perform better. H3: Female entrepreneurs who participate in or belong to networks perform better. H4: Female entrepreneurs who have been consulted by a mentor perform better. Η5a: Female entrepreneurs who are motivated more by pull-factors perform better. H5b: Female entrepreneurs who are motivated more by push-factors perform worse. Approach: A mixed method triangulation design has been adopted for the collection and analysis of data. The data are collected through a structured questionnaire for the quantitative part and through semi-structured interviews for the qualitative part as well. The sample is 293 Greek female entrepreneurs in the creative industry. Main findings: All research hypotheses are accepted. The majority of creative industry entrepreneurs evaluate themselves in creative performance terms rather than financial ones. The individuals who are closely related to traditional arts sectors have no EO but also evaluate themselves highly in terms of venture performance. Creative personality of creators is appeared as the most important predictor of venture performance. Pull factors in accordance with our hypothesis lead to higher levels of performance compared to push factors. Networking and mentoring are viewed as very important, particularly now during the turbulent economic environment in Greece. Implications-Value: Our research provides an integrated model with several moderating variables to predict ventures performance in the creative industry, taking also into account the complicated nature of arts and the way artists and creators define success. At the end, the findings may be used for the appropriate design of educational programs in creative industry entrepreneurship. This research has been co-financed by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Heracleitus II. Investing in knowledge society through the European Social Fund.Keywords: venture performance, female entrepreneurship, creative industry, networks
Procedia PDF Downloads 2625048 Machine Learning-Driven Prediction of Cardiovascular Diseases: A Supervised Approach
Authors: Thota Sai Prakash, B. Yaswanth, Jhade Bhuvaneswar, Marreddy Divakar Reddy, Shyam Ji Gupta
Abstract:
Across the globe, there are a lot of chronic diseases, and heart disease stands out as one of the most perilous. Sadly, many lives are lost to this condition, even though early intervention could prevent such tragedies. However, identifying heart disease in its initial stages is not easy. To address this challenge, we propose an automated system aimed at predicting the presence of heart disease using advanced techniques. By doing so, we hope to empower individuals with the knowledge needed to take proactive measures against this potentially fatal illness. Our approach towards this problem involves meticulous data preprocessing and the development of predictive models utilizing classification algorithms such as Support Vector Machines (SVM), Decision Tree, and Random Forest. We assess the efficiency of every model based on metrics like accuracy, ensuring that we select the most reliable option. Additionally, we conduct thorough data analysis to reveal the importance of different attributes. Among the models considered, Random Forest emerges as the standout performer with an accuracy rate of 96.04% in our study.Keywords: support vector machines, decision tree, random forest
Procedia PDF Downloads 405047 CFD Simulation of the Inlet Pressure Effects on the Cooling Capacity Enhancement for Vortex Tube with Couple Vortex Chambers
Authors: Nader Pourmahmoud, Amir Hassanzadeh
Abstract:
This article investigates the effects of inlet pressure in a newly introduced vortex tube which has been equipped with an additional vortex chamber. A 3-D compressible turbulent flow computation has been carried out toward analysis of complex flow field in this apparatus. Numerical results of flows are derived by utilizing the standard k-ε turbulence model for analyzing high rotating complex flow field. The present research has focused on cooling effect and given a characteristics curve for minimum cool temperature. In addition, the effect of inlet pressure for both chambers has been studied in details. To be presented numerical results show that the effect of inlet pressure in second chamber has more important role in improving the performance of the vortex tube than first one. By increasing the pressure in the second chamber, cold outlet temperature reaches a higher decrease. When both chambers are fed with high pressure fluid, best operation condition of vortex tube occurs. However, it is not possible to feed both chambers with high pressure due to the conditions of working environment.Keywords: energy separation, inlet pressure, numerical simulation, vortex chamber, vortex tube
Procedia PDF Downloads 3715046 A Deep Learning-Based Pedestrian Trajectory Prediction Algorithm
Authors: Haozhe Xiang
Abstract:
With the rise of the Internet of Things era, intelligent products are gradually integrating into people's lives. Pedestrian trajectory prediction has become a key issue, which is crucial for the motion path planning of intelligent agents such as autonomous vehicles, robots, and drones. In the current technological context, deep learning technology is becoming increasingly sophisticated and gradually replacing traditional models. The pedestrian trajectory prediction algorithm combining neural networks and attention mechanisms has significantly improved prediction accuracy. Based on in-depth research on deep learning and pedestrian trajectory prediction algorithms, this article focuses on physical environment modeling and learning of historical trajectory time dependence. At the same time, social interaction between pedestrians and scene interaction between pedestrians and the environment were handled. An improved pedestrian trajectory prediction algorithm is proposed by analyzing the existing model architecture. With the help of these improvements, acceptable predicted trajectories were successfully obtained. Experiments on public datasets have demonstrated the algorithm's effectiveness and achieved acceptable results.Keywords: deep learning, graph convolutional network, attention mechanism, LSTM
Procedia PDF Downloads 715045 Formulation of Optimal Shifting Sequence for Multi-Speed Automatic Transmission
Authors: Sireesha Tamada, Debraj Bhattacharjee, Pranab K. Dan, Prabha Bhola
Abstract:
The most important component in an automotive transmission system is the gearbox which controls the speed of the vehicle. In an automatic transmission, the right positioning of actuators ensures efficient transmission mechanism embodiment, wherein the challenge lies in formulating the number of actuators associated with modelling a gearbox. Data with respect to actuation and gear shifting sequence has been retrieved from the available literature, including patent documents, and has been used in this proposed heuristics based methodology for modelling actuation sequence in a gear box. This paper presents a methodological approach in designing a gearbox for the purpose of obtaining an optimal shifting sequence. The computational model considers factors namely, the number of stages and gear teeth as input parameters since these two are the determinants of the gear ratios in an epicyclic gear train. The proposed transmission schematic or stick diagram aids in developing the gearbox layout design. The number of iterations and development time required to design a gearbox layout is reduced by using this approach.Keywords: automatic transmission, gear-shifting, multi-stage planetary gearbox, rank ordered clustering
Procedia PDF Downloads 3255044 Sectoral Energy Consumption in South Africa and Its Implication for Economic Growth
Authors: Kehinde Damilola Ilesanmi, Dev Datt Tewari
Abstract:
South Africa is in its post-industrial era moving from the primary and secondary sector to the tertiary sector. The study investigated the impact of the disaggregated energy consumption (coal, oil, and electricity) on the primary, secondary and tertiary sectors of the economy between 1980 and 2012 in South Africa. Using vector error correction model, it was established that South Africa is an energy dependent economy, and that energy (especially electricity and oil) is a limiting factor of growth. This implies that implementation of energy conservation policies may hamper economic growth. Output growth is significantly outpacing energy supply, which has necessitated load shedding. To meet up the excess energy demand, there is a need to increase the generating capacity which will necessitate increased investment in the electricity sector as well as strategic steps to increase oil production. There is also need to explore more renewable energy sources, in order to meet the growing energy demand without compromising growth and environmental sustainability. Policy makers should also pursue energy efficiency policies especially at sectoral level of the economy.Keywords: causality, economic growth, energy consumption, hypothesis, sectoral output
Procedia PDF Downloads 4705043 Numerical Study of Off-Design Performance of a Highly Loaded Low Pressure Turbine Cascade
Authors: Shidvash Vakilipour, Mehdi Habibnia, Rouzbeh Riazi, Masoud Mohammadi, Mohammad H. Sabour
Abstract:
The flow field passing through a highly loaded low pressure (LP) turbine cascade is numerically investigated at design and off-design conditions. The Field Operation And Manipulation (OpenFOAM) platform is used as the computational Fluid Dynamics (CFD) tool. Firstly, the influences of grid resolution on the results of k-ε, k-ω, and LES turbulence models are investigated and compared with those of experimental measurements. A numerical pressure under-shoot is appeared near the end of blade pressure surface which is sensitive to grid resolution and flow turbulence modeling. The LES model is able to resolve separation on a coarse and fine grid resolutions. Secondly, the off-design flow condition is modeled by negative and positive inflow incidence angles. The numerical experiments show that a separation bubble generated on blade pressure side is predicted by LES. The total pressure drop is also been calculated at incidence angle between -20◦ and +8◦. The minimum total pressure drop is obtained by k-ω and LES at the design point.Keywords: low pressure turbine, off-design performance, openFOAM, turbulence modeling, flow separation
Procedia PDF Downloads 3625042 Effects Induced by Dispersion-Promoting Cylinder on Fiber-Concentration Distributions in Pulp Suspension Flows
Authors: M. Sumida, T. Fujimoto
Abstract:
Fiber-concentration distributions in pulp liquid flows behind dispersion promoters were experimentally investigated to explore the feasibility of improving operational performance of hydraulic headboxes in papermaking machines. The proposed research was performed in the form of a basic test conducted on a screen-type model comprising a circular cylinder inserted within a channel. Tests were performed using pulp liquid possessing fiber concentrations ranging from 0.3-1.0 wt% under different flow velocities of 0.016-0.74 m/s. Fiber-concentration distributions were measured using the transmitted light attenuation method. Obtained test results were analyzed, and the influence of the flow velocities on wake characteristics behind the cylinder has been investigated with reference to findings of our preceding studies concerning pulp liquid flows in straight channels. Changes in fiber-concentration distribution along the flow direction were observed to be substantially large in the section from the cylinder to four times its diameter downstream of its centerline. Findings of this study provide useful information concerning the development of hydraulic headboxes.Keywords: dispersion promoter, fiber-concentration distribution, hydraulic headbox, pulp liquid flow
Procedia PDF Downloads 3475041 An Analysis of Packaging Materials for an Energy-Efficient Wrapping System
Authors: John Sweeney, Martin Leeming, Raj Thaker, Cristina L. Tuinea-Bobe
Abstract:
Shrink wrapping is widely used as a method for secondary packaging to assemble individual items, such as cans or other consumer products, into single packages. This method involves conveying the packages into heated tunnels and so has the disadvantages that it is energy-intensive, and, in the case of aerosol products, potentially hazardous. We are developing an automated packaging system that uses stretch wrapping to address both these problems, by using a mechanical rather than a thermal process. In this study, we present a comparative study of shrink wrapping and stretch wrapping materials to assess the relative capability of candidate stretch wrap polymer film in terms of mechanical response. The stretch wrap materials are of oriented polymer and therefore elastically anisotropic. We are developing material constitutive models that include both anisotropy and nonlinearity. These material models are to be incorporated into computer simulations of the automated stretch wrapping system. We present results showing the validity of these models and the feasibility of applying them in the simulations.Keywords: constitutive model, polymer, mechanical testing, wrapping system
Procedia PDF Downloads 2935040 Experimental Study on Using the Aluminum Sacrificial Anode as a Cathodic Protection for Marine Structures
Authors: A. Radwan, A. Elbatran, A. Mehanna, M. Shehadeh
Abstract:
The corrosion is natural chemical phenomenon that is applied in many engineering structures. Hence, it is one of the important topics to study in the engineering research. Ship and offshore structures are most exposed to corrosion due to the presence of corrosive medium of air and the seawater. Consequently, investigation of the corrosion behavior and properties over ship and offshore hulls is one of the important topics to study in the marine engineering research. Using sacrificial anode is the most popular solution for protecting marine structures from corrosion. Hence, this research investigates the extent of corrosion between the composite ship model and relative velocity of water, along with the sacrificial aluminum anode consumption and its degree of protection in seawater. In this study, the consumption rate of sacrificial aluminum anode with respect to relative velocity at different Reynold’s numbers was studied experimentally, and it was found that, the degree of cathodic protection represented by the cathode potential at a given distance from the aluminum anode was decreased slightly with increment of the relative velocity.Keywords: corrosion, Reynold's numbers, sacrificial anode, velocity
Procedia PDF Downloads 5565039 Global Mittag-Leffler Stability of Fractional-Order Bidirectional Associative Memory Neural Network with Discrete and Distributed Transmission Delays
Authors: Swati Tyagi, Syed Abbas
Abstract:
Fractional-order Hopfield neural networks are generally used to model the information processing among the interacting neurons. To show the constancy of the processed information, it is required to analyze the stability of these systems. In this work, we perform Mittag-Leffler stability for the corresponding Caputo fractional-order bidirectional associative memory (BAM) neural networks with various time-delays. We derive sufficient conditions to ensure the existence and uniqueness of the equilibrium point by using the theory of topological degree theory. By applying the fractional Lyapunov method and Mittag-Leffler functions, we derive sufficient conditions for the global Mittag-Leffler stability, which further imply the global asymptotic stability of the network equilibrium. Finally, we present two suitable examples to show the effectiveness of the obtained results.Keywords: bidirectional associative memory neural network, existence and uniqueness, fractional-order, Lyapunov function, Mittag-Leffler stability
Procedia PDF Downloads 3655038 Nanostructure and Adhesion of Cement/Polymer Fiber Interfaces
Authors: Faezeh Shalchy
Abstract:
Concrete is the most used materials in the world. It is also one of the most versatile while complex materials which human have used for construction. However, concrete is weak in tension, over the past thirty years many studies were accomplished to improve the tensile properties of concrete (cement-based materials) using a variety of methods. One of the most successful attempts is to use polymeric fibers in the structure of concrete to obtain a composite with high tensile strength and ductility. Understanding the mechanical behavior of fiber reinforced concrete requires the knowledge of the fiber/matrix interfaces at the small scale. In this study, a combination of numerical simulations and experimental techniques have been used to study the nano structure of fiber/matrix interfaces. A new model for calcium-silicate-hydrate (C-S-H)/fiber interfaces is proposed based on Scanning Electron Microscopy (SEM) and Energy-dispersive X-ray spectroscopy (EDX) analysis. The adhesion energy between the C-S-H gel and 2 different polymeric fibers (polyvinyl alcohol and polypropylene) was numerically studied at the atomistic level since adhesion is one of the key factors in the design of fiber reinforced composites. The mechanisms of adhesion as a function of the nano structure of fiber/matrix interfaces are also studied and discussed.Keywords: fiber-reinforced concrete, adhesion, molecular modeling
Procedia PDF Downloads 3285037 Study of Cavitation Phenomena Based on Flow Visualization Test in 3-Way Reversing Valve
Authors: Hyo Lim Kang, Tae An Kim, Seung Ho Han
Abstract:
A 3-way reversing valve has been used in automotive washing machines to remove remaining oil and dirt on machined engine and transmission blocks. It provides rapid and accurate changes of water flow direction without any precise control device. However, due to its complicated bottom-plug shape, a cavitation occurs in a wide range of the bottom-plug in a downstream. In this study, the cavitation index and POC (percent of cavitation) were used to evaluate quantitatively the cavitation phenomena occurring at the bottom-plug. An optimal shape design was carried out via parametric study for geometries of the bottom-plug, in which a simple CAE-model was used in order to avoid time-consuming CFD analysis and hard to achieve convergence. To verify the results of numerical analysis, a flow visualization test was carried out using a test specimen with a transparent acryl pipe according to ISA-RP75.23. The flow characteristics such as the cavitation occurring in the downstream were investigated by using a flow test equipment with valve and pump including a flow control system and high-speed camera.Keywords: cavitation, flow visualization test, optimal shape design, percent of cavitation, reversing valve
Procedia PDF Downloads 3025036 Domain Adaptive Dense Retrieval with Query Generation
Authors: Rui Yin, Haojie Wang, Xun Li
Abstract:
Recently, mainstream dense retrieval methods have obtained state-of-the-art results on some datasets and tasks. However, they require large amounts of training data, which is not available in most domains. The severe performance degradation of dense retrievers on new data domains has limited the use of dense retrieval methods to only a few domains with large training datasets. In this paper, we propose an unsupervised domain-adaptive approach based on query generation. First, a generative model is used to generate relevant queries for each passage in the target corpus, and then, the generated queries are used for mining negative passages. Finally, the query-passage pairs are labeled with a cross-encoder and used to train a domain-adapted dense retriever. We also explore contrastive learning as a method for training domain-adapted dense retrievers and show that it leads to strong performance in various retrieval settings. Experiments show that our approach is more robust than previous methods in target domains that require less unlabeled data.Keywords: dense retrieval, query generation, contrastive learning, unsupervised training
Procedia PDF Downloads 1045035 Statistical Analysis of Surface Roughness and Tool Life Using (RSM) in Face Milling
Authors: Mohieddine Benghersallah, Lakhdar Boulanouar, Salim Belhadi
Abstract:
Currently, higher production rate with required quality and low cost is the basic principle in the competitive manufacturing industry. This is mainly achieved by using high cutting speed and feed rates. Elevated temperatures in the cutting zone under these conditions shorten tool life and adversely affect the dimensional accuracy and surface integrity of component. Thus it is necessary to find optimum cutting conditions (cutting speed, feed rate, machining environment, tool material and geometry) that can produce components in accordance with the project and having a relatively high production rate. Response surface methodology is a collection of mathematical and statistical techniques that are useful for modelling and analysis of problems in which a response of interest is influenced by several variables and the objective is to optimize this response. The work presented in this paper examines the effects of cutting parameters (cutting speed, feed rate and depth of cut) on to the surface roughness through the mathematical model developed by using the data gathered from a series of milling experiments performed.Keywords: Statistical analysis (RSM), Bearing steel, Coating inserts, Tool life, Surface Roughness, End milling.
Procedia PDF Downloads 4325034 Implementation of Problem-Based Learning (PBL) in the Classroom
Authors: Jarmon Sirigunna
Abstract:
The objective of this study were to investigate the success of the implementation of problem-based learning in classroom and to evaluate the level of satisfaction of Suan Sunandra Rajabhat University’s students who participated in the study. This paper aimed to study and focus on a university students survey conducted in Suan Sunandha Rajabhat University during January to March of 2014. The quota sampling was utilized to obtain the sample which included 60 students, 50 percent male and 50 percent female students. The pretest and posttest method was utilized. The findings revealed that the majority of respondents had gained higher knowledge after the posttest significantly. The respondents’ knowledge increased about 40 percent after the experiment. Also, the findings revealed the top three highest level of satisfaction as follows: 1) the proper roles of teacher and students, 2) the knowledge gained from the method of the problem-based learning, 3) the activities of the problem-based learning, 4) the interaction of students from the problem-based learning, and 5) the problem-based learning model. Also, the mean score of all categories was 4.22 with a standard deviation of 0.7435 which indicated that the level of satisfaction was high.Keywords: implement, problem-based learning, satisfaction, university students
Procedia PDF Downloads 370