Search results for: tomato yield prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4699

Search results for: tomato yield prediction

3169 Mix Proportioning and Strength Prediction of High Performance Concrete Including Waste Using Artificial Neural Network

Authors: D. G. Badagha, C. D. Modhera, S. A. Vasanwala

Abstract:

There is a great challenge for civil engineering field to contribute in environment prevention by finding out alternatives of cement and natural aggregates. There is a problem of global warming due to cement utilization in concrete, so it is necessary to give sustainable solution to produce concrete containing waste. It is very difficult to produce designated grade of concrete containing different ingredient and water cement ratio including waste to achieve desired fresh and harden properties of concrete as per requirement and specifications. To achieve the desired grade of concrete, a number of trials have to be taken, and then after evaluating the different parameters at long time performance, the concrete can be finalized to use for different purposes. This research work is carried out to solve the problem of time, cost and serviceability in the field of construction. In this research work, artificial neural network introduced to fix proportion of concrete ingredient with 50% waste replacement for M20, M25, M30, M35, M40, M45, M50, M55 and M60 grades of concrete. By using the neural network, mix design of high performance concrete was finalized, and the main basic mechanical properties were predicted at 3 days, 7 days and 28 days. The predicted strength was compared with the actual experimental mix design and concrete cube strength after 3 days, 7 days and 28 days. This experimentally and neural network based mix design can be used practically in field to give cost effective, time saving, feasible and sustainable high performance concrete for different types of structures.

Keywords: artificial neural network, high performance concrete, rebound hammer, strength prediction

Procedia PDF Downloads 155
3168 Tuning the Emission Colour of Phenothiazine by Introduction of Withdrawing Electron Groups

Authors: Andrei Bejan, Luminita Marin, Dalila Belei

Abstract:

Phenothiazine with electron-rich nitrogen and sulfur heteroatoms has a high electron-donating ability which promotes a good conjugation and therefore low band-gap with consequences upon charge carrier mobility improving and shifting of light emission in visible domain. Moreover, its non-planar butterfly conformation inhibits molecular aggregation and thus preserves quite well the fluorescence quantum yield in solid state compared to solution. Therefore phenothiazine and its derivatives are promising hole transport materials for use in organic electronic and optoelectronic devices as light emitting diodes, photovoltaic cells, integrated circuit sensors or driving circuits for large area display devices. The objective of this paper was to obtain a series of new phenothiazine derivatives by introduction of different electron withdrawing substituents as formyl, carboxyl and cyanoacryl units in order to create a push pull system which has potential to improve the electronic and optical properties. Bromine atom was used as electrono-donor moiety to extend furthermore the existing conjugation. The understudy compounds were structural characterized by FTIR and 1H-NMR spectroscopy and single crystal X-ray diffraction. Besides, the single crystal X-ray diffraction brought information regarding the supramolecular architecture of the compounds. Photophysical properties were monitored by UV-vis and photoluminescence spectroscopy, while the electrochemical behavior was established by cyclic voltammetry. The absorption maxima of the studied compounds vary in a large range (322-455 nm), reflecting the different electronic delocalization degree, depending by the substituent nature. In a similar manner, the emission spectra reveal different color of emitted light, a red shift being evident for the groups with higher electron withdrawing ability. The emitted light is pure and saturated for the compounds containing strong withdrawing formyl or cyanoacryl units and reach the highest quantum yield of 71% for the compound containing bromine and cyanoacrilic units. Electrochemical study show reversible oxidative and reduction processes for all the compounds and a close correlation of the HOMO-LUMO band gap with substituent nature. All these findings suggest the obtained compounds as promising materials for optoelectronic devices.

Keywords: electrochemical properties, phenothiazine derivatives, photoluminescence, quantum yield

Procedia PDF Downloads 329
3167 Localization of Geospatial Events and Hoax Prediction in the UFO Database

Authors: Harish Krishnamurthy, Anna Lafontant, Ren Yi

Abstract:

Unidentified Flying Objects (UFOs) have been an interesting topic for most enthusiasts and hence people all over the United States report such findings online at the National UFO Report Center (NUFORC). Some of these reports are a hoax and among those that seem legitimate, our task is not to establish that these events confirm that they indeed are events related to flying objects from aliens in outer space. Rather, we intend to identify if the report was a hoax as was identified by the UFO database team with their existing curation criterion. However, the database provides a wealth of information that can be exploited to provide various analyses and insights such as social reporting, identifying real-time spatial events and much more. We perform analysis to localize these time-series geospatial events and correlate with known real-time events. This paper does not confirm any legitimacy of alien activity, but rather attempts to gather information from likely legitimate reports of UFOs by studying the online reports. These events happen in geospatial clusters and also are time-based. We look at cluster density and data visualization to search the space of various cluster realizations to decide best probable clusters that provide us information about the proximity of such activity. A random forest classifier is also presented that is used to identify true events and hoax events, using the best possible features available such as region, week, time-period and duration. Lastly, we show the performance of the scheme on various days and correlate with real-time events where one of the UFO reports strongly correlates to a missile test conducted in the United States.

Keywords: time-series clustering, feature extraction, hoax prediction, geospatial events

Procedia PDF Downloads 378
3166 In silico Analysis of a Causative Mutation in Cadherin-23 Gene Identified in an Omani Family with Hearing Loss

Authors: Mohammed N. Al Kindi, Mazin Al Khabouri, Khalsa Al Lamki, Tommasso Pappuci, Giovani Romeo, Nadia Al Wardy

Abstract:

Hereditary hearing loss is a heterogeneous group of complex disorders with an overall incidence of one in every five hundred newborns presented as syndromic and non-syndromic forms. Cadherin-related 23 (CDH23) is one of the listed deafness causative genes. CDH23 is found to be expressed in the stereocilia of hair cells and the retina photoreceptor cells. Defective CDH23 has been associated mostly with prelingual severe-to-profound sensorineural hearing loss (SNHL) in either syndromic (USH1D) or non-syndromic SNHL (DFNB12). An Omani family diagnosed clinically with severe-profound sensorineural hearing loss was genetically analysed by whole exome sequencing technique. A novel homozygous missense variant, c.A7451C (p.D2484A), in exon 53 of CDH23 was detected. One hundred and thirty control samples were analysed where all were negative for the detected variant. The variant was analysed in silico for pathogenicity verification using several mutation prediction software. The variant proved to be a pathogenic mutation and is reported for the first time in Oman and worldwide. It is concluded that in silico mutation prediction analysis might be used as a useful molecular diagnostics tool benefiting both genetic counseling and mutation verification. The aspartic acid 2484 alanine missense substitution might be the main disease-causing mutation that damages CDH23 function and could be used as a genetic hearing loss marker for this particular Omani family.

Keywords: Cdh23, d2484a, in silico, Oman

Procedia PDF Downloads 216
3165 A Comprehensive Review of Artificial Intelligence Applications in Sustainable Building

Authors: Yazan Al-Kofahi, Jamal Alqawasmi.

Abstract:

In this study, a comprehensive literature review (SLR) was conducted, with the main goal of assessing the existing literature about how artificial intelligence (AI), machine learning (ML), deep learning (DL) models are used in sustainable architecture applications and issues including thermal comfort satisfaction, energy efficiency, cost prediction and many others issues. For this reason, the search strategy was initiated by using different databases, including Scopus, Springer and Google Scholar. The inclusion criteria were used by two research strings related to DL, ML and sustainable architecture. Moreover, the timeframe for the inclusion of the papers was open, even though most of the papers were conducted in the previous four years. As a paper filtration strategy, conferences and books were excluded from database search results. Using these inclusion and exclusion criteria, the search was conducted, and a sample of 59 papers was selected as the final included papers in the analysis. The data extraction phase was basically to extract the needed data from these papers, which were analyzed and correlated. The results of this SLR showed that there are many applications of ML and DL in Sustainable buildings, and that this topic is currently trendy. It was found that most of the papers focused their discussions on addressing Environmental Sustainability issues and factors using machine learning predictive models, with a particular emphasis on the use of Decision Tree algorithms. Moreover, it was found that the Random Forest repressor demonstrates strong performance across all feature selection groups in terms of cost prediction of the building as a machine-learning predictive model.

Keywords: machine learning, deep learning, artificial intelligence, sustainable building

Procedia PDF Downloads 67
3164 Artificial Neural Network Approach for Modeling Very Short-Term Wind Speed Prediction

Authors: Joselito Medina-Marin, Maria G. Serna-Diaz, Juan C. Seck-Tuoh-Mora, Norberto Hernandez-Romero, Irving Barragán-Vite

Abstract:

Wind speed forecasting is an important issue for planning wind power generation facilities. The accuracy in the wind speed prediction allows a good performance of wind turbines for electricity generation. A model based on artificial neural networks is presented in this work. A dataset with atmospheric information about air temperature, atmospheric pressure, wind direction, and wind speed in Pachuca, Hidalgo, México, was used to train the artificial neural network. The data was downloaded from the web page of the National Meteorological Service of the Mexican government. The records were gathered for three months, with time intervals of ten minutes. This dataset was used to develop an iterative algorithm to create 1,110 ANNs, with different configurations, starting from one to three hidden layers and every hidden layer with a number of neurons from 1 to 10. Each ANN was trained with the Levenberg-Marquardt backpropagation algorithm, which is used to learn the relationship between input and output values. The model with the best performance contains three hidden layers and 9, 6, and 5 neurons, respectively; and the coefficient of determination obtained was r²=0.9414, and the Root Mean Squared Error is 1.0559. In summary, the ANN approach is suitable to predict the wind speed in Pachuca City because the r² value denotes a good fitting of gathered records, and the obtained ANN model can be used in the planning of wind power generation grids.

Keywords: wind power generation, artificial neural networks, wind speed, coefficient of determination

Procedia PDF Downloads 124
3163 Development of a Practical Screening Measure for the Prediction of Low Birth Weight and Neonatal Mortality in Upper Egypt

Authors: Prof. Ammal Mokhtar Metwally, Samia M. Sami, Nihad A. Ibrahim, Fatma A. Shaaban, Iman I. Salama

Abstract:

Objectives: Reducing neonatal mortality by 2030 is still a challenging goal in developing countries. low birth weight (LBW) is a significant contributor to this, especially where weighing newborns is not possible routinely. The present study aimed to determine a simple, easy, reliable anthropometric measure(s) that can predict LBW) and neonatal mortality. Methods: A prospective cohort study of 570 babies born in districts of El Menia governorate, Egypt (where most deliveries occurred at home) was examined at birth. Newborn weight, length, head, chest, mid-arm, and thigh circumferences were measured. Follow up of the examined neonates took place during their first four weeks of life to report any mortalities. The most predictable anthropometric measures were determined using the statistical package of SPSS, and multiple Logistic regression analysis was performed.: Results: Head and chest circumferences with cut-off points < 33 cm and ≤ 31.5 cm, respectively, were the significant predictors for LBW. They carried the best combination of having the highest sensitivity (89.8 % & 86.4 %) and least false negative predictive value (1.4 % & 1.7 %). Chest circumference with a cut-off point ≤ 31.5 cm was the significant predictor for neonatal mortality with 83.3 % sensitivity and 0.43 % false negative predictive value. Conclusion: Using chest circumference with a cut-off point ≤ 31.5 cm is recommended as a single simple anthropometric measurement for the prediction of both LBW and neonatal mortality. The predicted measure could act as a substitute for weighting newborns in communities where scales to weigh them are not routinely available.

Keywords: low birth weight, neonatal mortality, anthropometric measures, practical screening

Procedia PDF Downloads 99
3162 The Role of EDTA and EDDS in Reducing Metal Toxicity for Aquaculture Shellfish Perna canaliculus

Authors: Daniel R. McDougall, Martin D. de Jonge, Gordon M. Miskelly, Duncan J. McGillivray, Andrew G. Jeffs

Abstract:

The chelating agent ethylenediaminetetraacetic acid (EDTA) is commonly added as a cure-all to seawater in aquaculture hatcheries around the world to reduce heavy metal toxicity, significantly improve the survival of larval shellfish, and to therefore improve the overall production efficiency of the aquaculture industry. However, EDTA is not a biodegradable chemical and is considered to be a persistent organic pollutant, which will accumulate in the environment over time. This makes the use of EDTA unsustainable environmentally, and therefore alternatives should be considered. Ethylenediaminedisuccinic acid (EDDS) is a biodegradable alternative to EDTA with very similar metal chelation properties. This study investigates the effect of EDTA and EDDS at two different concentrations, on metal concentrations found within developing New Zealand green-lipped mussel (Perna canaliculus) larvae. P. canaliculus is New Zealand’s main shellfish aquaculture species, providing a major export for New Zealand’s economy, with excellent potential for increased production in the near future. It is well known that the early stages of bivalve development are the most vulnerable to metal toxicity and P. canaliculus is no exception. The commercially used concentration (12 µmol L⁻¹) of EDTA added to P. canaliculus larval rearing tanks often increases the yield of D-larvae by over 80%. This concentration of EDTA and EDDS will be tested in this study, along with a lower concentration (3 µmol L⁻¹). After 48 hours of larval development, the D-larvae will be analyzed for heavy metal content with Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and heavy metal distribution with synchrotron X-ray Fluorescence Microscopy (XFM). In this study, we found that EDDS also improves the yield of P. canaliculus larvae and could be a viable alternative to EDTA in aquaculture. Furthermore, results suggest a higher concentration of chelating agent is more effective for improving the yield of developing P. canaliculus larvae. Metals with significant differences in concentration with the addition of EDTA were Cr, Cu, Zn, Cd and Pb (P < 0.05). We observed for the first time to the author’s best knowledge, metal distribution within 100 µm P. canaliculus D-larvae using synchrotron XFM and found changes in the distribution of metals with the addition of EDTA. XFM also has the potential to provide information about the chemical state of the metals within mussel larvae. This research provides greater insight into the reasons for the effectiveness of adding the chelating agent to aquaculture culture water, and a more environmentally conscious alternative to the currently used EDTA, which could be extremely valuable for the aquaculture industry.

Keywords: EDDS, EDTA, heavy metals, P. canaliculus, toxicity, water treatment

Procedia PDF Downloads 231
3161 Protein Extraction by Enzyme-Assisted Extraction followed by Alkaline Extraction from Red Seaweed Eucheuma denticulatum (Spinosum) Used in Carrageenan Production

Authors: Alireza Naseri, Susan L. Holdt, Charlotte Jacobsen

Abstract:

In 2014, the global amount of carrageenan production was 60,000 ton with a value of US$ 626 million. From this number, it can be estimated that the total dried seaweed consumption for this production was at least 300,000 ton/year. The protein content of these types of seaweed is 5 – 25%. If just half of this total amount of protein could be extracted, 18,000 ton/year of a high-value protein product would be obtained. The overall aim of this study was to develop a technology that will ensure further utilization of the seaweed that is used only as raw materials for carrageenan production as single extraction at present. More specifically, proteins should be extracted from the seaweed either before or after extraction of carrageenan with focus on maintaining the quality of carrageenan as a main product. Different mechanical, chemical and enzymatic technologies were evaluated. The optimized process was implemented in lab scale and based on its results; the new experiments were done a pilot and larger scale. In order to calculate the efficiency of the new upstream multi-extraction process, protein content was tested before and after extraction. After this step, the extraction of carrageenan was done and carrageenan content and the effect of extraction on yield were evaluated. The functionality and quality of carrageenan were measured based on rheological parameters. The results showed that by using the new multi-extraction process (submitted patent); it is possible to extract almost 50% of total protein without any negative impact on the carrageenan quality. Moreover, compared to the routine carrageenan extraction process, the new multi-extraction process could increase the yield of carrageenan and the rheological properties such as gel strength in the final carrageenan had a promising improvement. The extracted protein has initially been screened as a plant protein source in typical food applications. Further work will be carried out in order to improve properties such as color, solubility, and taste.

Keywords: carrageenan, extraction, protein, seaweed

Procedia PDF Downloads 284
3160 The Study of Spray Drying Process for Skimmed Coconut Milk

Authors: Jaruwan Duangchuen, Siwalak Pathaveerat

Abstract:

Coconut (Cocos nucifera) belongs to the family Arecaceae. Coconut juice and meat are consumed as food and dessert in several regions of the world. Coconut juice contains low proteins, and arginine is the main amino acid content. Coconut meat is the endosperm of coconut that has nutritional value. It composes of carbohydrate, protein and fat. The objective of this study is utilization of by-products from the virgin coconut oil extraction process by using the skimmed coconut milk as a powder. The skimmed coconut milk was separated from the coconut milk in virgin coconut oil extraction process that consists approximately of protein 6.4%, carbohydrate 7.2%, dietary fiber 0.27 %, sugar 6.27%, fat 3.6 % and moisture content of 86.93%. This skimmed coconut milk can be made to powder for value - added product by using spray drying. The factors effect to the yield and properties of dry skimmed coconut milk in spraying process are inlet, outlet air temperature and the maltodextrin concentration. The percentage of maltodextrin content (15, 20%), outlet air temperature (80 ºC, 85 ºC, 90 ºC) and inlet air temperature (190 ºC, 200 ºC, 210 ºC) were conducted to the skimmed coconut milk spray drying process. The spray dryer was kept air flow rate (0.2698 m3 /s). The result that shown 2.22 -3.23% of moisture content, solubility, bulk density (0.4-0.67g/mL), solubility, wettability (4.04 -19.25 min) for solubility in the water, color, particle size were analyzed for the powder samples. The maximum yield (18.00%) of spray dried coconut milk powder was obtained at 210 °C of temperature, 80°C of outlet temperature and 20% maltodextrin for 27.27 second for drying time. For the amino analysis shown that the high amino acids are Glutamine (16.28%), Arginine (10.32%) and Glycerin (9.59%) by using HPLP method (UV detector).

Keywords: skimmed coconut milk, spray drying, virgin coconut oil process (VCO), maltodextrin

Procedia PDF Downloads 333
3159 Conservation Agriculture under Mediterranean Climate: Effects on below and Above-Ground Processes during Wheat Cultivation

Authors: Vasiliki Kolake, Christos Kavalaris, Sofia Megoudi, Maria Maxouri, Panagiotis A. Karas, Aris Kyparissis, Efi Levizou

Abstract:

Conservation agriculture (CA), is a production system approach that can tackle the challenges of climate change mainly through facilitating carbon storage into the soil and increasing crop resilience. This is extremely important for the vulnerable Mediterranean agroecosystems, which already face adverse environmental conditions. The agronomic practices used in CA, i.e. permanent soil cover and no-tillage, result in reduced soil erosion and increased soil organic matter, preservation of water and improvement of quality and fertility of the soil in the long-term. Thus the functional characteristics and processes of the soil are considerably affected by the implementation of CA. The aim of the present work was to assess the effects of CA on soil nitrification potential and mycorrhizal colonization about the above-ground production in a wheat field. Two adjacent but independent field sites of 1.5ha each were used (Thessaly plain, Central Greece), comprising the no-till and conventional tillage treatments. The no-tillage site was covered by residues of the previous crop (cotton). Potential nitrification and the nitrate and ammonium content of the soil were measured at two different soil depths (3 and 15cm) at 20-days intervals throughout the growth period. Additionally, the leaf area index (LAI) was monitored at the same time-course. The mycorrhizal colonization was measured at the commencement and end of the experiment. At the final harvest, total yield and plant biomass were also recorded. The results indicate that wheat yield was considerably favored by CA practices, exhibiting a 42% increase compared to the conventional tillage treatment. The superior performance of the CA crop was also depicted in the above-ground plant biomass, where a 26% increase was recorded. LAI, which is considered a reliable growth index, did not show statistically significant differences between treatments throughout the growth period. On the contrary, significant differences were recorded in endomycorrhizal colonization one day before the final harvest, with CA plants exhibiting 20% colonization, while the conventional tillage plants hardly reached 1%. The on-going analyses of potential nitrification measurements, as well as nitrate and ammonium determination, will shed light on the effects of CA on key processes in the soil. These results will integrate the assessment of CA impact on certain below and above-ground processes during wheat cultivation under the Mediterranean climate.

Keywords: conservation agriculture, LAI, mycorrhizal colonization, potential nitrification, wheat, yield

Procedia PDF Downloads 130
3158 Modeling Palm Oil Quality During the Ripening Process of Fresh Fruits

Authors: Afshin Keshvadi, Johari Endan, Haniff Harun, Desa Ahmad, Farah Saleena

Abstract:

Experiments were conducted to develop a model for analyzing the ripening process of oil palm fresh fruits in relation to oil yield and oil quality of palm oil produced. This research was carried out on 8-year-old Tenera (Dura × Pisifera) palms planted in 2003 at the Malaysian Palm Oil Board Research Station. Fresh fruit bunches were harvested from designated palms during January till May of 2010. The bunches were divided into three regions (top, middle and bottom), and fruits from the outer and inner layers were randomly sampled for analysis at 8, 12, 16 and 20 weeks after anthesis to establish relationships between maturity and oil development in the mesocarp and kernel. Computations on data related to ripening time, oil content and oil quality were performed using several computer software programs (MSTAT-C, SAS and Microsoft Excel). Nine nonlinear mathematical models were utilized using MATLAB software to fit the data collected. The results showed mean mesocarp oil percent increased from 1.24 % at 8 weeks after anthesis to 29.6 % at 20 weeks after anthesis. Fruits from the top part of the bunch had the highest mesocarp oil content of 10.09 %. The lowest kernel oil percent of 0.03 % was recorded at 12 weeks after anthesis. Palmitic acid and oleic acid comprised of more than 73 % of total mesocarp fatty acids at 8 weeks after anthesis, and increased to more than 80 % at fruit maturity at 20 weeks. The Logistic model with the highest R2 and the lowest root mean square error was found to be the best fit model.

Keywords: oil palm, oil yield, ripening process, anthesis, fatty acids, modeling

Procedia PDF Downloads 313
3157 Bio Ethanol Production From the Co-Mixture of Jatropha Carcus L. Kernel Cake and Rice Straw

Authors: Felix U. Asoiro, Daniel I. Eleazar, Peter O. Offor

Abstract:

As a result of increasing energy demands, research in bioethanol has increased in recent years all through the world, in abide to partially or totally replace renewable energy supplies. The first and third generation feedstocks used for biofuel production have fundamental drawbacks. Waste rice straw and cake from second generation feedstock like Jatropha curcas l. kernel (JC) is seen as non-food feedstock and promising candidates for the industrial production of bioethanol. In this study, JC and rice husk (RH) wastes were characterized for proximate composition. Bioethanol was produced from the residual polysaccharides present in rice husk (RH) and Jatropha seed cake by sequential hydrolytic and fermentative processes at varying mixing proportions (50 g JC/50 g RH, 100 g JC/10 g RH, 100 g JC/20 g RH, 100 g JC/50 g RH, 100 g JC/100 g RH, 100 g JC/200 g RH and 200 g JC/100 g RH) and particle sizes (0.25, 0.5 and 1.00 mm). Mixing proportions and particle size significantly affected both bioethanol yield and some bioethanol properties. Bioethanol yield (%) increased with an increase in particle size. The highest bioethanol (8.67%) was produced at a mixing proportion of 100 g JC/50g RH at 0.25 mm particle size. The bioethanol had the lowest values of specific gravity and density of 1.25 and 0.92 g cm-3 and the highest values of 1.57 and 0.97 g cm-3 respectively. The highest values of viscosity (4.64 cSt) were obtained with 200 g JC/100 g RH, at 1.00 mm particle size. The maximum flash point and cloud point values were 139.9 oC and 23.7oC (100 g JC/200 g RH) at 1 mm and 0.5 mm particle sizes respectively. The maximum pour point value recorded was 3.85oC (100 g JC/50 g RH) at 1 mm particle size. The paper concludes that bioethanol can be recovered from JC and RH wastes. JC and RH blending proportions as well as particle sizes are important factors in bioethanol production.

Keywords: bioethanol, hydrolysis, Jatropha curcas l. kernel, rice husk, fermentation, proximate composition

Procedia PDF Downloads 96
3156 Temporal and Spatial Distribution Prediction of Patinopecten yessoensis Larvae in Northern China Yellow Sea

Authors: RuiJin Zhang, HengJiang Cai, JinSong Gui

Abstract:

It takes Patinopecten yessoensis larvae more than 20 days from spawning to settlement. Due to the natural environmental factors such as current, Patinopecten yessoensis larvae are transported to a distance more than hundreds of kilometers, leading to a high instability of their spatial and temporal distribution and great difficulties in the natural spat collection. Therefore predicting the distribution is of great significance to improve the operating efficiency of the collecting. Hydrodynamic model of Northern China Yellow Sea was established and the motions equations of physical oceanography and verified by the tidal harmonic constants and the measured data velocities of Dalian Bay. According to the passivity drift characteristics of the larvae, combined with the hydrodynamic model and the particle tracking model, the spatial and temporal distribution prediction model was established and the spatial and temporal distribution of the larvae under the influence of flow and wind were simulated. It can be concluded from the model results: ocean currents have greatest impacts on the passive drift path and diffusion of Patinopecten yessoensis larvae; the impact of wind is also important, which changed the direction and speed of the drift. Patinopecten yessoensis larvae were generated in the sea along Zhangzi Island and Guanglu-Dachangshan Island, but after two months, with the impact of wind and currents, the larvae appeared in the west of Dalian and the southern of Lvshun, and even in Bohai Bay. The model results are consistent with the relevant literature on qualitative analysis, and this conclusion explains where the larvae come from in the perspective of numerical simulation.

Keywords: numerical simulation, Patinopecten yessoensis larvae, predicting model, spatial and temporal distribution

Procedia PDF Downloads 305
3155 A Three Elements Vector Valued Structure’s Ultimate Strength-Strong Motion-Intensity Measure

Authors: A. Nicknam, N. Eftekhari, A. Mazarei, M. Ganjvar

Abstract:

This article presents an alternative collapse capacity intensity measure in the three elements form which is influenced by the spectral ordinates at periods longer than that of the first mode period at near and far source sites. A parameter, denoted by β, is defined by which the spectral ordinate effects, up to the effective period (2T_1), on the intensity measure are taken into account. The methodology permits to meet the hazard-levelled target extreme event in the probabilistic and deterministic forms. A MATLAB code is developed involving OpenSees to calculate the collapse capacities of the 8 archetype RC structures having 2 to 20 stories for regression process. The incremental dynamic analysis (IDA) method is used to calculate the structure’s collapse values accounting for the element stiffness and strength deterioration. The general near field set presented by FEMA is used in a series of performing nonlinear analyses. 8 linear relationships are developed for the 8structutres leading to the correlation coefficient up to 0.93. A collapse capacity near field prediction equation is developed taking into account the results of regression processes obtained from the 8 structures. The proposed prediction equation is validated against a set of actual near field records leading to a good agreement. Implementation of the proposed equation to the four archetype RC structures demonstrated different collapse capacities at near field site compared to those of FEMA. The reasons of differences are believed to be due to accounting for the spectral shape effects.

Keywords: collapse capacity, fragility analysis, spectral shape effects, IDA method

Procedia PDF Downloads 239
3154 Human Immune Response to Surgery: The Surrogate Prediction of Postoperative Outcomes

Authors: Husham Bayazed

Abstract:

Immune responses following surgical trauma play a pivotal role in predicting postoperative outcomes from healing and recovery to postoperative complications. Postoperative complications, including infections and protracted recovery, occur in a significant number of about 300 million surgeries performed annually worldwide. Complications cause personal suffering along with a significant economic burden on the healthcare system in any community. The accurate prediction of postoperative complications and patient-targeted interventions for their prevention remain major clinical provocations. Recent Findings: Recent studies are focusing on immune dysregulation mechanisms that occur in response to surgical trauma as a key determinant of postoperative complications. Antecedent studies mainly were plunging into the detection of inflammatory plasma markers, which facilitate in providing important clues regarding their pathogenesis. However, recent Single-cell technologies, such as mass cytometry or single-cell RNA sequencing, have markedly enhanced our ability to understand the immunological basis of postoperative immunological trauma complications and to identify their prognostic biological signatures. Summary: The advent of proteomic technologies has significantly advanced our ability to predict the risk of postoperative complications. Multiomic modeling of patients' immune states holds promise for the discovery of preoperative predictive biomarkers and providing patients and surgeons with information to improve surgical outcomes. However, more studies are required to accurately predict the risk of postoperative complications in individual patients.

Keywords: immune dysregulation, postoperative complications, surgical trauma, flow cytometry

Procedia PDF Downloads 86
3153 Studying the Temperature Field of Hypersonic Vehicle Structure with Aero-Thermo-Elasticity Deformation

Authors: Geng Xiangren, Liu Lei, Gui Ye-Wei, Tang Wei, Wang An-ling

Abstract:

The malfunction of thermal protection system (TPS) caused by aerodynamic heating is a latent trouble to aircraft structure safety. Accurately predicting the structure temperature field is quite important for the TPS design of hypersonic vehicle. Since Thornton’s work in 1988, the coupled method of aerodynamic heating and heat transfer has developed rapidly. However, little attention has been paid to the influence of structural deformation on aerodynamic heating and structural temperature field. In the flight, especially the long-endurance flight, the structural deformation, caused by the aerodynamic heating and temperature rise, has a direct impact on the aerodynamic heating and structural temperature field. Thus, the coupled interaction cannot be neglected. In this paper, based on the method of static aero-thermo-elasticity, considering the influence of aero-thermo-elasticity deformation, the aerodynamic heating and heat transfer coupled results of hypersonic vehicle wing model were calculated. The results show that, for the low-curvature region, such as fuselage or center-section wing, structure deformation has little effect on temperature field. However, for the stagnation region with high curvature, the coupled effect is not negligible. Thus, it is quite important for the structure temperature prediction to take into account the effect of elastic deformation. This work has laid a solid foundation for improving the prediction accuracy of the temperature distribution of aircraft structures and the evaluation capacity of structural performance.

Keywords: aerothermoelasticity, elastic deformation, structural temperature, multi-field coupling

Procedia PDF Downloads 341
3152 Identification of Superior Cowpea Mutant Genotypes, Their Adaptability, and Stability Under South African Conditions

Authors: M. Ntswane, N. Mbuma, M. Labuschagne, A. Mofokeng, M. Rantso

Abstract:

Cowpea is an essential legume for the nutrition and health of millions of people in different regions. The production and productivity of the crop are very limited in South Africa due to a lack of adapted and stable genotypes. The improvement of nutritional quality is made possible by manipulating the genes of diverse cowpea genotypes available around the world. Assessing the adaptability and stability of the cowpea mutant genotypes for yield and nutritional quality requires examining them in different environments. The objective of the study was to determine the adaptability and stability of cowpea mutant genotypes under South African conditions and to identify the superior genotypes that combine grain yield components, antioxidants, and nutritional quality. Thirty-one cowpea genotypes were obtained from the Agricultural Research Council grain crops (ARC-GC) and were planted in Glen, Mafikeng, Polokwane, Potchefstroom, Taung, and Vaalharts during the 2021/22 summer cropping season. Significant genotype by location interactions indicated the possibility of genetic improvement of these traits. The genotype plus genotype by environment indicated broad adaptability and stability of mutant genotypes. The principal component analysis identified the association of the genotypes with the traits. Phenotypic correlation analysis showed that Zn and protein content were significant and positively correlated and suggested the possibility of indirect selection of these traits. Results from this study could be used to help plant breeders in making informed decisions and developing nutritionally improved cowpea genotypes with the aim of addressing the challenges of poor nutritional quality.

Keywords: cowpea seeds, adaptability, stability, mineral elements, protein content

Procedia PDF Downloads 112
3151 In vitro Protein Folding and Stability Using Thermostable Exoshells

Authors: Siddharth Deshpande, Nihar Masurkar, Vallerinteavide Mavelli Girish, Malan Desai, Chester Drum

Abstract:

Folding and stabilization of recombinant proteins remain a consistent challenge for industrial and therapeutic applications. Proteins derived from thermophilic bacteria often have superior expression and stability qualities. To develop a generalizable approach to protein folding and stabilization, we tested the hypothesis that wrapping a thermostable exoshell around a protein substrate would aid folding and impart thermostable qualities to the internalized substrate. To test the effect of internalizing a protein within a thermostable exoshell (tES), we tested in vitro folding and stability using green fluorescent protein (GFPuv), horseradish peroxidase (HRP) and renilla luciferase (rLuc). The 8nm interior volume of a thermostable ferritin assembly was engineered to accommodate foreign proteins and either present a positive, neutral or negative interior charge environment. We further engineered the tES complex to reversibly assemble and disassemble with pH titration. Template proteins were expressed as inclusion bodies and an in vitro folding protocol was developed that forced proteins to fold inside a single tES. Functional yield was improved 100-fold, 100-fold and 150-fold with use of tES for GFPuv, HRP and rLuc respectively and was highly dependent on the internal charge environment of the tES. After folding, functional proteins could be released from the tES folding cavity using size exclusion chromatography at pH 5.8. Internalized proteins were tested for improved stability against thermal, organic, urea and guanidine denaturation. Our results demonstrated that thermostable exoshells can efficiently refold and stabilize inactive aggregates into functional proteins.

Keywords: thermostable shell, in vitro folding, stability, functional yield

Procedia PDF Downloads 249
3150 A Mixed 3D Finite Element for Highly Deformable Thermoviscoplastic Materials Under Ductile Damage

Authors: João Paulo Pascon

Abstract:

In this work, a mixed 3D finite element formulation is proposed in order to analyze thermoviscoplastic materials under large strain levels and ductile damage. To this end, a tetrahedral element of linear order is employed, considering a thermoviscoplastic constitutive law together with the neo-Hookean hyperelastic relationship and a nonlocal Gurson`s porous plasticity theory The material model is capable of reproducing finite deformations, elastoplastic behavior, void growth, nucleation and coalescence, thermal effects such as plastic work heating and conductivity, strain hardening and strain-rate dependence. The nonlocal character is introduced by means of a nonlocal parameter applied to the Laplacian of the porosity field. The element degrees of freedom are the nodal values of the deformed position, the temperature and the nonlocal porosity field. The internal variables are updated at the Gauss points according to the yield criterion and the evolution laws, including the yield stress of matrix, the equivalent plastic strain, the local porosity and the plastic components of the Cauchy-Green stretch tensor. Two problems involving 3D specimens and ductile damage are numerically analyzed with the developed computational code: the necking problem and a notched sample. The effect of the nonlocal parameter and the mesh refinement is investigated in detail. Results indicate the need of a proper nonlocal parameter. In addition, the numerical formulation can predict ductile fracture, based on the evolution of the fully damaged zone.

Keywords: mixed finite element, large strains, ductile damage, thermoviscoplasticity

Procedia PDF Downloads 95
3149 Depletion Behavior of Potassium by Continuous Cropping Using Rice as a Test Crop

Authors: Rafeza Begum, Mohammad Mokhlesur Rahman, Safikul Moula, Rafiqul Islam

Abstract:

Potassium (K) is crucial for healthy soil and plant growth. However, K fertilization is either disregarded or poorly underutilized in Bangladesh agriculture, despite the great demand for crops. This could eventually result in a significant depletion of the soil's potassium reserves, irreversible alteration of the minerals that contain potassium, and detrimental effects on crop productivity. Soil K mining in Bangladesh is a worrying problem, and we need to evaluate it thoroughly and find remedies. A pot culture experiment was conducted in the greenhouse of Bangladesh Institute of Nuclear Agriculture (BINA) using eleven soil series of Bangladesh in order to see the depletion behaviour of potassium (K) by continuous cropping using rice (var. Iratom-24) as the test crop. The soil series were Ranishankhail, Kaonia. Sonatala, Silmondi, Gopalpur, Ishurdi, Sara, Kongsha, Nunni, Lauta and Amnura on which four successive rice plants (45 days duration) were raised with (100 ppm K) or without addition of potassium. Nitrogen, phosphorus, sulfur and zinc were applied as basal to all pots. Potassium application resulted in higher dry matter yield, increased K concentration and uptake in all the soils compared with no K treatment; which gradually decreased in the subsequent harvests. Furthermore, plant takes up K not only from exchangeable pool but also from non-exchangeable sites and a minimum replenishment of K from the soil reserve was observed. Continuous cropping has resulted in the depletion of available K of the soil. The result indicated that in order to sustain higher crop yield under intensive cultivation, the addition of potash fertilizer is necessary.

Keywords: potassium, exchangeable pool, depletion behavior., Soil series

Procedia PDF Downloads 126
3148 A Low Order Thermal Envelope Model for Heat Transfer Characteristics of Low-Rise Residential Buildings

Authors: Nadish Anand, Richard D. Gould

Abstract:

A simplistic model is introduced for determining the thermal characteristics of a Low-rise Residential (LRR) building and then predicts the energy usage by its Heating Ventilation & Air Conditioning (HVAC) system according to changes in weather conditions which are reflected in the Ambient Temperature (Outside Air Temperature). The LRR buildings are treated as a simple lump for solving the heat transfer problem and the model is derived using the lumped capacitance model of transient conduction heat transfer from bodies. Since most contemporary HVAC systems have a thermostat control which will have an offset temperature and user defined set point temperatures which define when the HVAC system will switch on and off. The aim is to predict without any error the Body Temperature (i.e. the Inside Air Temperature) which will estimate the switching on and off of the HVAC system. To validate the mathematical model derived from lumped capacitance we have used EnergyPlus simulation engine, which simulates Buildings with considerable accuracy. We have predicted through the low order model the Inside Air Temperature of a single house kept in three different climate zones (Detroit, Raleigh & Austin) and different orientations for summer and winter seasons. The prediction error from the model for the same day as that of model parameter calculation has showed an error of < 10% in winter for almost all the orientations and climate zones. Whereas the prediction error is only <10% for all the orientations in the summer season for climate zone at higher latitudes (Raleigh & Detroit). Possible factors responsible for the large variations are also noted in the work, paving way for future research.

Keywords: building energy, energy consumption, energy+, HVAC, low order model, lumped capacitance

Procedia PDF Downloads 266
3147 Unlocking Green Hydrogen Potential: A Machine Learning-Based Assessment

Authors: Said Alshukri, Mazhar Hussain Malik

Abstract:

Green hydrogen is hydrogen produced using renewable energy sources. In the last few years, Oman aimed to reduce its dependency on fossil fuels. Recently, the hydrogen economy has become a global trend, and many countries have started to investigate the feasibility of implementing this sector. Oman created an alliance to establish the policy and rules for this sector. With motivation coming from both global and local interest in green hydrogen, this paper investigates the potential of producing hydrogen from wind and solar energies in three different locations in Oman, namely Duqm, Salalah, and Sohar. By using machine learning-based software “WEKA” and local metrological data, the project was designed to figure out which location has the highest wind and solar energy potential. First, various supervised models were tested to obtain their prediction accuracy, and it was found that the Random Forest (RF) model has the best prediction performance. The RF model was applied to 2021 metrological data for each location, and the results indicated that Duqm has the highest wind and solar energy potential. The system of one wind turbine in Duqm can produce 8335 MWh/year, which could be utilized in the water electrolysis process to produce 88847 kg of hydrogen mass, while a solar system consisting of 2820 solar cells is estimated to produce 1666.223 MWh/ year which is capable of producing 177591 kg of hydrogen mass.

Keywords: green hydrogen, machine learning, wind and solar energies, WEKA, supervised models, random forest

Procedia PDF Downloads 79
3146 Effects of Saline Groundwater on Crop Yield of Bitter-Gourd (Momordica charantia L.) under Drip System of Irrigation

Authors: Kamran Baksh Soomro, Amin Talei, Sina Alaghmand

Abstract:

Water scarcity has exacerbated in the last couple of decades; it is incumbent on agriculture to maximize the use of water of all qualities. The drip irrigation system practice has shown a vast increase in profit and research interests in the last two decades. However, the application of this system is still limited. The two years field experiment was conducted with three replications at Malir, Karachi (a semi-arid region) in Pakistan. The aim was to evaluate the effects of two qualities of irrigation water IT1 (EC 0.56 dS.m⁻¹) and IT2 (EC 2.89 dS.m⁻¹) on water use efficiency. To achieve the aim, bitter gourd was grown under the drip irrigation system in 2016-17. The uniformity co-efficient (UC) ranged from 93 to 96%. Water use efficiency, of 1.60 and 1.21 kg.m⁻³ under IT1 was recorded higher in season 1 and 2. Using t-test at 5% significance level, the crop yield was higher in both seasons under IT1 compared to IT2. Using pairwise t-test at 5% significance level, the parameters related with the quality of fruit, like length, weight, and diameter, were higher in IT1 than IT2 in all plants; and in both seasons. A correlational study was also conducted to observe the trends in the variables associated with both irrigation treatments for the two seasons. Results showed that most of the parameters exhibited a similar linear trend in both the seasons. The study concluded that bitter gourd crop could be grown successfully in sandy loam using drip irrigation system, supplying saline ground-water. The sustainable use of saline irrigation water should be utilized for vegetable cultivation to meet the food demand in the rural areas of Pakistan.

Keywords: uniformity co-efficient, water use efficiency, drip irrigation, ground-water, t-test, correlation

Procedia PDF Downloads 144
3145 Transformer Fault Diagnostic Predicting Model Using Support Vector Machine with Gradient Decent Optimization

Authors: R. O. Osaseri, A. R. Usiobaifo

Abstract:

The power transformer which is responsible for the voltage transformation is of great relevance in the power system and oil-immerse transformer is widely used all over the world. A prompt and proper maintenance of the transformer is of utmost importance. The dissolved gasses content in power transformer, oil is of enormous importance in detecting incipient fault of the transformer. There is a need for accurate prediction of the incipient fault in transformer oil in order to facilitate the prompt maintenance and reducing the cost and error minimization. Study on fault prediction and diagnostic has been the center of many researchers and many previous works have been reported on the use of artificial intelligence to predict incipient failure of transformer faults. In this study machine learning technique was employed by using gradient decent algorithms and Support Vector Machine (SVM) in predicting incipient fault diagnosis of transformer. The method focuses on creating a system that improves its performance on previous result and historical data. The system design approach is basically in two phases; training and testing phase. The gradient decent algorithm is trained with a training dataset while the learned algorithm is applied to a set of new data. This two dataset is used to prove the accuracy of the proposed model. In this study a transformer fault diagnostic model based on Support Vector Machine (SVM) and gradient decent algorithms has been presented with a satisfactory diagnostic capability with high percentage in predicting incipient failure of transformer faults than existing diagnostic methods.

Keywords: diagnostic model, gradient decent, machine learning, support vector machine (SVM), transformer fault

Procedia PDF Downloads 323
3144 Enhanced CNN for Rice Leaf Disease Classification in Mobile Applications

Authors: Kayne Uriel K. Rodrigo, Jerriane Hillary Heart S. Marcial, Samuel C. Brillo

Abstract:

Rice leaf diseases significantly impact yield production in rice-dependent countries, affecting their agricultural sectors. As part of precision agriculture, early and accurate detection of these diseases is crucial for effective mitigation practices and minimizing crop losses. Hence, this study proposes an enhancement to the Convolutional Neural Network (CNN), a widely-used method for Rice Leaf Disease Image Classification, by incorporating MobileViTV2—a recently advanced architecture that combines CNN and Vision Transformer models while maintaining fewer parameters, making it suitable for broader deployment on edge devices. Our methodology utilizes a publicly available rice disease image dataset from Kaggle, which was validated by a university structural biologist following the guidelines provided by the Philippine Rice Institute (PhilRice). Modifications to the dataset include renaming certain disease categories and augmenting the rice leaf image data through rotation, scaling, and flipping. The enhanced dataset was then used to train the MobileViTV2 model using the Timm library. The results of our approach are as follows: the model achieved notable performance, with 98% accuracy in both training and validation, 6% training and validation loss, and a Receiver Operating Characteristic (ROC) curve ranging from 95% to 100% for each label. Additionally, the F1 score was 97%. These metrics demonstrate a significant improvement compared to a conventional CNN-based approach, which, in a previous 2022 study, achieved only 78% accuracy after using 5 convolutional layers and 2 dense layers. Thus, it can be concluded that MobileViTV2, with its fewer parameters, outperforms traditional CNN models, particularly when applied to Rice Leaf Disease Image Identification. For future work, we recommend extending this model to include datasets validated by international rice experts and broadening the scope to accommodate biotic factors such as rice pest classification, as well as abiotic stressors such as climate, soil quality, and geographic information, which could improve the accuracy of disease prediction.

Keywords: convolutional neural network, MobileViTV2, rice leaf disease, precision agriculture, image classification, vision transformer

Procedia PDF Downloads 26
3143 A Simple, Precise and Cost Effective PTFE Container Design Capable to Work in Domestic Microwave Oven

Authors: Mehrdad Gholami, Shima Behkami, Sharifuddin B. Md. Zain, Firdaus A. B. Kamaruddin

Abstract:

Starting from the first application of a microwave oven for sample preparation in 1975 for the purpose of wet ashing of biological samples using a domestic microwave oven, many microwave-assisted dissolution vessels have been developed. The advanced vessels are armed with special safety valve that release the excess of pressure while the vessels are in critical conditions due to applying high power of microwave. Nevertheless, this releasing of pressure may cause lose of volatile elements. In this study Teflon bottles are designed with relatively thicker wall compared to commercial ones and a silicone based polymer was used to prepare an O-ring which plays the role of safety valve. In this design, eight vessels are located in an ABS holder to keep them stable and safe. The advantage of these vessels is that they need only 2 mL of HNO3 and 1mL H2O2 to digest different environmental samples, namely, sludge, apple leave, peach leave, spinach leave and tomato leave. In order to investigate the performance of this design an ICP-MS instrument was applied for multi elemental analysis of 20 elements on the SRM of above environmental samples both using this design and a commercial microwave digestion design. Very comparable recoveries were obtained from this simple design with the commercial one. Considering the price of ultrapure chemicals and the amount of them which normally is about 8-10 mL, these simple vessels with the procedures that will be discussed in detail are very cost effective and very suitable for environmental studies.

Keywords: inductively coupled plasma mass spectroscopy (ICP-MS), PTFE vessels, Teflon bombs, microwave digestion, trace element

Procedia PDF Downloads 341
3142 Designing Web Application to Simulate Agricultural Management for Smart Farmer: Land Development Department’s Integrated Management Farm

Authors: Panasbodee Thachaopas, Duangdorm Gamnerdsap, Waraporn Inthip, Arissara Pungpa

Abstract:

LDD’s IM Farm or Land Development Department’s Integrated Management Farm is the agricultural simulation application developed by Land Development Department relies on actual data in simulation game to grow 12 cash crops which are rice, corn, cassava, sugarcane, soybean, rubber tree, oil palm, pineapple, longan, rambutan, durian, and mangosteen. Launching in simulation game, players could select preferable areas for cropping from base map or Orthophoto map scale 1:4,000. Farm management is simulated from field preparation to harvesting. The system uses soil group, and present land use database to facilitate player to know whether what kind of crop is suitable to grow in each soil groups and integrate LDD’s data with other agencies which are soil types, soil properties, soil problems, climate, cultivation cost, fertilizer use, fertilizer price, socio-economic data, plant diseases, weed, pest, interest rate for taking on loan from Bank for Agriculture and Agricultural Cooperatives (BAAC), labor cost, market prices. These mentioned data affect the cost and yield differently to each crop. After completing, the player will know the yield, income and expense, profit/loss. The player could change to other crops that are more suitable to soil groups for optimal yields and profits.

Keywords: agricultural simulation, smart farmer, web application, factors of agricultural production

Procedia PDF Downloads 199
3141 Experimental Study on Two-Step Pyrolysis of Automotive Shredder Residue

Authors: Letizia Marchetti, Federica Annunzi, Federico Fiorini, Cristiano Nicolella

Abstract:

Automotive shredder residue (ASR) is a mixture of waste that makes up 20-25% of end-of-life vehicles. For many years, ASR was commonly disposed of in landfills or incinerated, causing serious environmental problems. Nowadays, thermochemical treatments are a promising alternative, although the heterogeneity of ASR still poses some challenges. One of the emerging thermochemical treatments for ASR is pyrolysis, which promotes the decomposition of long polymeric chains by providing heat in the absence of an oxidizing agent. In this way, pyrolysis promotes the conversion of ASR into solid, liquid, and gaseous phases. This work aims to improve the performance of a two-step pyrolysis process. After the characterization of the analysed ASR, the focus is on determining the effects of residence time on product yields and gas composition. A batch experimental setup that reproduces the entire process was used. The setup consists of three sections: the pyrolysis section (made of two reactors), the separation section, and the analysis section. Two different residence times were investigated to find suitable conditions for the first sample of ASR. These first tests showed that the products obtained were more sensitive to residence time in the second reactor. Indeed, slightly increasing residence time in the second reactor managed to raise the yield of gas and carbon residue and decrease the yield of liquid fraction. Then, to test the versatility of the setup, the same conditions were applied to a different sample of ASR coming from a different chemical plant. The comparison between the two ASR samples shows that similar product yields and compositions are obtained using the same setup.

Keywords: automotive shredder residue, experimental tests, heterogeneity, product yields, two-step pyrolysis

Procedia PDF Downloads 127
3140 Design and Evaluation of a Fully-Automated Fluidized Bed Dryer for Complete Drying of Paddy

Authors: R. J. Pontawe, R. C. Martinez, N. T. Asuncion, R. V. Villacorte

Abstract:

Drying of high moisture paddy remains a major problem in the Philippines, especially during inclement weather condition. To alleviate the problem, mechanical dryers were used like a flat bed and recirculating batch-type dryers. However, drying to 14% (wet basis) final moisture content is long which takes 10-12 hours and tedious which is not the ideal for handling high moisture paddy. Fully-automated pilot-scale fluidized bed drying system with 500 kilograms per hour capacity was evaluated using a high moisture paddy. The developed fluidized bed dryer was evaluated using four drying temperatures and two variations in fluidization time at a constant airflow, static pressure and tempering period. Complete drying of paddy with ≥28% (w.b.) initial MC was attained after 2 passes of fluidized-bed drying at 2 minutes exposure to 70 °C drying temperature and 4.9 m/s superficial air velocity, followed by 60 min ambient air tempering period (30 min without ventilation and 30 min with air ventilation) for a total drying time of 2.07 h. Around 82% from normal mechanical drying time was saved at 70 °C drying temperature. The drying cost was calculated to be P0.63 per kilogram of wet paddy. Specific heat energy consumption was only 2.84 MJ/kg of water removed. The Head Rice Yield recovery of the dried paddy passed the Philippine Agricultural Engineering Standards. Sensory evaluation showed that the color and taste of the samples dried in the fluidized bed dryer were comparable to air dried paddy. The optimum drying parameters of using fluidized bed dryer is 70 oC drying temperature at 2 min fluidization time, 4.9 m/s superficial air velocity, 10.16 cm grain depth and 60 min ambient air tempering period.

Keywords: drying, fluidized bed dryer, head rice yield, paddy

Procedia PDF Downloads 325