Search results for: stochastic optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3630

Search results for: stochastic optimization

2100 The Benefits of End-To-End Integrated Planning from the Mine to Client Supply for Minimizing Penalties

Authors: G. Martino, F. Silva, E. Marchal

Abstract:

The control over delivered iron ore blend characteristics is one of the most important aspects of the mining business. The iron ore price is a function of its composition, which is the outcome of the beneficiation process. So, end-to-end integrated planning of mine operations can reduce risks of penalties on the iron ore price. In a standard iron mining company, the production chain is composed of mining, ore beneficiation, and client supply. When mine planning and client supply decisions are made uncoordinated, the beneficiation plant struggles to deliver the best blend possible. Technological improvements in several fields allowed bridging the gap between departments and boosting integrated decision-making processes. Clusterization and classification algorithms over historical production data generate reasonable previsions for quality and volume of iron ore produced for each pile of run-of-mine (ROM) processed. Mathematical modeling can use those deterministic relations to propose iron ore blends that better-fit specifications within a delivery schedule. Additionally, a model capable of representing the whole production chain can clearly compare the overall impact of different decisions in the process. This study shows how flexibilization combined with a planning optimization model between the mine and the ore beneficiation processes can reduce risks of out of specification deliveries. The model capabilities are illustrated on a hypothetical iron ore mine with magnetic separation process. Finally, this study shows ways of cost reduction or profit increase by optimizing process indicators across the production chain and integrating the different plannings with the sales decisions.

Keywords: clusterization and classification algorithms, integrated planning, mathematical modeling, optimization, penalty minimization

Procedia PDF Downloads 123
2099 The Optimization of the Parameters for Eco-Friendly Leaching of Precious Metals from Waste Catalyst

Authors: Silindile Gumede, Amir Hossein Mohammadi, Mbuyu Germain Ntunka

Abstract:

Goal 12 of the 17 Sustainable Development Goals (SDGs) encourages sustainable consumption and production patterns. This necessitates achieving the environmentally safe management of chemicals and all wastes throughout their life cycle and the proper disposal of pollutants and toxic waste. Fluid catalytic cracking (FCC) catalysts are widely used in the refinery to convert heavy feedstocks to lighter ones. During the refining processes, the catalysts are deactivated and discarded as hazardous toxic solid waste. Spent catalysts (SC) contain high-cost metal, and the recovery of metals from SCs is a tactical plan for supplying part of the demand for these substances and minimizing the environmental impacts. Leaching followed by solvent extraction, has been found to be the most efficient method to recover valuable metals with high purity from spent catalysts. However, the use of inorganic acids during the leaching process causes a secondary environmental issue. Therefore, it is necessary to explore other alternative efficient leaching agents that are economical and environmentally friendly. In this study, the waste catalyst was collected from a domestic refinery and was characterised using XRD, ICP, XRF, and SEM. Response surface methodology (RSM) and Box Behnken design were used to model and optimize the influence of some parameters affecting the acidic leaching process. The parameters selected in this investigation were the acid concentration, temperature, and leaching time. From the characterisation results, it was found that the spent catalyst consists of high concentrations of Vanadium (V) and Nickel (Ni); hence this study focuses on the leaching of Ni and V using a biodegradable acid to eliminate the formation of the secondary pollution.

Keywords: eco-friendly leaching, optimization, metal recovery, leaching

Procedia PDF Downloads 68
2098 Analyzing the Effects of Supply and Demand Shocks in the Spanish Economy

Authors: José M Martín-Moreno, Rafaela Pérez, Jesús Ruiz

Abstract:

In this paper we use a small open economy Dynamic Stochastic General Equilibrium Model (DSGE) for the Spanish economy to search for a deeper characterization of the determinants of Spain’s macroeconomic fluctuations throughout the period 1970-2008. In order to do this, we distinguish between tradable and non-tradable goods to take into account the fact that the presence of non-tradable goods in this economy is one of the largest in the world. We estimate a DSGE model with supply and demand shocks (sectorial productivity, public spending, international real interest rate and preferences) using Kalman Filter techniques. We find the following results. First of all, our variance decomposition analysis suggests that 1) the preference shock basically accounts for private consumption volatility, 2) the idiosyncratic productivity shock accounts for non-tradable output volatility, and 3) the sectorial productivity shock along with the international interest rate both greatly account for tradable output. Secondly, the model closely replicates the time path observed in the data for the Spanish economy and finally, the model captures the main cyclical qualitative features of this economy reasonably well.

Keywords: business cycle, DSGE models, Kalman filter estimation, small open economy

Procedia PDF Downloads 416
2097 Building Biodiversity Conservation Plans Robust to Human Land Use Uncertainty

Authors: Yingxiao Ye, Christopher Doehring, Angelos Georghiou, Hugh Robinson, Phebe Vayanos

Abstract:

Human development is a threat to biodiversity, and conservation organizations (COs) are purchasing land to protect areas for biodiversity preservation. However, COs have limited budgets and thus face hard prioritization decisions that are confounded by uncertainty in future human land use. This research proposes a data-driven sequential planning model to help COs choose land parcels that minimize the uncertain human impact on biodiversity. The proposed model is robust to uncertain development, and the sequential decision-making process is adaptive, allowing land purchase decisions to adapt to human land use as it unfolds. The cellular automata model is leveraged to simulate land use development based on climate data, land characteristics, and development threat index from NASA Socioeconomic Data and Applications Center. This simulation is used to model uncertainty in the problem. This research leverages state-of-the-art techniques in the robust optimization literature to propose a computationally tractable reformulation of the model, which can be solved routinely by off-the-shelf solvers like Gurobi or CPLEX. Numerical results based on real data from the Jaguar in Central and South America show that the proposed method reduces conservation loss by 19.46% on average compared to standard approaches such as MARXAN used in practice for biodiversity conservation. Our method may better help guide the decision process in land acquisition and thereby allow conservation organizations to maximize the impact of limited resources.

Keywords: data-driven robust optimization, biodiversity conservation, uncertainty simulation, adaptive sequential planning

Procedia PDF Downloads 210
2096 The Optimization of TICSI in the Convergence Mechanism of Urban Water Management

Authors: M. Macchiaroli, L. Dolores, V. Pellecchia

Abstract:

With the recent Resolution n. 580/2019/R/idr, the Italian Regulatory Authority for Energy, Networks, and Environment (ARERA) for the Urban Water Management has introduced, for water managements characterized by persistent critical issues regarding the planning and organization of the service and the implementation of the necessary interventions for the improvement of infrastructures and management quality, a new mechanism for determining tariffs: the regulatory scheme of Convergence. The aim of this regulatory scheme is the overcoming of the Water Service Divided in order to improve the stability of the local institutional structures, technical quality, contractual quality, as well as in order to guarantee transparency elements for Users of the Service. Convergence scheme presupposes the identification of the cost items to be considered in the tariff in parametric terms, distinguishing three possible cases according to the type of historical data available to the Manager. The study, in particular, focuses on operations that have neither data on tariff revenues nor data on operating costs. In this case, the Manager's Constraint on Revenues (VRG) is estimated on the basis of a reference benchmark and becomes the starting point for defining the structure of the tariff classes, in compliance with the TICSI provisions (Integrated Text for tariff classes, ARERA's Resolution n. 665/2017/R/idr). The proposed model implements the recent studies on optimization models for the definition of tariff classes in compliance with the constraints dictated by TICSI in the application of the Convergence mechanism, proposing itself as a support tool for the Managers and the local water regulatory Authority in the decision-making process.

Keywords: decision-making process, economic evaluation of projects, optimizing tools, urban water management, water tariff

Procedia PDF Downloads 119
2095 An Insite to the Probabilistic Assessment of Reserves in Conventional Reservoirs

Authors: Sai Sudarshan, Harsh Vyas, Riddhiman Sherlekar

Abstract:

The oil and gas industry has been unwilling to adopt stochastic definition of reserves. Nevertheless, Monte Carlo simulation methods have gained acceptance by engineers, geoscientists and other professionals who want to evaluate prospects or otherwise analyze problems that involve uncertainty. One of the common applications of Monte Carlo simulation is the estimation of recoverable hydrocarbon from a reservoir.Monte Carlo Simulation makes use of random samples of parameters or inputs to explore the behavior of a complex system or process. It finds application whenever one needs to make an estimate, forecast or decision where there is significant uncertainty. First, the project focuses on performing Monte-Carlo Simulation on a given data set using U. S Department of Energy’s MonteCarlo Software, which is a freeware e&p tool. Further, an algorithm for simulation has been developed for MATLAB and program performs simulation by prompting user for input distributions and parameters associated with each distribution (i.e. mean, st.dev, min., max., most likely, etc.). It also prompts user for desired probability for which reserves are to be calculated. The algorithm so developed and tested in MATLAB further finds implementation in Python where existing libraries on statistics and graph plotting have been imported to generate better outcome. With PyQt designer, codes for a simple graphical user interface have also been written. The graph so plotted is then validated with already available results from U.S DOE MonteCarlo Software.

Keywords: simulation, probability, confidence interval, sensitivity analysis

Procedia PDF Downloads 382
2094 Green Supply Chain Network Optimization with Internet of Things

Authors: Sema Kayapinar, Ismail Karaoglan, Turan Paksoy, Hadi Gokcen

Abstract:

Green Supply Chain Management is gaining growing interest among researchers and supply chain management. The concept of Green Supply Chain Management is to integrate environmental thinking into the Supply Chain Management. It is the systematic concept emphasis on environmental problems such as reduction of greenhouse gas emissions, energy efficiency, recycling end of life products, generation of solid and hazardous waste. This study is to present a green supply chain network model integrated Internet of Things applications. Internet of Things provides to get precise and accurate information of end-of-life product with sensors and systems devices. The forward direction consists of suppliers, plants, distributions centres and sales and collect centres while, the reverse flow includes the sales and collects centres, disassembled centre, recycling and disposal centre. The sales and collection centre sells the new products are transhipped from factory via distribution centre and also receive the end-of life product according their value level. We describe green logistics activities by presenting specific examples including “recycling of the returned products and “reduction of CO2 gas emissions”. The different transportation choices are illustrated between echelons according to their CO2 gas emissions. This problem is formulated as a mixed integer linear programming model to solve the green supply chain problems which are emerged from the environmental awareness and responsibilities. This model is solved by using Gams package program. Numerical examples are suggested to illustrate the efficiency of the proposed model.

Keywords: green supply chain optimization, internet of things, greenhouse gas emission, recycling

Procedia PDF Downloads 328
2093 Optimization of the Culture Medium, Incubation Period, pH and Temperatures for Maximal Dye Bioremoval Using A. Fumigates

Authors: Wafaa M. Abd El-Rahim, Magda A. El-Meleigy, Eman Refaat

Abstract:

This study dealing with optimization the conditions affecting the formation of extracellular lignin- degrading enzymes to achieve maximal decolorization activity of Direct Violet dye by one fungal strain. In this study Aspergillus fumigates fungal strain used for production extracellular ligninolytic enzymes for removing Direct Violet dye under different conditions: culture medium, incubation period, pH and temperatures. The results indicted that the removal efficiency of A. fumigatus was enhanced by addition glucose and peptone to the culture medium. The addition of peptone and glucose was found to increase the decolorization activity of the fungal isolate from 51.38% to 93.74% after 4 days of incubation. The highest production of extracellular lignin degrading enzymes also recorded in Direct Violet dye medium supplemented with peptone and glucose. It was also found the decolorization activity of A. fumigatus was decreased gradually by increasing the incubation period up to 4 days. Also it was found that the fungal strain can grow and produce extracellular ligninolytic enzymes which accompanied by efficient removal of Direct Violet dye in a wide pH range of 4-8. The results also found that the maximal biosynthesis of ligninolytic enzymes which accompanied with maximal removal of Direct Violet dye was obtained at a temperature of 28C. This indicates that the different conditions of culture medium, incubation period, pH and temperatures are effective on dye decolorization on the fungal biomass and played a role in Direct Violet dye removal along with enzymatic activity of A. fumigatus.

Keywords: A. fumigates, extracellular lignin- degrading enzymes, textile dye, dye removing

Procedia PDF Downloads 278
2092 Deep Learning Based on Image Decomposition for Restoration of Intrinsic Representation

Authors: Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Kensuke Nakamura, Dongeun Choi, Byung-Woo Hong

Abstract:

Artefacts are commonly encountered in the imaging process of clinical computed tomography (CT) where the artefact refers to any systematic discrepancy between the reconstructed observation and the true attenuation coefficient of the object. It is known that CT images are inherently more prone to artefacts due to its image formation process where a large number of independent detectors are involved, and they are assumed to yield consistent measurements. There are a number of different artefact types including noise, beam hardening, scatter, pseudo-enhancement, motion, helical, ring, and metal artefacts, which cause serious difficulties in reading images. Thus, it is desired to remove nuisance factors from the degraded image leaving the fundamental intrinsic information that can provide better interpretation of the anatomical and pathological characteristics. However, it is considered as a difficult task due to the high dimensionality and variability of data to be recovered, which naturally motivates the use of machine learning techniques. We propose an image restoration algorithm based on the deep neural network framework where the denoising auto-encoders are stacked building multiple layers. The denoising auto-encoder is a variant of a classical auto-encoder that takes an input data and maps it to a hidden representation through a deterministic mapping using a non-linear activation function. The latent representation is then mapped back into a reconstruction the size of which is the same as the size of the input data. The reconstruction error can be measured by the traditional squared error assuming the residual follows a normal distribution. In addition to the designed loss function, an effective regularization scheme using residual-driven dropout determined based on the gradient at each layer. The optimal weights are computed by the classical stochastic gradient descent algorithm combined with the back-propagation algorithm. In our algorithm, we initially decompose an input image into its intrinsic representation and the nuisance factors including artefacts based on the classical Total Variation problem that can be efficiently optimized by the convex optimization algorithm such as primal-dual method. The intrinsic forms of the input images are provided to the deep denosing auto-encoders with their original forms in the training phase. In the testing phase, a given image is first decomposed into the intrinsic form and then provided to the trained network to obtain its reconstruction. We apply our algorithm to the restoration of the corrupted CT images by the artefacts. It is shown that our algorithm improves the readability and enhances the anatomical and pathological properties of the object. The quantitative evaluation is performed in terms of the PSNR, and the qualitative evaluation provides significant improvement in reading images despite degrading artefacts. The experimental results indicate the potential of our algorithm as a prior solution to the image interpretation tasks in a variety of medical imaging applications. This work was supported by the MISP(Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by the IITP(Institute for Information and Communications Technology Promotion).

Keywords: auto-encoder neural network, CT image artefact, deep learning, intrinsic image representation, noise reduction, total variation

Procedia PDF Downloads 190
2091 Experimental and Numerical Studies of Droplet Formation

Authors: Khaled Al-Badani, James Ren, Lisa Li, David Allanson

Abstract:

Droplet formation is an important process in many engineering systems and manufacturing procedures, which includes welding, biotechnologies, 3D printing, biochemical, biomedical fields and many more. The volume and the characteristics of droplet formation are generally depended on various material properties, microfluidics and fluid mechanics considerations. Hence, a detailed investigation of this process, with the aid of numerical computational tools, are essential for future design optimization and process controls of many engineering systems. This will also improve the understanding of changes in the properties and the structures of materials, during the formation of the droplet, which is important for new material developments to achieve different functions, pending the requirements of the application. For example, the shape of the formed droplet is critical for the function of some final products, such as the welding nugget during Capacitor Discharge Welding process, or PLA 3D printing, etc. Although, most academic journals on droplet formation, focused on issued with material transfer rate, surface tension and residual stresses, the general emphasis on the characteristics of droplet shape has been overlooked. The proposed work for this project will examine theoretical methodologies, experimental techniques, and numerical modelling, using ANSYS FLUENT, to critically analyse and highlight optimization methods regarding the formation of pendant droplet. The project will also compare results from published data with experimental and numerical work, concerning the effects of key material parameters on the droplet shape. These effects include changes in heating/cooling rates, solidification/melting progression and separation/break-up times. From these tests, a set of objectives is prepared, with an intention of improving quality, stability and productivity in modelling metal welding and 3D printing.

Keywords: computer modelling, droplet formation, material distortion, materials forming, welding

Procedia PDF Downloads 286
2090 Enhanced Production of Endo-β-1,4-Xylanase from a Newly Isolated Thermophile Geobacillus stearothermophilus KIBGE-IB29 for Prospective Industrial Applications

Authors: Zainab Bibi, Afsheen Aman, Shah Ali Ul Qader

Abstract:

Endo-β-1,4-xylanases [EC 3.2.1.8] are one of the major groups of enzymes that are involved in degradation process of xylan and have several applications in food, textile and paper processing industries. Due to broad utility of endo-β-1,4-xylanase, researchers are focusing to increase the productivity of this hydrolase from various microbial species. Harsh industrial condition, faster reaction rate and efficient hydrolysis of xylan with low risk of contamination are critical requirements of industry that can be fulfilled by synthesizing the enzyme with efficient properties. In the current study, a newly isolated thermophile Geobacillus stearothermophilus KIBGE-IB29 was used in order to attain the maximum production of endo-1,4-β-xylanase. Bacterial culture was isolated from soil, collected around the blast furnace site of a steel processing mill, Karachi. Optimization of various nutritional and physical factors resulted the maximum synthesis of endo-1,4-β-xylanase from a thermophile. High production yield was achieved at 60°C and pH-6.0 after 24 hours of incubation period. Various nitrogen sources viz. peptone, yeast extract and meat extract improved the enzyme synthesis with 0.5%, 0.2% and 0.1% optimum concentrations. Dipotassium hydrogen phosphate (0.25%), potassium dihydrogen phosphate (0.05%), ammonium sulfate (0.05%) and calcium chloride (0.01%) were noticed as valuable salts to improve the production of enzyme. The thermophilic nature of isolate, with its broad pH stability profile and reduced fermentation time indicates its importance for effective xylan saccharification and for large scale production of endo-1,4-β-xylanase.

Keywords: geobacillus, optimization, production, xylanase

Procedia PDF Downloads 308
2089 Improving Patient-Care Services at an Oncology Center with a Flexible Adaptive Scheduling Procedure

Authors: P. Hooshangitabrizi, I. Contreras, N. Bhuiyan

Abstract:

This work presents an online scheduling problem which accommodates multiple requests of patients for chemotherapy treatments in a cancer center of a major metropolitan hospital in Canada. To solve the problem, an adaptive flexible approach is proposed which systematically combines two optimization models. The first model is intended to dynamically schedule arriving requests in the form of waiting lists whereas the second model is used to reschedule the already booked patients with the goal of finding better resource allocations when new information becomes available. Both models are created as mixed integer programming formulations. Various controllable and flexible parameters such as deviating the prescribed target dates by a pre-determined threshold, changing the start time of already booked appointments and the maximum number of appointments to move in the schedule are included in the proposed approach to have sufficient degrees of flexibility in handling arrival requests and unexpected changes. Several computational experiments are conducted to evaluate the performance of the proposed approach using historical data provided by the oncology clinic. Our approach achieves outstandingly better results as compared to those of the scheduling system being used in practice. Moreover, several analyses are conducted to evaluate the effect of considering different levels of flexibility on the obtained results and to assess the performance of the proposed approach in dealing with last-minute changes. We strongly believe that the proposed flexible adaptive approach is very well-suited for implementation at the clinic to provide better patient-care services and to utilize available resource more efficiently.

Keywords: chemotherapy scheduling, multi-appointment modeling, optimization of resources, satisfaction of patients, mixed integer programming

Procedia PDF Downloads 169
2088 Analysis of Temporal Factors Influencing Minimum Dwell Time Distributions

Authors: T. Pedersen, A. Lindfeldt

Abstract:

The minimum dwell time is an important part of railway timetable planning. Due to its stochastic behaviour, the minimum dwell time should be considered to create resilient timetables. While there has been significant focus on how to determine and estimate dwell times, to our knowledge, little research has been carried out regarding temporal and running direction variations of these. In this paper, we examine how the minimum dwell time varies depending on temporal factors such as the time of day, day of the week and time of the year. We also examine how it is affected by running direction and station type. The minimum dwell time is estimated by means of track occupation data. A method is proposed to ensure that only minimum dwell times and not planned dwell times are acquired from the track occupation data. The results show that on an aggregated level, the average minimum dwell times in both running directions at a station are similar. However, when temporal factors are considered, there are significant variations. The minimum dwell time varies throughout the day with peak hours having the longest dwell times. It is also found that the minimum dwell times are influenced by weekday, and in particular, weekends are found to have lower minimum dwell times than most other days. The findings show that there is a potential to significantly improve timetable planning by taking minimum dwell time variations into account.

Keywords: minimum dwell time, operations quality, timetable planning, track occupation data

Procedia PDF Downloads 198
2087 Regret-Regression for Multi-Armed Bandit Problem

Authors: Deyadeen Ali Alshibani

Abstract:

In the literature, the multi-armed bandit problem as a statistical decision model of an agent trying to optimize his decisions while improving his information at the same time. There are several different algorithms models and their applications on this problem. In this paper, we evaluate the Regret-regression through comparing with Q-learning method. A simulation on determination of optimal treatment regime is presented in detail.

Keywords: optimal, bandit problem, optimization, dynamic programming

Procedia PDF Downloads 453
2086 Energy Detection Based Sensing and Primary User Traffic Classification for Cognitive Radio

Authors: Urvee B. Trivedi, U. D. Dalal

Abstract:

As wireless communication services grow quickly; the seriousness of spectrum utilization has been on the rise gradually. An emerging technology, cognitive radio has come out to solve today’s spectrum scarcity problem. To support the spectrum reuse functionality, secondary users are required to sense the radio frequency environment, and once the primary users are found to be active, the secondary users are required to vacate the channel within a certain amount of time. Therefore, spectrum sensing is of significant importance. Once sensing is done, different prediction rules apply to classify the traffic pattern of primary user. Primary user follows two types of traffic patterns: periodic and stochastic ON-OFF patterns. A cognitive radio can learn the patterns in different channels over time. Two types of classification methods are discussed in this paper, by considering edge detection and by using autocorrelation function. Edge detection method has a high accuracy but it cannot tolerate sensing errors. Autocorrelation-based classification is applicable in the real environment as it can tolerate some amount of sensing errors.

Keywords: cognitive radio (CR), probability of detection (PD), probability of false alarm (PF), primary user (PU), secondary user (SU), fast Fourier transform (FFT), signal to noise ratio (SNR)

Procedia PDF Downloads 345
2085 Optimizing Data Integration and Management Strategies for Upstream Oil and Gas Operations

Authors: Deepak Singh, Rail Kuliev

Abstract:

The abstract highlights the critical importance of optimizing data integration and management strategies in the upstream oil and gas industry. With its complex and dynamic nature generating vast volumes of data, efficient data integration and management are essential for informed decision-making, cost reduction, and maximizing operational performance. Challenges such as data silos, heterogeneity, real-time data management, and data quality issues are addressed, prompting the proposal of several strategies. These strategies include implementing a centralized data repository, adopting industry-wide data standards, employing master data management (MDM), utilizing real-time data integration technologies, and ensuring data quality assurance. Training and developing the workforce, “reskilling and upskilling” the employees and establishing robust Data Management training programs play an essential role and integral part in this strategy. The article also emphasizes the significance of data governance and best practices, as well as the role of technological advancements such as big data analytics, cloud computing, Internet of Things (IoT), and artificial intelligence (AI) and machine learning (ML). To illustrate the practicality of these strategies, real-world case studies are presented, showcasing successful implementations that improve operational efficiency and decision-making. In present study, by embracing the proposed optimization strategies, leveraging technological advancements, and adhering to best practices, upstream oil and gas companies can harness the full potential of data-driven decision-making, ultimately achieving increased profitability and a competitive edge in the ever-evolving industry.

Keywords: master data management, IoT, AI&ML, cloud Computing, data optimization

Procedia PDF Downloads 70
2084 Designing and Simulation of the Rotor and Hub of the Unmanned Helicopter

Authors: Zbigniew Czyz, Ksenia Siadkowska, Krzysztof Skiba, Karol Scislowski

Abstract:

Today’s progress in the rotorcraft is mostly associated with an optimization of aircraft performance achieved by active and passive modifications of main rotor assemblies and a tail propeller. The key task is to improve their performance, improve the hover quality factor for rotors but not change in specific fuel consumption. One of the tasks to improve the helicopter is an active optimization of the main rotor providing for flight stages, i.e., an ascend, flight, a descend. An active interference with the airflow around the rotor blade section can significantly change characteristics of the aerodynamic airfoil. The efficiency of actuator systems modifying aerodynamic coefficients in the current solutions is relatively high and significantly affects the increase in strength. The solution to actively change aerodynamic characteristics assumes a periodic change of geometric features of blades depending on flight stages. Changing geometric parameters of blade warping enables an optimization of main rotor performance depending on helicopter flight stages. Structurally, an adaptation of shape memory alloys does not significantly affect rotor blade fatigue strength, which contributes to reduce costs associated with an adaptation of the system to the existing blades, and gains from a better performance can easily amortize such a modification and improve profitability of such a structure. In order to obtain quantitative and qualitative data to solve this research problem, a number of numerical analyses have been necessary. The main problem is a selection of design parameters of the main rotor and a preliminary optimization of its performance to improve the hover quality factor for rotors. This design concept assumes a three-bladed main rotor with a chord of 0.07 m and radius R = 1 m. The value of rotor speed is a calculated parameter of an optimization function. To specify the initial distribution of geometric warping, a special software has been created that uses a numerical method of a blade element which respects dynamic design features such as fluctuations of a blade in its joints. A number of performance analyses as a function of rotor speed, forward speed, and altitude have been performed. The calculations were carried out for the full model assembly. This approach makes it possible to observe the behavior of components and their mutual interaction resulting from the forces. The key element of each rotor is the shaft, hub and pins holding the joints and blade yokes. These components are exposed to the highest loads. As a result of the analysis, the safety factor was determined at the level of k > 1.5, which gives grounds to obtain certification for the strength of the structure. The construction of the joint rotor has numerous moving elements in its structure. Despite the high safety factor, the places with the highest stresses, where the signs of wear and tear may appear, have been indicated. The numerical analysis carried out showed that the most loaded element is the pin connecting the modular bearing of the blade yoke with the element of the horizontal oscillation joint. The stresses in this element result in a safety factor of k=1.7. The other analysed rotor components have a safety factor of more than 2 and in the case of the shaft, this factor is more than 3. However, it must be remembered that the structure is as strong as the weakest cell is. Designed rotor for unmanned aerial vehicles adapted to work with blades with intelligent materials in its structure meets the requirements for certification testing. Acknowledgement: This work has been financed by the Polish National Centre for Research and Development under the LIDER program, Grant Agreement No. LIDER/45/0177/L-9/17/NCBR/2018.

Keywords: main rotor, rotorcraft aerodynamics, shape memory alloy, materials, unmanned helicopter

Procedia PDF Downloads 158
2083 A Multilayer Perceptron Neural Network Model Optimized by Genetic Algorithm for Significant Wave Height Prediction

Authors: Luis C. Parra

Abstract:

The significant wave height prediction is an issue of great interest in the field of coastal activities because of the non-linear behavior of the wave height and its complexity of prediction. This study aims to present a machine learning model to forecast the significant wave height of the oceanographic wave measuring buoys anchored at Mooloolaba of the Queensland Government Data. Modeling was performed by a multilayer perceptron neural network-genetic algorithm (GA-MLP), considering Relu(x) as the activation function of the MLPNN. The GA is in charge of optimized the MLPNN hyperparameters (learning rate, hidden layers, neurons, and activation functions) and wrapper feature selection for the window width size. Results are assessed using Mean Square Error (MSE), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE). The GAMLPNN algorithm was performed with a population size of thirty individuals for eight generations for the prediction optimization of 5 steps forward, obtaining a performance evaluation of 0.00104 MSE, 0.03222 RMSE, 0.02338 MAE, and 0.71163% of MAPE. The results of the analysis suggest that the MLPNNGA model is effective in predicting significant wave height in a one-step forecast with distant time windows, presenting 0.00014 MSE, 0.01180 RMSE, 0.00912 MAE, and 0.52500% of MAPE with 0.99940 of correlation factor. The GA-MLP algorithm was compared with the ARIMA forecasting model, presenting better performance criteria in all performance criteria, validating the potential of this algorithm.

Keywords: significant wave height, machine learning optimization, multilayer perceptron neural networks, evolutionary algorithms

Procedia PDF Downloads 107
2082 An A-Star Approach for the Quickest Path Problem with Time Windows

Authors: Christofas Stergianos, Jason Atkin, Herve Morvan

Abstract:

As air traffic increases, more airports are interested in utilizing optimization methods. Many processes happen in parallel at an airport, and complex models are needed in order to have a reliable solution that can be implemented for ground movement operations. The ground movement for aircraft in an airport, allocating a path to each aircraft to follow in order to reach their destination (e.g. runway or gate), is one process that could be optimized. The Quickest Path Problem with Time Windows (QPPTW) algorithm has been developed to provide a conflict-free routing of vehicles and has been applied to routing aircraft around an airport. It was subsequently modified to increase the accuracy for airport applications. These modifications take into consideration specific characteristics of the problem, such as: the pushback process, which considers the extra time that is needed for pushing back an aircraft and turning its engines on; stand holding where any waiting should be allocated to the stand; and runway sequencing, where the sequence of the aircraft that take off is optimized and has to be respected. QPPTW involves searching for the quickest path by expanding the search in all directions, similarly to Dijkstra’s algorithm. Finding a way to direct the expansion can potentially assist the search and achieve a better performance. We have further modified the QPPTW algorithm to use a heuristic approach in order to guide the search. This new algorithm is based on the A-star search method but estimates the remaining time (instead of distance) in order to assess how far the target is. It is important to consider the remaining time that it is needed to reach the target, so that delays that are caused by other aircraft can be part of the optimization method. All of the other characteristics are still considered and time windows are still used in order to route multiple aircraft rather than a single aircraft. In this way the quickest path is found for each aircraft while taking into account the movements of the previously routed aircraft. After running experiments using a week of real aircraft data from Zurich Airport, the new algorithm (A-star QPPTW) was found to route aircraft much more quickly, being especially fast in routing the departing aircraft where pushback delays are significant. On average A-star QPPTW could route a full day (755 to 837 aircraft movements) 56% faster than the original algorithm. In total the routing of a full week of aircraft took only 12 seconds with the new algorithm, 15 seconds faster than the original algorithm. For real time application, the algorithm needs to be very fast, and this speed increase will allow us to add additional features and complexity, allowing further integration with other processes in airports and leading to more optimized and environmentally friendly airports.

Keywords: a-star search, airport operations, ground movement optimization, routing and scheduling

Procedia PDF Downloads 231
2081 Synergy and Complementarity in Technology-Intensive Manufacturing Networks

Authors: Daidai Shen, Jean Claude Thill, Wenjia Zhang

Abstract:

This study explores the dynamics of synergy and complementarity within city networks, specifically focusing on the headquarters-subsidiary relations of firms. We begin by defining these two types of networks and establishing their pivotal roles in shaping city network structures. Utilizing the mesoscale analytic approach of weighted stochastic block modeling, we discern relational patterns between city pairs and determine connection strengths through statistical inference. Furthermore, we introduce a community detection approach to uncover the underlying structure of these networks using advanced statistical methods. Our analysis, based on comprehensive network data up to 2017, reveals the coexistence of both complementarity and synergy networks within China’s technology-intensive manufacturing cities. Notably, firms in technology hardware and office & computing machinery predominantly contribute to the complementarity city networks. In contrast, a distinct synergy city network, underpinned by the cities of Suzhou and Dongguan, emerges amidst the expansive complementarity structures in technology hardware and equipment. These findings provide new insights into the relational dynamics and structural configurations of city networks in the context of technology-intensive manufacturing, highlighting the nuanced interplay between synergy and complementarity.

Keywords: city system, complementarity, synergy network, higher-order network

Procedia PDF Downloads 43
2080 Quantifying Multivariate Spatiotemporal Dynamics of Malaria Risk Using Graph-Based Optimization in Southern Ethiopia

Authors: Yonas Shuke Kitawa

Abstract:

Background: Although malaria incidence has substantially fallen sharply over the past few years, the rate of decline varies by district, time, and malaria type. Despite this turn-down, malaria remains a major public health threat in various districts of Ethiopia. Consequently, the present study is aimed at developing a predictive model that helps to identify the spatio-temporal variation in malaria risk by multiple plasmodium species. Methods: We propose a multivariate spatio-temporal Bayesian model to obtain a more coherent picture of the temporally varying spatial variation in disease risk. The spatial autocorrelation in such a data set is typically modeled by a set of random effects that assign a conditional autoregressive prior distribution. However, the autocorrelation considered in such cases depends on a binary neighborhood matrix specified through the border-sharing rule. Over here, we propose a graph-based optimization algorithm for estimating the neighborhood matrix that merely represents the spatial correlation by exploring the areal units as the vertices of a graph and the neighbor relations as the series of edges. Furthermore, we used aggregated malaria count in southern Ethiopia from August 2013 to May 2019. Results: We recognized that precipitation, temperature, and humidity are positively associated with the malaria threat in the area. On the other hand, enhanced vegetation index, nighttime light (NTL), and distance from coastal areas are negatively associated. Moreover, nonlinear relationships were observed between malaria incidence and precipitation, temperature, and NTL. Additionally, lagged effects of temperature and humidity have a significant effect on malaria risk by either species. More elevated risk of P. falciparum was observed following the rainy season, and unstable transmission of P. vivax was observed in the area. Finally, P. vivax risks are less sensitive to environmental factors than those of P. falciparum. Conclusion: The improved inference was gained by employing the proposed approach in comparison to the commonly used border-sharing rule. Additionally, different covariates are identified, including delayed effects, and elevated risks of either of the cases were observed in districts found in the central and western regions. As malaria transmission operates in a spatially continuous manner, a spatially continuous model should be employed when it is computationally feasible.

Keywords: disease mapping, MSTCAR, graph-based optimization algorithm, P. falciparum, P. vivax, waiting matrix

Procedia PDF Downloads 79
2079 Deep Reinforcement Learning-Based Computation Offloading for 5G Vehicle-Aware Multi-Access Edge Computing Network

Authors: Ziying Wu, Danfeng Yan

Abstract:

Multi-Access Edge Computing (MEC) is one of the key technologies of the future 5G network. By deploying edge computing centers at the edge of wireless access network, the computation tasks can be offloaded to edge servers rather than the remote cloud server to meet the requirements of 5G low-latency and high-reliability application scenarios. Meanwhile, with the development of IOV (Internet of Vehicles) technology, various delay-sensitive and compute-intensive in-vehicle applications continue to appear. Compared with traditional internet business, these computation tasks have higher processing priority and lower delay requirements. In this paper, we design a 5G-based Vehicle-Aware Multi-Access Edge Computing Network (VAMECN) and propose a joint optimization problem of minimizing total system cost. In view of the problem, a deep reinforcement learning-based joint computation offloading and task migration optimization (JCOTM) algorithm is proposed, considering the influences of multiple factors such as concurrent multiple computation tasks, system computing resources distribution, and network communication bandwidth. And, the mixed integer nonlinear programming problem is described as a Markov Decision Process. Experiments show that our proposed algorithm can effectively reduce task processing delay and equipment energy consumption, optimize computing offloading and resource allocation schemes, and improve system resource utilization, compared with other computing offloading policies.

Keywords: multi-access edge computing, computation offloading, 5th generation, vehicle-aware, deep reinforcement learning, deep q-network

Procedia PDF Downloads 118
2078 CO2 Emission and Cost Optimization of Reinforced Concrete Frame Designed by Performance Based Design Approach

Authors: Jin Woo Hwang, Byung Kwan Oh, Yousok Kim, Hyo Seon Park

Abstract:

As greenhouse effect has been recognized as serious environmental problem of the world, interests in carbon dioxide (CO2) emission which comprises major part of greenhouse gas (GHG) emissions have been increased recently. Since construction industry takes a relatively large portion of total CO2 emissions of the world, extensive studies about reducing CO2 emissions in construction and operation of building have been carried out after the 2000s. Also, performance based design (PBD) methodology based on nonlinear analysis has been robustly developed after Northridge Earthquake in 1994 to assure and assess seismic performance of building more exactly because structural engineers recognized that prescriptive code based design approach cannot address inelastic earthquake responses directly and assure performance of building exactly. Although CO2 emissions and PBD approach are recent rising issues on construction industry and structural engineering, there were few or no researches considering these two issues simultaneously. Thus, the objective of this study is to minimize the CO2 emissions and cost of building designed by PBD approach in structural design stage considering structural materials. 4 story and 4 span reinforced concrete building optimally designed to minimize CO2 emissions and cost of building and to satisfy specific seismic performance (collapse prevention in maximum considered earthquake) of building satisfying prescriptive code regulations using non-dominated sorting genetic algorithm-II (NSGA-II). Optimized design result showed that minimized CO2 emissions and cost of building were acquired satisfying specific seismic performance. Therefore, the methodology proposed in this paper can be used to reduce both CO2 emissions and cost of building designed by PBD approach.

Keywords: CO2 emissions, performance based design, optimization, sustainable design

Procedia PDF Downloads 406
2077 Construction and Optimization of Green Infrastructure Network in Mountainous Counties Based on Morphological Spatial Pattern Analysis and Minimum Cumulative Resistance Models: A Case Study of Shapingba District, Chongqing

Authors: Yuning Guan

Abstract:

Under the background of rapid urbanization, mountainous counties need to break through mountain barriers for urban expansion due to undulating topography, resulting in ecological problems such as landscape fragmentation and reduced biodiversity. Green infrastructure networks are constructed to alleviate the contradiction between urban expansion and ecological protection, promoting the healthy and sustainable development of urban ecosystems. This study applies the MSPA model, the MCR model and Linkage Mapper Tools to identify eco-sources and eco-corridors in the Shapingba District of Chongqing and combined with landscape connectivity assessment and circuit theory to delineate the importance levels to extract ecological pinch point areas on the corridors. The results show that: (1) 20 ecological sources are identified, with a total area of 126.47 km², accounting for 31.88% of the study area, and showing a pattern of ‘one core, three corridors, multi-point distribution’. (2) 37 ecological corridors are formed in the area, with a total length of 62.52km, with a ‘more in the west, less in the east’ pattern. (3) 42 ecological pinch points are extracted, accounting for 25.85% of the length of the corridors, which are mainly distributed in the eastern new area. Accordingly, this study proposes optimization strategies for sub-area protection of ecological sources, grade-level construction of ecological corridors, and precise restoration of ecological pinch points.

Keywords: green infrastructure network, morphological spatial pattern, minimal cumulative resistance, mountainous counties, circuit theory, shapingba district

Procedia PDF Downloads 44
2076 Enhancing Algal Bacterial Photobioreactor Efficiency: Nutrient Removal and Cost Analysis Comparison for Light Source Optimization

Authors: Shahrukh Ahmad, Purnendu Bose

Abstract:

Algal-Bacterial photobioreactors (ABPBRs) have emerged as a promising technology for sustainable biomass production and wastewater treatment. Nutrient removal is seldom done in sewage treatment plants and large volumes of wastewater which still have nutrients are being discharged and that can lead to eutrophication. That is why ABPBR plays a vital role in wastewater treatment. However, improving the efficiency of ABPBR remains a significant challenge. This study aims to enhance ABPBR efficiency by focusing on two key aspects: nutrient removal and cost-effective optimization of the light source. By integrating nutrient removal and cost analysis for light source optimization, this study proposes practical strategies for improving ABPBR efficiency. To reduce organic carbon and convert ammonia to nitrates, domestic wastewater from a 130 MLD sewage treatment plant (STP) was aerated with a hydraulic retention time (HRT) of 2 days. The treated supernatant had an approximate nitrate and phosphate values of 16 ppm as N and 6 ppm as P, respectively. This supernatant was then fed into the ABPBR, and the removal of nutrients (nitrate as N and phosphate as P) was observed using different colored LED bulbs, namely white, blue, red, yellow, and green. The ABPBR operated with a 9-hour light and 3-hour dark cycle, using only one color of bulbs per cycle. The study found that the white LED bulb, with a photosynthetic photon flux density (PPFD) value of 82.61 µmol.m-2 .sec-1 , exhibited the highest removal efficiency. It achieved a removal rate of 91.56% for nitrate and 86.44% for phosphate, surpassing the other colored bulbs. Conversely, the green LED bulbs showed the lowest removal efficiencies, with 58.08% for nitrate and 47.48% for phosphate at an HRT of 5 days. The quantum PAR (Photosynthetic Active Radiation) meter measured the photosynthetic photon flux density for each colored bulb setting inside the photo chamber, confirming that white LED bulbs operated at a wider wavelength band than the others. Furthermore, a cost comparison was conducted for each colored bulb setting. The study revealed that the white LED bulb had the lowest average cost (Indian Rupee)/light intensity (µmol.m-2 .sec-1 ) value at 19.40, while the green LED bulbs had the highest average cost (INR)/light intensity (µmol.m-2 .sec-1 ) value at 115.11. Based on these comparative tests, it was concluded that the white LED bulbs were the most efficient and costeffective light source for an algal photobioreactor. They can be effectively utilized for nutrient removal from secondary treated wastewater which helps in improving the overall wastewater quality before it is discharged back into the environment.

Keywords: algal bacterial photobioreactor, domestic wastewater, nutrient removal, led bulbs

Procedia PDF Downloads 79
2075 Approximate Spring Balancing for the Arm of a Humanoid Robot to Reduce Actuator Torque

Authors: Apurva Patil, Ashay Aswale, Akshay Kulkarni, Shubham Bharadiya

Abstract:

The potential benefit of gravity compensation of linkages in mechanisms using springs to reduce actuator requirements is well recognized, but practical applications have been elusive. Although existing methods provide exact spring balance, they require additional masses or auxiliary links, or all the springs used originate from the ground, which makes the resulting device bulky and space-inefficient. This paper uses a method of static balancing of mechanisms with conservative loads such as gravity and spring loads using non-zero-free-length springs with child–parent connections and no auxiliary links. Application of this method to the developed arm of a humanoid robot is presented here. Spring balancing is particularly important in this case because the serial chain of linkages has to work against gravity.This work involves approximate spring balancing of the open-loop chain of linkages using minimization of potential energy variance. It uses the approach of flattening the potential energy distribution over the workspace and fuses it with numerical optimization. The results show the considerable reduction in actuator torque requirement with practical spring design and arrangement. Reduced actuator torque facilitates the use of lower end actuators which are generally smaller in weight and volume thereby lowering the space requirements and the total weight of the arm. This is particularly important for humanoid robots where the parent actuator has to handle the weight of the subsequent actuators as well. Actuators with lower actuation requirements are more energy efficient, thereby reduce the energy consumption of the mechanism. Lower end actuators are lower in cost and facilitate the development of low-cost devices. Although the method provides only an approximate balancing, it is versatile, flexible in choosing appropriate control variables that are relevant to the design problem and easy to implement. The true potential of this technique lies in the fact that it uses a very simple optimization to find the spring constant, free-length of the spring and the optimal attachment points subject to the optimization constraints. Also, it uses physically realizable non-zero-free-length springs directly, thereby reducing the complexity involved in simulating zero-free-length springs from non-zero-free-length springs. This method allows springs to be attached to the preceding parent link, which makes the implementation of spring balancing practical. Because auxiliary linkages can be avoided, the resultant arm of the humanoid robot is compact. The cost benefits and reduced complexity can be significant advantages in the development of this arm of the humanoid robot.

Keywords: actuator torque, child-parent connections, spring balancing, the arm of a humanoid robot

Procedia PDF Downloads 244
2074 Preparation and Properties of Gelatin-Bamboo Fibres Foams for Packaging Applications

Authors: Luo Guidong, Song Hang, Jim Song, Virginia Martin Torrejon

Abstract:

Due to their excellent properties, polymer packaging foams have become increasingly essential in our current lifestyles. They are cost-effective and lightweight, with excellent mechanical and thermal insulation properties. However, they constitute a major environmental and health concern due to litter generation, ocean pollution, and microplastic contamination of the food chain. In recent years, considerable efforts have been made to develop more sustainable alternatives to conventional polymer packaging foams. As a result, biobased and compostable foams are increasingly becoming commercially available, such as starch-based loose-fill or PLA trays. However, there is still a need for bulk manufacturing of bio-foams planks for packaging applications as a viable alternative to their fossil fuel counterparts (i.e., polystyrene, polyethylene, and polyurethane). Gelatin is a promising biopolymer for packaging applications due to its biodegradability, availability, and biocompatibility, but its mechanical properties are poor compared to conventional plastics. However, as widely reported for other biopolymers, such as starch, the mechanical properties of gelatin-based bioplastics can be enhanced by formulation optimization, such as the incorporation of fibres from different crops, such as bamboo. This research aimed to produce gelatin-bamboo fibre foams by mechanical foaming and to study the effect of fibre content on the foams' properties and structure. As a result, foams with virtually no shrinkage, low density (<40 kg/m³), low thermal conductivity (<0.044 W/m•K), and mechanical properties comparable to conventional plastics were produced. Further work should focus on developing formulations suitable for the packaging of water-sensitive products and processing optimization, especially the reduction of the drying time.

Keywords: biobased and compostable foam, sustainable packaging, natural polymer hydrogel, cold chain packaging

Procedia PDF Downloads 105
2073 A Study in Optimization of FSI(Floor Space Index) in Kerala

Authors: Anjali Suresh

Abstract:

Kerala is well known for its unique settlement pattern; comprising the most part, a continuous spread of habitation. The notable urbanization trend in Kerala is urban spread rather than concentration which points out the increasing urbanization of peripheral areas of existing urban centers. This has thrown a challenge for the authorities to cater the needs of the urban population like to provide affordable housing and infrastructure facilities to sustain their livelihood; which is a matter of concern that needs policy attention in fixing the optimum FSI value. Based on recent reports (Post Disaster Need Analysis –PDNA) from the UN, addressing the unsafe situation of the carpet FAR/FSI practice in the state showcasing the varying geological & climatic conditions should also be the matter of concern. The FSI (Floor space index- the ratio of the built-up space on a plot to the area of the plot) value is certainly one of the key regulation factors in checking the land utilization for the varying occupancies desired for the overall development of a state with limitation in land availability when compared to its neighbors. The pattern of urbanization, physical conditions, topography, etc., varies within the state and can change remarkably over time which identifies that the practicing FSI norms in Kerala does not fulfils the intended function. Thus the FSI regulation is expected to change dynamically from location to location. So for determining the optimum value of FSI /FAR of a region in the state of Kerala, the government agencies should consider the optimum land utilization for the growing urbanization. On the other hand, shall keep in check the overutilization of the same in par with environmental and geographic nature. Therefore the study identifies parameters that should be considered for assigning FSI within the Kerala context, and through expert surveys; opinions arrive at a methodology for assigning an optimum FSI value of a region in the state of Kerala.

Keywords: floor space index, urbanization, density, civic pressure, optimization

Procedia PDF Downloads 100
2072 Solving a Micromouse Maze Using an Ant-Inspired Algorithm

Authors: Rolando Barradas, Salviano Soares, António Valente, José Alberto Lencastre, Paulo Oliveira

Abstract:

This article reviews the Ant Colony Optimization, a nature-inspired algorithm, and its implementation in the Scratch/m-Block programming environment. The Ant Colony Optimization is a part of Swarm Intelligence-based algorithms and is a subset of biological-inspired algorithms. Starting with a problem in which one has a maze and needs to find its path to the center and return to the starting position. This is similar to an ant looking for a path to a food source and returning to its nest. Starting with the implementation of a simple wall follower simulator, the proposed solution uses a dynamic graphical interface that allows young students to observe the ants’ movement while the algorithm optimizes the routes to the maze’s center. Things like interface usability, Data structures, and the conversion of algorithmic language to Scratch syntax were some of the details addressed during this implementation. This gives young students an easier way to understand the computational concepts of sequences, loops, parallelism, data, events, and conditionals, as they are used through all the implemented algorithms. Future work includes the simulation results with real contest mazes and two different pheromone update methods and the comparison with the optimized results of the winners of each one of the editions of the contest. It will also include the creation of a Digital Twin relating the virtual simulator with a real micromouse in a full-size maze. The first test results show that the algorithm found the same optimized solutions that were found by the winners of each one of the editions of the Micromouse contest making this a good solution for maze pathfinding.

Keywords: nature inspired algorithms, scratch, micromouse, problem-solving, computational thinking

Procedia PDF Downloads 126
2071 Response Surface Methodology for the Optimization of Radioactive Wastewater Treatment with Chitosan-Argan Nutshell Beads

Authors: Fatima Zahra Falah, Touria El. Ghailassi, Samia Yousfi, Ahmed Moussaif, Hasna Hamdane, Mouna Latifa Bouamrani

Abstract:

The management and treatment of radioactive wastewater pose significant challenges to environmental safety and public health. This study presents an innovative approach to optimizing radioactive wastewater treatment using a novel biosorbent: chitosan-argan nutshell beads. By employing Response Surface Methodology (RSM), we aimed to determine the optimal conditions for maximum removal efficiency of radioactive contaminants. Chitosan, a biodegradable and non-toxic biopolymer, was combined with argan nutshell powder to create composite beads. The argan nutshell, a waste product from argan oil production, provides additional adsorption sites and mechanical stability to the biosorbent. The beads were characterized using Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and X-ray Diffraction (XRD) to confirm their structure and composition. A three-factor, three-level Box-Behnken design was utilized to investigate the effects of pH (3-9), contact time (30-150 minutes), and adsorbent dosage (0.5-2.5 g/L) on the removal efficiency of radioactive isotopes, primarily focusing on cesium-137. Batch adsorption experiments were conducted using synthetic radioactive wastewater with known concentrations of these isotopes. The RSM analysis revealed that all three factors significantly influenced the adsorption process. A quadratic model was developed to describe the relationship between the factors and the removal efficiency. The model's adequacy was confirmed through analysis of variance (ANOVA) and various diagnostic plots. Optimal conditions for maximum removal efficiency were pH 6.8, a contact time of 120 minutes, and an adsorbent dosage of 0.8 g/L. Under these conditions, the experimental removal efficiency for cesium-137 was 94.7%, closely matching the model's predictions. Adsorption isotherms and kinetics were also investigated to elucidate the mechanism of the process. The Langmuir isotherm and pseudo-second-order kinetic model best described the adsorption behavior, indicating a monolayer adsorption process on a homogeneous surface. This study demonstrates the potential of chitosan-argan nutshell beads as an effective and sustainable biosorbent for radioactive wastewater treatment. The use of RSM allowed for the efficient optimization of the process parameters, potentially reducing the time and resources required for large-scale implementation. Future work will focus on testing the biosorbent's performance with real radioactive wastewater samples and investigating its regeneration and reusability for long-term applications.

Keywords: adsorption, argan nutshell, beads, chitosan, mechanism, optimization, radioactive wastewater, response surface methodology

Procedia PDF Downloads 35