Search results for: water based paints
32804 Groundwater Monitoring Using a Community: Science Approach
Authors: Shobha Kumari Yadav, Yubaraj Satyal, Ajaya Dixit
Abstract:
In addressing groundwater depletion, it is important to develop evidence base so to be used in assessing the state of its degradation. Groundwater data is limited compared to meteorological data, which impedes the groundwater use and management plan. Monitoring of groundwater levels provides information base to assess the condition of aquifers, their responses to water extraction, land-use change, and climatic variability. It is important to maintain a network of spatially distributed, long-term monitoring wells to support groundwater management plan. Monitoring involving local community is a cost effective approach that generates real time data to effectively manage groundwater use. This paper presents the relationship between rainfall and spring flow, which are the main source of freshwater for drinking, household consumptions and agriculture in hills of Nepal. The supply and withdrawal of water from springs depends upon local hydrology and the meteorological characteristics- such as rainfall, evapotranspiration and interflow. The study offers evidence of the use of scientific method and community based initiative for managing groundwater and springshed. The approach presents a method to replicate similar initiative in other parts of the country for maintaining integrity of springs.Keywords: citizen science, groundwater, water resource management, Nepal
Procedia PDF Downloads 20332803 Biosensor: An Approach towards Sustainable Environment
Authors: Purnima Dhall, Rita Kumar
Abstract:
Introduction: River Yamuna, in the national capital territory (NCT), and also the primary source of drinking water for the city. Delhi discharges about 3,684 MLD of sewage through its 18 drains in to the Yamuna. Water quality monitoring is an important aspect of water management concerning to the pollution control. Public concern and legislation are now a day’s demanding better environmental control. Conventional method for estimating BOD5 has various drawbacks as they are expensive, time-consuming, and require the use of highly trained personnel. Stringent forthcoming regulations on the wastewater have necessitated the urge to develop analytical system, which contribute to greater process efficiency. Biosensors offer the possibility of real time analysis. Methodology: In the present study, a novel rapid method for the determination of biochemical oxygen demand (BOD) has been developed. Using the developed method, the BOD of a sample can be determined within 2 hours as compared to 3-5 days with the standard BOD3-5day assay. Moreover, the test is based on specified consortia instead of undefined seeding material therefore it minimizes the variability among the results. The device is coupled to software which automatically calculates the dilution required, so, the prior dilution of the sample is not required before BOD estimation. The developed BOD-Biosensor makes use of immobilized microorganisms to sense the biochemical oxygen demand of industrial wastewaters having low–moderate–high biodegradability. The method is quick, robust, online and less time consuming. Findings: The results of extensive testing of the developed biosensor on drains demonstrate that the BOD values obtained by the device correlated with conventional BOD values the observed R2 value was 0.995. The reproducibility of the measurements with the BOD biosensor was within a percentage deviation of ±10%. Advantages of developed BOD biosensor • Determines the water pollution quickly in 2 hours of time; • Determines the water pollution of all types of waste water; • Has prolonged shelf life of more than 400 days; • Enhanced repeatability and reproducibility values; • Elimination of COD estimation. Distinctiveness of Technology: • Bio-component: can determine BOD load of all types of waste water; • Immobilization: increased shelf life > 400 days, extended stability and viability; • Software: Reduces manual errors, reduction in estimation time. Conclusion: BiosensorBOD can be used to measure the BOD value of the real wastewater samples. The BOD biosensor showed good reproducibility in the results. This technology is useful in deciding treatment strategies well ahead and so facilitating discharge of properly treated water to common water bodies. The developed technology has been transferred to M/s Forbes Marshall Pvt Ltd, Pune.Keywords: biosensor, biochemical oxygen demand, immobilized, monitoring, Yamuna
Procedia PDF Downloads 27832802 Experimental Analysis of the Influence of Water Mass Flow Rate on the Performance of a CO2 Direct-Expansion Solar Assisted Heat Pump
Authors: Sabrina N. Rabelo, Tiago de F. Paulino, Willian M. Duarte, Samer Sawalha, Luiz Machado
Abstract:
Energy use is one of the main indicators for the economic and social development of a country, reflecting directly in the quality of life of the population. The expansion of energy use together with the depletion of fossil resources and the poor efficiency of energy systems have led many countries in recent years to invest in renewable energy sources. In this context, solar-assisted heat pump has become very important in energy industry, since it can transfer heat energy from the sun to water or another absorbing source. The direct-expansion solar assisted heat pump (DX-SAHP) water heater system operates by receiving solar energy incident in a solar collector, which serves as an evaporator in a refrigeration cycle, and the energy reject by the condenser is used for water heating. In this paper, a DX-SAHP using carbon dioxide as refrigerant (R744) was assembled, and the influence of the variation of the water mass flow rate in the system was analyzed. The parameters such as high pressure, water outlet temperature, gas cooler outlet temperature, evaporator temperature, and the coefficient of performance were studied. The mainly components used to assemble the heat pump were a reciprocating compressor, a gas cooler which is a countercurrent concentric tube heat exchanger, a needle-valve, and an evaporator that is a copper bare flat plate solar collector designed to capture direct and diffuse radiation. Routines were developed in the LabVIEW and CoolProp through MATLAB software’s, respectively, to collect data and calculate the thermodynamics properties. The range of coefficient of performance measured was from 3.2 to 5.34. It was noticed that, with the higher water mass flow rate, the water outlet temperature decreased, and consequently, the coefficient of performance of the system increases since the heat transfer in the gas cooler is higher. In addition, the high pressure of the system and the CO2 gas cooler outlet temperature decreased. The heat pump using carbon dioxide as a refrigerant, especially operating with solar radiation has been proven to be a renewable source in an efficient system for heating residential water compared to electrical heaters reaching temperatures between 40 °C and 80 °C.Keywords: water mass flow rate, R-744, heat pump, solar evaporator, water heater
Procedia PDF Downloads 17632801 The Effectiveness of Water Indices in Detecting Soil Moisture as an Indicator of Mudflow in Arid Regions
Authors: Zahraa Al Ali, Ammar Abulibdeh, Talal Al-Awadhi, Midhun Mohan, Mohammed Al-Barwani, Mohammed Al-Barwani, Sara Al Nabbi, Meshal Abdullah
Abstract:
This study aims to evaluate the performance and effectiveness of six spectral water indices - derived from Multispectral sentinel-2 data - to detect soil moisture and inundated area in arid regions to be used as an indicator of mudflow phenomena to predict high-risk areas. Herein, the validation of the performance of spectral indices was conducted using threshold method, spectral curve performance, and soil-line method. These indirect validation techniques play a key role in saving time, effort, and cost, particularly for large-scale and inaccessible areas. It was observed that the Normalized Difference Water Index (NDWI), Modified Normalized Difference Water Index (mNDWI), and RSWIR indices have the potential to detect soil moisture and inundated areas in arid regions. According to the temporal spectral curve performance, the spectral characteristics of water and soil moisture were distinct in the Near infrared (NIR), Short-wave Infrared (SWIR1,2) bands. However, the rate and degree differed between these bands, depending on the amount of water in the soil. Furthermore, the soil line method supported the appropriate selection of threshold values to detect soil moisture. However, the threshold values varied with location, time, season, and between indices. We concluded that considering the factors influencing the behavior of water and soil reflectivity could support decision-makers in identifying high-risk mudflow locations.Keywords: spectral reflectance curve, soil-line method, spectral indices, Shaheen cyclone
Procedia PDF Downloads 7332800 Analysis of the Detachment of Water Droplets from a Porous Fibrous Surface
Authors: Ibrahim Rassoul, E-K. Si Ahmed
Abstract:
The growth, deformation, and detachment of fluid droplets adherent to solid substrates is a problem of fundamental interest with numerous practical applications. Specific interest in this proposal is the problem of a droplet on a fibrous, hydrophobic substrate subjected to body or external forces (gravity, convection). The past decade has seen tremendous advances in proton exchange membrane fuel cell (PEMFC) technology. However, there remain many challenges to bring commercially viable stationary PEMFC products to the market. PEMFCs are increasingly emerging as a viable alternative clean power source for automobile and stationary applications. Before PEMFCs can be employed to power automobiles and homes, several key technical challenges must be properly addressed. One technical challenge is elucidating the mechanisms underlying water transport in and removal from PEMFCs. On the one hand, sufficient water is needed in the polymer electrolyte membrane or PEM to maintain sufficiently high proton conductivity. On the other hand, too much liquid water present in the cathode can cause 'flooding' (that is, pore space is filled with excessive liquid water) and hinder the transport of the oxygen reactant from the gas flow channel (GFC) to the three-phase reaction sites. The aim of this work is to investigate the stability of a liquid water droplet emerging form a GDL pore, to gain fundamental insight into the instability process leading to detachment. The approach will combine analytical and numerical modeling with experimental visualization and measurements.Keywords: polymer electrolyte fuel cell, water droplet, gas diffusion layer, contact angle, surface tension
Procedia PDF Downloads 25132799 Numerical Assessment on the Unsaturated Behavior of Silty Sand
Authors: Seyed Abolhassan Naeini, Ali Namaei
Abstract:
This investigation presents the behavior of the unsaturated silty sand by calculating the shear resistance of the specimens by numerical method. In order to investigate this behavior, a series of triaxial tests have been simulated in constant water condition. The finite difference software FLAC3D has been carried out for analyzing the shear resistance and the results are compared with findings from a previous laboratory tests. Constant water tests correspond to a field condition where the rate of the loading is much quicker than the rate at which the pore water is able to drain out of the soil. Tests were simulated on two groups of the silty sands. The obtained results show that the FLAC software may be able to simulate the behavior of specimens with the low suction value magnitude. As the initial suction increased, the differences between numerical and experimental results increased, especially in loose sand. Since some assumptions were used for input parameters, a conclusive result needs more investigations.Keywords: finite difference, shear resistance, unsaturated silty sand, constant water test
Procedia PDF Downloads 12032798 Modeling the Performance of Natural Sand-Bentonite Barriers after Infiltration with Polar and Non-Polar Hydrocarbon Leachates
Authors: Altayeb Qasem, Mousa Bani Baker, Amani Nawafleh
Abstract:
The complexity of the sand-bentonite liner barrier system calls for an adequate model that reflects the conditions depending on the barrier materials and the characteristics of the permeates which lead to hydraulic conductivity changes when liners infiltrated with polar, no-polar, miscible and immiscible liquids. This paper is dedicated to developing a model for evaluating the hydraulic conductivity in the form of a simple indicator for the compatibility of the liner versus leachate. Based on two liner compositions (95% sand: 5% bentonite; and 90% sand: 10% bentonite), two pressures (40 kPa and 100 kPa), and three leachates: water, ethanol and biofuel. Two characteristics of the leacahtes were used: viscosity of permeate and its octanol-water partitioning coefficient (Kow). Three characteristics of the liners mixtures were evaluated which had impact on the hydraulic conductivity of the liner system: the initial content of bentonite (%), the free swelling index, and the shrinkage limit of the initial liner’s mixture. Engineers can use this modest tool to predict a potential liner failure in sand-bentonite barriers.Keywords: liner performance, sand-bentonite barriers, viscosity, free swelling index, shrinkage limit, octanol-water partitioning coefficient, hydraulic conductivity, theoretical modeling
Procedia PDF Downloads 41432797 Factors Affecting Aluminum Dissolve from Acidified Water Purification Sludge
Authors: Wen Po Cheng, Chi Hua Fu, Ping Hung Chen, Ruey Fang Yu
Abstract:
Recovering resources from water purification sludge (WPS) have been gradually stipulated in environmental protection laws and regulations in many nations. Hence, reusing the WPS is becoming an important topic, and recovering alum from WPS is one of the many practical alternatives. Most previous research efforts have been conducted on studying the amphoteric characteristic of aluminum hydroxide for investigating the optimum pH range to dissolve the Al(III) species from WPS, but it has been lack of reaction kinetics or mechanisms related discussion. Therefore, in this investigation, water purification sludge (WPS) solution was broken by ultrasound to make particle size of reactants smaller, specific surface area larger. According to the reaction kinetics, these phenomena let the dissolved aluminum salt quantity increased and the reaction rate go faster.Keywords: aluminum, acidification, sludge, recovery
Procedia PDF Downloads 62932796 Technology Adoption Models: A Study on Brick Kiln Firms in Punjab
Authors: Ajay Kumar, Shamily Jaggi
Abstract:
In developing countries like India development of modern technologies has been a key determinant in accelerating industrialization and urbanization. But in the pursuit of rapid economic growth, development is considered a top priority, while environmental protection is not given the same importance. Thus, a number of industries sited haphazardly have been established, leading to a deterioration of natural resources like water, soil and air. As a result, environmental pollution is tremendously increasing due to industrialization and mechanization that are serving to fulfill the demands of the population. With the increasing population, demand for bricks for construction work is also increasing, establishing the brick industry as a growing industry. Brick production requires two main resources; water as a source of life, and soil, as a living environment. Water and soil conservation is a critical issue in areas facing scarcity of water and soil resources. The purpose of this review paper is to provide a brief overview of the theoretical frameworks used in the analysis of the adoption and/or acceptance of soil and water conservation practices in the brick industry. Different frameworks and models have been used in the analysis of the adoption and/or acceptance of new technologies and practices; these include the technology acceptance model, motivational model, theory of reasoned action, innovation diffusion theory, theory of planned behavior, and the unified theory of acceptance and use of technology. However, every model has some limitations, such as not considering environmental/contextual and economic factors that may affect the individual’s intention to perform a behavior. The paper concludes that in comparing other models, the UTAUT seems a better model for understanding the dynamics of acceptance and adoption of water and soil conservation practices.Keywords: brick kiln, water conservation, soil conservation, unified theory of acceptance and use of technology, technology adoption
Procedia PDF Downloads 10432795 Paper Concrete: A Step towards Sustainability
Authors: Hemanth K. Balaga, Prakash Nanthagopalan
Abstract:
Every year a huge amount of paper gets discarded of which only a minute fraction is being recycled and the rest gets dumped as landfills. Paper fibres can be recycled only a limited number of times before they become too short or weak to make high quality recycled paper. This eventually adds to the already big figures of waste paper that is being generated and not recycled. It would be advantageous if this prodigious amount of waste can be utilized as a low-cost sustainable construction material and make it as a value added product. The generic term for the material under investigation is paper-concrete. This is a fibrous mix made of Portland cement, water and pulped paper and/or other aggregates. The advantages of this material include light weight, good heat and sound insulation capability and resistance to flame. The disadvantages include low strength compared to conventional concrete and its hydrophilic nature. The properties vary with the variation of cement and paper content in the mix. In the present study, Portland Pozzolona Cement and news print paper were used for the preparation of paper concrete cubes. Initially, investigations were performed to determine the minimum soaking period required for the softening of the paper fibres. Further different methodologies were explored for proper blending of the pulp with cement paste. The properties of paper concrete vary with the variation of cement to paper to water ratio. The study mainly addresses the parameters of strength and weight loss of the concrete cubes with age and the time that is required for the dry paper fibres to become soft enough in water to bond with the cement. The variation of compressive strength with cement content, water content, and time was studied. The water loss of the cubes with time and the minimum time required for the softening of paper fibres were investigated .Results indicate that the material loses 25-50 percent of the initial weight at the end of 28 days, and a maximum 28 day compressive strength (cubes) of 5.4 Mpa was obtained.Keywords: soaking time, difference water, minimum water content, maximum water content
Procedia PDF Downloads 25632794 Impact of Water Interventions under WASH Program in the South-west Coastal Region of Bangladesh
Authors: S. M. Ashikur Elahee, Md. Zahidur Rahman, Md. Shofiqur Rahman
Abstract:
This study evaluated the impact of different water interventions under WASH program on access of household's to safe drinking water. Following survey method, the study was carried out in two Upazila of South-west coastal region of Bangladesh namely Koyra from Khulna and Shymnagar from Satkhira district. Being an explanatory study, a total of 200 household's selected applying random sampling technique were interviewed using a structured interview schedule. The predicted probability suggests that around 62 percent household's are out of year-round access to safe drinking water whereby, only 25 percent household's have access at SPHERE standard (913 Liters/per person/per year). Besides, majority (78 percent) of the household's have not accessed at both indicators simultaneously. The distance from household residence to the water source varies from 0 to 25 kilometer with an average distance of 2.03 kilometers. The study also reveals that the increase in monthly income around BDT 1,000 leads to additional 11 liters (coefficient 0.01 at p < 0.1) consumption of safe drinking water for a person/year. As expected, lining up time has significant negative relationship with dependent variables i.e., for higher lining up time, the probability of getting access for both SPHERE standard and year round access variables becomes lower. According to ordinary least square (OLS) regression results, water consumption decreases at 93 liters for per person/year of a household if one member is added to that household. Regarding water consumption intensity, ordered logistic regression (OLR) model shows that one-minute increase of lining up time for water collection tends to reduce water consumption intensity. On the other hand, as per OLS regression results, for one-minute increase of lining up time, the water consumption decreases by around 8 liters. Considering access to Deep Tube Well (DTW) as a reference dummy, in OLR, the household under Pond Sand Filter (PSF), Shallow Tube Well (STW), Reverse Osmosis (RO) and Rainwater Harvester System (RWHS) are respectively 37 percent, 29 percent, 61 percent and 27 percent less likely to ensure year round access of water consumption. In line of health impact, different type of water born diseases like diarrhea, cholera, and typhoid are common among the coastal community caused by microbial impurities i.e., Bacteria, Protozoa. High turbidity and TDS in pond water caused by reduction of water depth, presence of suspended particle and inorganic salt stimulate the growth of bacteria, protozoa, and algae causes affecting health hazard. Meanwhile, excessive growth of Algae in pond water caused by excessive nitrate in drinking water adversely effects on child health. In lieu of ensuring access at SPHERE standard, we need to increase the number of water interventions at reasonable distance, preferably a half kilometer away from the dwelling place, ensuring community peoples involved with its installation process where collectively owned water intervention is found more effective than privately owned. In addition, a demand-responsive approach to supply of piped water should be adopted to allow consumer demand to guide investment in domestic water supply in future.Keywords: access, impact, safe drinking water, Sphere standard, water interventions
Procedia PDF Downloads 21932793 The Impact of Mining Activities on the Surface Water Quality: A Case Study of the Kaap River in Barberton, Mpumalanga
Authors: M. F. Mamabolo
Abstract:
Mining activities are identified as the most significant source of heavy metal contamination in river basins, due to inadequate disposal of mining waste thus resulting in acid mine drainage. Waste materials generated from gold mining and processing have severe and widespread impacts on water resources. Therefore, a total of 30 water samples were collected from Fig Tree Creek, Kaapriver, Sheba mine stream & Sauid kaap river to investigate the impact of gold mines on the Kaap River system. Physicochemical parameters (pH, EC and TDS) were taken using a BANTE 900P portable water quality meter. The concentration of Fe, Cu, Co, and SO₄²⁻ in water samples were analysed using Inductively Coupled Plasma-Mass spectrophotometry (ICP-MS) at 0.01 mg/L. The results were compared to the regulatory guideline of the World Health Organization (WHO) and the South Africa National Standards (SANS). It was found that Fe, Cu and Co were below the guideline values while SO₄²⁻ detected in Sheba mine stream exceeded the 250 mg/L limit for both seasons, attributed by mine wastewater. SO₄²⁻ was higher in wet season due to high evaporation rates and greater interaction between rocks and water. The pH of all the streams was within the limit (≥5 to ≤9.7), however EC of the Sheba mine stream, Suid Kaap River & where the tributary connects with the Fig Tree Creek exceeded 1700 uS/m, due to dissolved material. The TDS of Sheba mine stream exceeded 1000 mg/L, attributed by high SO₄²⁻ concentration. While the tributary connecting to the Fig Tree Creek exceed the value due to pollution from household waste, runoff from agriculture etc. In conclusion, the water from all sampled streams were safe for consumption due to low concentrations of physicochemical parameters. However, elevated concentration of SO₄²⁻ should be monitored and managed to avoid water quality deterioration in the Kaap River system.Keywords: Kaap river system, mines, heavy metals, sulphate
Procedia PDF Downloads 8132792 Thermal Performance Analysis of Nanofluids in a Concetric Heat Exchanger Equipped with Turbulators
Authors: Feyza Eda Akyurek, Bayram Sahin, Kadir Gelis, Eyuphan Manay, Murat Ceylan
Abstract:
Turbulent forced convection heat transfer and pressure drop characteristics of Al2O3–water nanofluid flowing through a concentric tube heat exchanger with and without coiled wire turbulators were studied experimentally. The experiments were conducted in the Reynolds number ranging from 4000 to 20000, particle volume concentrations of 0.8 vol.% and 1.6 vol.%. Two turbulators with the pitches of 25 mm and 39 mm were used. The results of nanofluids indicated that average Nusselt number increased much more with increasing Reynolds number compared to that of pure water. Thermal conductivity enhancement by the nanofluids resulted in heat transfer enhancement. Once the pressure drop of the alumina/water nanofluid was analyzed, it was nearly equal to that of pure water at the same Reynolds number range. It was concluded that nanofluids with the volume fractions of 0.8 and 1.6 did not have a significant effect on pressure drop change. However, the use of wire coils in heat exchanger enhanced heat transfer as well as the pressure drop.Keywords: turbulators, heat exchanger, nanofluids, heat transfer enhancement
Procedia PDF Downloads 40732791 Normalized Difference Vegetation Index and Normalize Difference Chlorophyll Changes with Different Irrigation Levels on Sillage Corn
Authors: Cenk Aksit, Suleyman Kodal, Yusuf Ersoy Yildirim
Abstract:
Normalized Difference Vegetation Index (NDVI) is a widely used index in the world that provides reference information, such as the health status of the plant, and the density of the vegetation in a certain area, by making use of the electromagnetic radiation reflected from the plant surface. On the other hand, the chlorophyll index provides reference information about the chlorophyll density in the plant by making use of electromagnetic reflections at certain wavelengths. Chlorophyll concentration is higher in healthy plants and decreases as plant health decreases. This study, it was aimed to determine the changes in Normalize Difference Vegetation Index (NDVI) and Normalize Difference Chlorophyll (NDCI) of silage corn irrigated with subsurface drip irrigation systems under different irrigation levels. In 5 days irrigation interval, the daily potential plant water consumption values were collected, and the calculated amount was applied to the full irrigation and 3 irrigation water levels as irrigation water. The changes in NDVI and NDCI of silage corn irrigated with subsurface drip irrigation systems under different irrigation levels were determined. NDVI values have changed according to the amount of irrigation water applied, and the highest NDVI value has been reached in the subject where the most water is applied. Likewise, it was observed that the chlorophyll value decreased in direct proportion to the amount of irrigation water as the plant approached the harvest.Keywords: NDVI, NDCI, sub-surface drip irrigation, silage corn, deficit irrigation
Procedia PDF Downloads 9732790 Effect of Pressure and Dissolved Oxygen on Stress Corrosion Cracking Susceptibility of Inconel 617 in Steam and Supercritical Water
Authors: Hasan Izhar Khan, Naiqiang Zhang, Hong Xu, Zhongliang Zhu, Dongfang Jiang
Abstract:
Inconel 617, a nickel-based alloy designed for high-temperature applications, got an excellent amalgamation of strength and oxidation resistance at high temperatures. For a better understanding of its suitability to be used in superheater and reheater tubes in ultra-supercritical power plants, stress corrosion cracking (SCC) susceptibility must be evaluated. In the present study, the effect of medium environment on SCC behavior of Inconel 617, in the form of a round bar tensile specimen, was tested via slow strain rate tensile tests in steam and supercritical water (SCW) at 650 °C. The results showed that SCC susceptibility has a linear relationship with exposed pressure and increases monotonically with an increase in pressure. A severe SCC susceptibility was observed in SCW followed by that in a steam environment. Fracture and gage surface showed apparent characteristics of brittle fracture. Intergranular cracks initiated from the edge region and propagated into the matrix through cross section until ductile rupture. When dissolved oxygen contents were decreased in SCW environment, it showed no noticeable effect on mechanical properties but SCC susceptibility slightly decreased. The research revealed the influence of environment on SCC susceptibility of Inconel 617 in steam and SCW.Keywords: Inconel 617, steam, supercritical water, stress corrosion cracking
Procedia PDF Downloads 15732789 The Sustainable Governance of Aquifer Injection Using Treated Coal Seam Gas Water in Queensland, Australia: Lessons for Integrated Water Resource Management
Authors: Jacqui Robertson
Abstract:
The sustainable governance of groundwater is of the utmost importance in an arid country like Australia. Groundwater has been relied on by our agricultural and pastoral communities since the State was settled by European colonialists. Nevertheless, the rapid establishment of a coal seam gas (CSG) industry in Queensland, Australia, has had extensive impacts on the pre-existing groundwater users. Managed aquifer recharge of important aquifers in Queensland, Australia, using treated coal seam gas produced water has been used to reduce the impacts of CSG development in Queensland Australia. However, the process has not been widely adopted. Negative environmental outcomes are now acknowledged as not only engineering, scientific or technical problems to be solved but also the result of governance failures. An analysis of the regulatory context for aquifer injection using treated CSG water in Queensland, Australia, using Ostrom’s Common Pool Resource (CPR) theory and a ‘heat map’ designed by the author, highlights the importance of governance arrangements. The analysis reveals the costs and benefits for relevant stakeholders of artificial recharge of groundwater resources in this context. The research also reveals missed opportunities to further active management of the aquifer and resolve existing conflicts between users. The research illustrates the importance of strategically and holistically evaluating innovations in technology that impact water resources to reveal incentives that impact resource user behaviors. The paper presents a proactive step that can be adapted to support integrated water resource management and sustainable groundwater development.Keywords: managed aquifer recharge, groundwater regulation, common-pool resources, integrated water resource management, Australia
Procedia PDF Downloads 23732788 Effects of Drought on Microbial Activity in Rhizosphere, Soil Hydrophobicity and Leaching of Mineral Nitrogen from Arable Soil Depending on Method of Fertilization
Authors: Jakub Elbl, Lukáš Plošek, Antonín Kintl, Jaroslav Hynšt, Soňa Javoreková, Jaroslav Záhora, Libor Kalhotka, Olga Urbánková, Ivana Charousová
Abstract:
This work presents the first results from the long-term laboratory experiment dealing with impact of drought on soil properties. Three groups of the treatment (A, B and C) with different regime of irrigation were prepared. The soil water content was maintained at 70 % of soil water holding capacity in group A, at 40 % in group B. In group C, soil water regime was maintained in the range of wilting point. Each group of the experiment was divided into three variants (A1 = B1, C1; A2 = B2, C2 etc.) with three repetitions: Variants A1 (B1, C1) were controls without addition of another fertilizer. Variants A2 (B2, C2) were fertilized with mineral nitrogen fertilizer DAM 390 (0.140 Mg of N per ha) and variants A3 (B3, C3) contained 45 g of Cp per a pot. The significant differences (ANOVA, P<0.05) in the leaching of mineral nitrogen and values of saturated hydraulic conductivity (Ksat) were found. The highest values of Ksat were found in variants (within each group) with addition of compost (A3, B3, C3). Conversely, the lowest values of Ksat were found in variants with addition of mineral nitrogen. Low values of Ksat indicate an increased level of hydrophobicity in individual groups of the experiment. Moreover, all variants with compost addition showed lower amount of mineral nitrogen leaching and high level of microbial activity than variants without. This decrease of mineral nitrogen leaching was about 200 % in comparison with the control variant and about 300 % with variant, where mineral nitrogen was added. Based on these results, we can conclude that changes of soil water content directly have impact on microbial activity, soil hydrophobicity and loss of mineral nitrogen from the soil.Keywords: drought, microbial activity, mineral nitrogen, soil hydrophobicity
Procedia PDF Downloads 38332787 Identification of a Print Design Approach for the Application of Multicolour and Pattern Changing Effects
Authors: Dilusha Rajapakse
Abstract:
The main reason for printing coloured imageries, pattern or motif onto textiles is to enhance the visual appearance of the surface so that the final textile product would get the required attention from potential customers. Such colours and patterns are permanently applied onto the textiles using conventional static colourants, and we expect such decorations to be last for the entire lifecycle of the textile product. The focus of this research presentation is to discuss the ability to integrate multicolour and pattern changing aesthetics onto textiles with the application of water based photochromic colourants. By adopting a research through design approach, a number of iterative flatbed screen printing experiments were conducted to explore the process of printing water based photochromic colours on textile surfaces. The research resulted in several technical parameters that have to be considered during the process of screen printing. Moreover, a modified printing technique that could be used to apply decorative photographic imagery onto textile with multicolour changing effects was also identified. A number of product applications for such dynamic printed textiles were revealed, and appropriate visual evidence was referred to justify the finding.Keywords: dynamic aesthetics, multicolour changing textiles, non-emissive colours, printed textile design
Procedia PDF Downloads 39532786 Application of DSSAT-CSM Model for Estimating Rain-Water Productivity of Maize (Zea Mays L.) Under Changing Climate of Central Rift Valley, Ethiopia
Authors: Fitih Ademe, Kibebew Kibret, Sheleme Beyene, Mezgebu Getnet, Gashaw Meteke
Abstract:
Pressing demands for agricultural products and its associated pressure on water availability in the semi-arid areas demanded information for strategic decision-making in the changing climate conditions of Ethiopia. Availing such information through traditional agronomic research methods is not sufficient unless supported through the application of decision-support tools. The CERES (Crop Environmental Resource Synthesis) model in DSSAT-CSM was evaluated for estimating yield and water productivity of maize under two soil types (Andosol and Luvisol) of the Central Rift Valley of Ethiopia. A six-year data (2010 – 2017) obtained from national fertilizer determination experiments were used for model evaluation. Pertinent statistical indices were employed to evaluate model performance. Following model evaluation, yield and rain-water productivity of maize was assessed for the baseline (1981-2010) and future climate (2050’s and 2080’s) scenario. The model performed well in predicting phenology, growth, and yield of maize for the different seasons and phosphorous rates. A good agreement between simulated and observed grain yield was indicated by low values of the RMSE (0.15 - 0.37 Mg/ha) and other indices for the two soil types. The evaluated model predicted a decline in the potential (23.8 to 26.7% at Melkassa and from 21.7 to 26.1% at Ziway under RCP4.5 and RCP8.5 climate change scenarios, respectively) and water-limited yield (15 to 18.3% at Melkassa and by 6.5 to 10.5% at Ziway) in the mid-century due to climate change. Consequently, a decline in water productivity was projected in the future periods that necessitate availing options to improve water productivity in the region. In conclusion, the DSSAT-CERES-maize model can be used to simulate maize (Melkassa-2) phenology, growth and grain yield, as well as simulate water productivity under different management scenarios that can help to identify options to improve water productivity in the changing climate of the semi-arid central Rift valley of Ethiopia.Keywords: andosol, CERES-maize, luvisol, model evaluation, water productivity
Procedia PDF Downloads 7532785 Water-in-Diesel Fuel Nanoemulsions Prepared by Modified Low Energy: Emulsion Drop Size and Stability, Physical Properties, and Emission Characteristics
Authors: M. R. Noor El-Din, Marwa R. Mishrif, R. E. Morsi, E. A. El-Sharaky, M. E. Haseeb, Rania T. M. Ghanem
Abstract:
This paper studies the physical and rheological behaviours of water/in/diesel fuel nanoemulsions prepared by modified low energy method. Twenty of water/in/diesel fuel nanoemulsions were prepared using mixed nonionic surfactants of sorbitan monooleate and polyoxyethylene sorbitan trioleate (MTS) at Hydrophilic-Lipophilic Balance (HLB) value of 10 and a working temperature of 20°C. The influence of the prepared nanoemulsions on the physical properties such as kinematic viscosity, density, and calorific value was studied. Also, nanoemulsion systems were subjected to rheological evaluation. The effect of water loading percentage (5, 6, 7, 8, 9 and 10 wt.%) on rheology was assessed at temperatures range from 20 to 60°C with temperature interval of 10 for time lapse 0, 1, 2 and 3 months, respectively. Results show that all of the sets nanoemulsions exhibited a Newtonian flow character of low-shear viscosity in the range of 132 up to 191 1/s, and followed by a shear-thinning region with yield value (Non-Newtonian behaviour) at high shear rate for all water ratios (5 to 10 wt.%) and at all test temperatures (20 to 60°C) for time ageing up to 3 months. Also, the viscosity/temperature relationship of all nanoemulsions fitted well Arrhenius equation with high correlation coefficients that ascertain their Newtonian behavior.Keywords: alternative fuel, nanoemulsion, surfactant, diesel fuel
Procedia PDF Downloads 31332784 Efficiency of a Molecularly Imprinted Polymer for Selective Removal of Chlorpyrifos from Water Samples
Authors: Oya A. Urucu, Aslı B. Çiğil, Hatice Birtane, Ece K. Yetimoğlu, Memet Vezir Kahraman
Abstract:
Chlorpyrifos is an organophosphorus pesticide which can be found in environmental water samples. The efficiency and reuse of a molecularly imprinted polymer (chlorpyrifos - MIP) were investigated for the selective removal of chlorpyrifos residues. MIP was prepared with UV curing thiol-ene polymerization technology by using multifunctional thiol and ene monomers. The thiol-ene curing reaction is a radical induced process, however unlike other photoinitiated polymerization processes, this polymerization process is a free-radical reaction that proceeds by a step-growth mechanism, involving two main steps; a free-radical addition followed by a chain transfer reaction. It assures a very rapidly formation of a uniform crosslinked network with low shrinkage, reduced oxygen inhibition during curing and excellent adhesion. In this study, thiol-ene based UV-curable polymeric materials were prepared by mixing pentaerythritol tetrakis(3-mercaptopropionate), glyoxal bis diallyl acetal, polyethylene glycol diacrylate (PEGDA) and photoinitiator. Chlorpyrifos was added at a definite ratio to the prepared formulation. Chemical structure and thermal properties were characterized by FTIR and thermogravimetric analysis (TGA), respectively. The pesticide analysis was performed by gas chromatography-mass spectrometry (GC-MS). The influences of some analytical parameters such as pH, sample volume, amounts of analyte concentration were studied for the quantitative recoveries of the analyte. The proposed MIP method was applied to the determination of chlorpyrifos in river and tap water samples. The use of the MIP provided a selective and easy solution for removing chlorpyrifos from the water.Keywords: molecularly imprinted polymers, selective removal, thilol-ene, uv-curable polymer
Procedia PDF Downloads 30132783 Cellulose Containing Metal Organic Frameworks in Environmental Applications
Authors: Hossam El-Sayed Emam
Abstract:
As an essential issue for life, water while it’s important for all living organisms. However, the world is dangerously facing the serious problem for the deficiency of the sources of drinking water. Within the aquatic systems, there are various gases, microbes, and other toxic ingredients (chemical compounds and heavy metals) occurred owing to the draining of agricultural and industrial wastewater, resulting in water pollution. On the other hand, fuel (gaseous, liquid, or in solid phase) is one of the extensively consumable energy sources, and owing to its origin from fossil, it contains some sulfur-, nitrogen- and oxygen-based compounds that cause serious problems (toxicity, catalyst poisoning, corrosion, and gum formation andcarcinogenic effects), to be ascribed as undesirable pollutants.MOFs as porous coordinating polymers are superiorly exploited in the adsorption and separationof contaminants for wastewater treatment and fuel purification. The inclusion of highly adsorbent materials like MOFs to be immobilized within cellulosic materialscould be investigated as a new challenge for the separation of contaminants with high efficiency and opportunity for recyclability. Therefore, the current approach ascribes the exploitation of different MOFsimmobilized within cellulose (powder, films, and fabrics)for applications in environmental. Herein, using cellulose containing MOFs in dye removal (degradation and adsorption), pharmaceutical intermediates removal, and fuel purification were summarized.Keywords: cellulose, MOFs, dye removal, pharmaceutical intermediates, fuel purification
Procedia PDF Downloads 15432782 Chemical Modification of Biosorbent for Prconcentation of Cadmium in Water Sample
Authors: Homayon Ahmad Panahi, Niusha Mohseni Darabi, Elham Moniri
Abstract:
A new biosorbent is prepared by coupling a cibacron blue to yeast cells. The modified yeast cells with cibacron blue has been characterized by Fourier transform infrared spectroscopy (FT-IR) and elemental analysis and applied for the preconcentration and solid phase extraction of trace cadmium ion from water samples. The optimum pH value for sorption of the cadmium ions by yeast cells- cibacron blue was 5.5. The sorption capacity of modified biosorbent was 45 mg. g−1. A recovery of 98.2% was obtained for Cd(II) when eluted with 0.5 M nitric acid. The method was applied for Cd(II) preconcentration and determination in sea water sample.Keywords: solid phase extraction, yeast cells, Nickl, isotherm study
Procedia PDF Downloads 26432781 A Machine Learning Approach for Anomaly Detection in Environmental IoT-Driven Wastewater Purification Systems
Authors: Giovanni Cicceri, Roberta Maisano, Nathalie Morey, Salvatore Distefano
Abstract:
The main goal of this paper is to present a solution for a water purification system based on an Environmental Internet of Things (EIoT) platform to monitor and control water quality and machine learning (ML) models to support decision making and speed up the processes of purification of water. A real case study has been implemented by deploying an EIoT platform and a network of devices, called Gramb meters and belonging to the Gramb project, on wastewater purification systems located in Calabria, south of Italy. The data thus collected are used to control the wastewater quality, detect anomalies and predict the behaviour of the purification system. To this extent, three different statistical and machine learning models have been adopted and thus compared: Autoregressive Integrated Moving Average (ARIMA), Long Short Term Memory (LSTM) autoencoder, and Facebook Prophet (FP). The results demonstrated that the ML solution (LSTM) out-perform classical statistical approaches (ARIMA, FP), in terms of both accuracy, efficiency and effectiveness in monitoring and controlling the wastewater purification processes.Keywords: environmental internet of things, EIoT, machine learning, anomaly detection, environment monitoring
Procedia PDF Downloads 15132780 On Physico-Chemical Status of Agbabu Water, Oluwa River, Odigbo Local Government Area, Ondo State, Nigeria
Authors: Olaniyan Rotimi Francis
Abstract:
Agbabu Water, Oluwa River is used for artisanal fishing, ferrying and domestic activities in Odigbo Local Government Area (OLGA), Ondo State. The river receives bitumen spills and domestic and agricultural wastes, which could adversely impact on the water quality and resident biota. In spite of anthropogenic activities, there is a dearth of information on the limnology and biota of the river. Extensive bitumen spills, as well as uncontrolled discharge of domestic wastes have pollution implications as they alter prevailing conditions and destroy the habitats of aquatic organisms. The aim of this study was to investigate the physic-chemical parameters of Agbabu Water in order to provide baseline information for effective management. Monthly water samples were collected on the surface of Agbabu water, Oluwa River, for a period of 6 months (June,2024 to November,2024). All physic-chemicals were collected and analyzed according to APHA (2005) standard methods. Results showed that temperature ranged between 26.0-32.0oC, transparency (1.0-8.0 m), alkalinity (14.0-25.0 mg/l), electrical conductivity (18-105 µS/cm), dissolved oxygen (1.2-3.8 mg/l), sulphate (0.0 -4.0mg/l) and total dissolved solids (18-36). The parameters at the downstream (station A) accounted for the bulk of the highest values; there were, however, no significant differences between the stations at P<0.05. The results obtained from the physic-chemical parameters agree with the limits set by both national and international bodies for drinking and fish growth. It was recommended that urgent checks and monitoring by relevant agencies, government representatives, public health practitioners, and community leaders are required.Keywords: physico-chemical, water, Agbabu, River
Procedia PDF Downloads 332779 Application Case and Result Consideration About Basic and Working Design of Floating PV Generation System Installed in the Upstream of Dam
Authors: Jang-Hwan Yin, Hae-Jeong Jeong, Hyo-Geun Jeong
Abstract:
K-water (Korea Water Resources Corporation) conducted basic and working design about floating PV generation system installed above water in the upstream of dam to develop clean energy using water with importance of green growth is magnified ecumenically. PV Generation System on the ground applied considerably until now raise environmental damage by using farmland and forest land, PV generation system on the building roof is already installed at almost the whole place of business and additional installation is almost impossible. Installation space of PV generation system is infinite and efficient national land use is possible because it is installed above water. Also, PV module's efficiency increase by natural water cooling method and no shade. So it is identified that annual power generation is more than PV generation system on the ground by operating performance data. Although it is difficult to design and construct by high cost, little application case, difficult installation of floater, mooring device, underwater cable, etc. However, it has been examined cost reduction plan such as structure weight lightening, floater optimal design, etc. This thesis described basic and working design result systematically about K-water's floating PV generation system development and suggested optimal design method of floating PV generation system. Main contents are photovoltaic array location select, substation location select related underwater cable, PV module and inverter design, transmission and substation equipment design, floater design related structure weight lightening, mooring system design related water level fluctuation, grid connecting technical review, remote control and monitor equipment design, etc. This thesis will contribute to optimal design and business extension of floating PV generation system, and it will be opportunity revitalize clean energy development using water.Keywords: PV generation system, clean energy, green growth, solar energy
Procedia PDF Downloads 41332778 Integration of Icf Walls as Diurnal Solar Thermal Storage with Microchannel Solar Assisted Heat Pump for Space Heating and Domestic Hot Water Production
Authors: Mohammad Emamjome Kashan, Alan S. Fung
Abstract:
In Canada, more than 32% of the total energy demand is related to the building sector. Therefore, there is a great opportunity for Greenhouse Gases (GHG) reduction by integrating solar collectors to provide building heating load and domestic hot water (DHW). Despite the cold winter weather, Canada has a good number of sunny and clear days that can be considered for diurnal solar thermal energy storage. Due to the energy mismatch between building heating load and solar irradiation availability, relatively big storage tanks are usually needed to store solar thermal energy during the daytime and then use it at night. On the other hand, water tanks occupy huge space, especially in big cities, space is relatively expensive. This project investigates the possibility of using a specific building construction material (ICF – Insulated Concrete Form) as diurnal solar thermal energy storage that is integrated with a heat pump and microchannel solar thermal collector (MCST). Not much literature has studied the application of building pre-existing walls as active solar thermal energy storage as a feasible and industrialized solution for the solar thermal mismatch. By using ICF walls that are integrated into the building envelope, instead of big storage tanks, excess solar energy can be stored in the concrete of the ICF wall that consists of EPS insulation layers on both sides to store the thermal energy. In this study, two solar-based systems are designed and simulated inTransient Systems Simulation Program(TRNSYS)to compare ICF wall thermal storage benefits over the system without ICF walls. In this study, the heating load and DHW of a Canadian single-family house located in London, Ontario, are provided by solar-based systems. The proposed system integrates the MCST collector, a water-to-water HP, a preheat tank, the main tank, fan coils (to deliver the building heating load), and ICF walls. During the day, excess solar energy is stored in the ICF walls (charging cycle). Thermal energy can be restored from the ICF walls when the preheat tank temperature drops below the ICF wall (discharging process) to increase the COP of the heat pump. The evaporator of the heat pump is taking is coupled with the preheat tank. The provided warm water by the heat pump is stored in the second tank. Fan coil units are in contact with the tank to provide a building heating load. DHW is also delivered is provided from the main tank. It is investigated that the system with ICF walls with an average solar fraction of 82%- 88% can cover the whole heating demand+DHW of nine months and has a 10-15% higher average solar fraction than the system without ICF walls. Sensitivity analysis for different parameters influencing the solar fraction is discussed in detail.Keywords: net-zero building, renewable energy, solar thermal storage, microchannel solar thermal collector
Procedia PDF Downloads 12132777 Investigation of Steady State Infiltration Rate for Different Head Condition
Authors: Nour Aljafari, Mariam, S. Maani, Serter Atabay, Tarig Ali, Said Daker, Lara Daher, Hamad Bukhammas, Mohammed Abou Shakra
Abstract:
This paper aims at determining the soil characteristics that influence the irrigation process of green landscapes and deciding on the optimum amount of water needed for irrigation. The laboratory experiments were conducted using the constant head methodology to determine the soil infiltration rates. The steady state infiltration rate was reached after 10 minutes of infiltration at a rate of 200 mm/hr. The effects of different water heads on infiltration rates were also investigated, and the head of 11 cm was found to be the optimum head for the test. The experimental results showed consistent infiltration results for the range between 11 cm and 15 cm. The study also involved finding the initial moisture content, which ranged between 5% and 25%, and finding the organic content, which occupied 1% to 2% of the soil. These results will be later utilized, using the water balance approach, to estimate the optimum amount of water needed for irrigation for changing weather conditions.Keywords: infiltration rate, moisture content, grass type, organic content
Procedia PDF Downloads 29432776 Next Generation Membrane for Water Desalination: Facile Fabrication of Patterned Graphene Membrane
Authors: Jae-Kyung Choi, Soon-Yong Kwon, Hyung Duk Yun, Hyun-Sang Chung, Seongho Seo, Kukjin Bae
Abstract:
Recently, there were several attempts to utilize a graphene layer as a water desalination membrane. In order to use a graphene layer as a water desalination membrane, fabrication of crack-free suspension of graphene on a porous membrane, having hydrophobic surface, and generation of a uniform holes on a graphene are very important. In here, we showed a simple chemical vapor deposition (CVD) method to create a patterned graphene membrane on a patterned platinum film. After CVD growth process of patterned graphene layer/patterned Pt on SiO2 substrates, the patterned graphene layer can be successfully transferred onto arbitrary substrates via thermal-assisted transfer method. In this result, the transferred patterned graphene membrane has so hydrophobic surface which will certainly impact on the naturally and speed pass way for fresh water. In addition to this, we observed that overlapping of patterned graphene membranes reported previously by our group may generate different size of holes.Keywords: chemical vapor deposition (CVD), hydrophobic surface, membrane desalination, porous graphene
Procedia PDF Downloads 47132775 Towards a Vulnerability Model Assessment of The Alexandra Jukskei Catchment in South Africa
Authors: Vhuhwavho Gadisi, Rebecca Alowo, German Nkhonjera
Abstract:
This article sets out to detail an investigation of groundwater management in the Juksei Catchment of South Africa through spatial mapping of key hydrological relationships, interactions, and parameters in catchments. The Department of Water Affairs (DWA) noted gaps in the implementation of the South African National Water Act 1998: article 16, including the lack of appropriate models for dealing with water quantity parameters. For this reason, this research conducted a drastic GIS-based groundwater assessment to improve groundwater monitoring system in the Juksei River basin catchment of South Africa. The methodology employed was a mixed-methods approach/design that involved the use of DRASTIC analysis, questionnaire, literature review and observations to gather information on how to help people who use the Juskei River. GIS (geographical information system) mapping was carried out using a three-parameter DRASTIC (Depth to water, Recharge, Aquifer media, Soil media, Topography, Impact of the vadose zone, Hydraulic conductivity) vulnerability methodology. In addition, the developed vulnerability map was subjected to sensitivity analysis as a validation method. This approach included single-parameter sensitivity, sensitivity to map deletion, and correlation analysis of DRASTIC parameters. The findings were that approximately 5.7% (45km2) of the area in the northern part of the Juksei watershed is highly vulnerable. Approximately 53.6% (428.8 km^2) of the basin is also at high risk of groundwater contamination. This area is mainly located in the central, north-eastern, and western areas of the sub-basin. The medium and low vulnerability classes cover approximately 18.1% (144.8 km2) and 21.7% (168 km2) of the Jukskei River, respectively. The shallow groundwater of the Jukskei River belongs to a very vulnerable area. Sensitivity analysis indicated that water depth, water recharge, aquifer environment, soil, and topography were the main factors contributing to the vulnerability assessment. The conclusion is that the final vulnerability map indicates that the Juksei catchment is highly susceptible to pollution, and therefore, protective measures are needed for sustainable management of groundwater resources in the study area.Keywords: contamination, DRASTIC, groundwater, vulnerability, model
Procedia PDF Downloads 83