Search results for: statistical modeling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7661

Search results for: statistical modeling

6131 Modeling and Estimating Reserve of the Ali Javad Porphyry Copper-Gold Deposit, East Azerbaijan, Iran

Authors: Behzad Hajalilou, Nasim Hajalilou, Saeid Ansari

Abstract:

The study area is located in East Azerbaijan province, north of Ahar city, and 1/100000 geological map of Varzgan. This region is located in the middle of Iran zone. Ali Javad Porphyry copper-gold ore deposit has been created in a magmatic complex containing intrusive masses, combining Granodiorite and quartz Monzonite that penetrates into the Eocene volcanic aggregate. The most important mineralization includes primary oxides minerals (magnetite), sulfide (pyrite, chalcopyrite, Molybdenite, Bornite, Chalcocite, Covollite), secondary oxide or hydroxide minerals (hematite, goethite, limonite), and carbonate (malachite and Azurite). The mineralization forms into the vein-veinlets and scattered system. The alterations observed in the region include intermediate Argillic, advanced Argillic, Phyllic, silica, Propylitic, chlorite and Potassic. The 3D model of mineralization of the Alijavad is provided by Data DATAMINE software and based on the study of 700 polished sections of 32 drilled boreholes in the region. This model is completely compatible with the model provided by Lowell and Gilbert for the mineralization of porphyry copper deposits of quartz Monzonite type. The estimated cumulative residual value of copper for Ali Javad deposit is 81.5 million tons with 0.75 percent of copper, and for gold is 8.37 million tons with 1.8 ppm.

Keywords: porphyry copper, mineralization, Ali Javad, modeling, reserve estimation

Procedia PDF Downloads 220
6130 Factors Associated with Weight Loss Maintenance after an Intervention Program

Authors: Filipa Cortez, Vanessa Pereira

Abstract:

Introduction: The main challenge of obesity treatment is long-term weight loss maintenance. The 3 phases method is a weight loss program that combines a low carb and moderately high-protein diet, food supplements and a weekly one-to-one consultation with a certified nutritionist. Sustained weight control is the ultimate goal of phase 3. Success criterion was the minimum loss of 10% of initial weight and its maintenance after 12 months. Objective: The aim of this study was to identify factors associated with successful weight loss maintenance after 12 months at the end of 3 phases method. Methods: The study included 199 subjects that achieved their weight loss goal (phase 3). Weight and body mass index (BMI) were obtained at the baseline and every week until the end of the program. Therapeutic adherence was measured weekly on a Likert scale from 1 to 5. Subjects were considered in compliance with nutritional recommendation and supplementation when their classification was ≥ 4. After 12 months of the method, the current weight and number of previous weight-loss attempts were collected by telephone interview. The statistical significance was assumed at p-values < 0.05. Statistical analyses were performed using SPSS TM software v.21. Results: 65.3% of subjects met the success criterion. The factors which displayed a significant weight loss maintenance prediction were: greater initial percentage weight loss (OR=1.44) during the weight loss intervention and a higher number of consultations in phase 3 (OR=1.10). Conclusion: These findings suggest that the percentage weight loss during the weight loss intervention and the number of consultations in phase 3 may facilitate maintenance of weight loss after the 3 phases method.

Keywords: obesity, weight maintenance, low-carbohydrate diet, dietary supplements

Procedia PDF Downloads 150
6129 Variable Renewable Energy Droughts in the Power Sector – A Model-based Analysis and Implications in the European Context

Authors: Martin Kittel, Alexander Roth

Abstract:

The continuous integration of variable renewable energy sources (VRE) in the power sector is required for decarbonizing the European economy. Power sectors become increasingly exposed to weather variability, as the availability of VRE, i.e., mainly wind and solar photovoltaic, is not persistent. Extreme events, e.g., long-lasting periods of scarce VRE availability (‘VRE droughts’), challenge the reliability of supply. Properly accounting for the severity of VRE droughts is crucial for designing a resilient renewable European power sector. Energy system modeling is used to identify such a design. Our analysis reveals the sensitivity of the optimal design of the European power sector towards VRE droughts. We analyze how VRE droughts impact optimal power sector investments, especially in generation and flexibility capacity. We draw upon work that systematically identifies VRE drought patterns in Europe in terms of frequency, duration, and seasonality, as well as the cross-regional and cross-technological correlation of most extreme drought periods. Based on their analysis, the authors provide a selection of relevant historical weather years representing different grades of VRE drought severity. These weather years will serve as input for the capacity expansion model for the European power sector used in this analysis (DIETER). We additionally conduct robustness checks varying policy-relevant assumptions on capacity expansion limits, interconnections, and level of sector coupling. Preliminary results illustrate how an imprudent selection of weather years may cause underestimating the severity of VRE droughts, flawing modeling insights concerning the need for flexibility. Sub-optimal European power sector designs vulnerable to extreme weather can result. Using relevant weather years that appropriately represent extreme weather events, our analysis identifies a resilient design of the European power sector. Although the scope of this work is limited to the European power sector, we are confident that our insights apply to other regions of the world with similar weather patterns. Many energy system studies still rely on one or a limited number of sometimes arbitrarily chosen weather years. We argue that the deliberate selection of relevant weather years is imperative for robust modeling results.

Keywords: energy systems, numerical optimization, variable renewable energy sources, energy drought, flexibility

Procedia PDF Downloads 72
6128 Propeller Performance Modeling through a Computational Fluid Dynamics Analysis Method

Authors: Maxime Alex Junior Kuitche, Ruxandra Mihaela Botez, Jean-Chirstophe Maunand

Abstract:

The evolution of aircraft is closely linked to the study and improvement of propulsion systems. Determining the propulsion performance is a real challenge in aircraft modeling and design. In addition to theoretical methodologies, experimental procedures are used to obtain a good estimation of the propulsion performances. For piston-propeller propulsion, the propeller needs several experimental tests which could be extremely demanding in terms of time and money. This paper presents a new procedure to estimate the performance of a propeller from a numerical approach using computational fluid dynamic analysis. The propeller was initially scanned, and then, its 3D model was represented using CATIA. A structured meshing and Shear Stress Transition k-ω turbulence model were applied to describe accurately the flow pattern around the propeller. Thus, the Partial Differential Equations were solved using ANSYS FLUENT software. The method was applied on the UAS-S45’s propeller designed and manufactured by Hydra Technologies in Mexico. An extensive investigation was performed for several flight conditions in terms of altitudes and airspeeds with the aim to determine thrust coefficients, power coefficients and efficiency of the propeller. The Computational Fluid Dynamics results were compared with experimental data acquired from wind tunnel tests performed at the LARCASE Price-Paidoussis wind tunnel. The results of this comparison have demonstrated that our approach was highly accurate.

Keywords: CFD analysis, propeller performance, unmanned aerial system propeller, UAS-S45

Procedia PDF Downloads 353
6127 One or More Building Information Modeling Managers in France: The Confusion of the Kind

Authors: S. Blanchard, D. Beladjine, K. Beddiar

Abstract:

Since 2015, the arrival of BIM in the building sector in France has turned the corporation world upside down. Not only constructive practices have been impacted, but also the uses and the men who have undergone important changes. Thus, the new collaborative mode generated by the BIM and the digital model has challenged the supremacy of some construction actors because the process involves working together taking into account the needs of other contributors. New BIM tools have emerged and actors in the act of building must take ownership of them. It is in this context that under the impetus of a European directive and the French government's encouragement of new missions and job profiles have. Moreover, concurrent engineering requires that each actor can advance at the same time as the others, at the whim of the information that reaches him, and the information he has to transmit. However, in the French legal system around public procurement, things are not planned in this direction. Also, a consequent evolution must take place to adapt to the methodology. The new missions generated by the BIM in France require a good mastery of the tools and the process. Also, to meet the objectives of the BIM approach, it is possible to define a typical job profile around the BIM, adapted to the various sectors concerned. The multitude of job offers using the same terms with very different objectives and the complexity of the proposed missions motivated by our approach. In order to reinforce exchanges with professionals or specialists, we carried out a statistical study to answer this problem. Five topics are discussed around the business area: the BIM in the company, the function (business), software used and BIM missions practiced (39 items). About 1400 professionals were interviewed. These people work in companies (micro businesses, SMEs, and Groups) of construction, engineering offices or, architectural agencies. 77% of respondents have the status of employees. All participants are graduated in their trade, the majority having level 1. Most people have less than a year of experience in BIM, but some have 10 years. The results of our survey help to understand why it is not possible to define a single type of BIM Manager. Indeed, the specificities of the companies are so numerous and complex and the missions so varied, that there is not a single model for a function. On the other hand, it was possible to define 3 main professions around the BIM (Manager, Coordinator and Modeler) and 3 main missions for the BIM Manager (deployment of the method, assistance to project management and management of a project).

Keywords: BIM manager, BIM modeler, BIM coordinator, project management

Procedia PDF Downloads 163
6126 Performance Comparison of Different Regression Methods for a Polymerization Process with Adaptive Sampling

Authors: Florin Leon, Silvia Curteanu

Abstract:

Developing complete mechanistic models for polymerization reactors is not easy, because complex reactions occur simultaneously; there is a large number of kinetic parameters involved and sometimes the chemical and physical phenomena for mixtures involving polymers are poorly understood. To overcome these difficulties, empirical models based on sampled data can be used instead, namely regression methods typical of machine learning field. They have the ability to learn the trends of a process without any knowledge about its particular physical and chemical laws. Therefore, they are useful for modeling complex processes, such as the free radical polymerization of methyl methacrylate achieved in a batch bulk process. The goal is to generate accurate predictions of monomer conversion, numerical average molecular weight and gravimetrical average molecular weight. This process is associated with non-linear gel and glass effects. For this purpose, an adaptive sampling technique is presented, which can select more samples around the regions where the values have a higher variation. Several machine learning methods are used for the modeling and their performance is compared: support vector machines, k-nearest neighbor, k-nearest neighbor and random forest, as well as an original algorithm, large margin nearest neighbor regression. The suggested method provides very good results compared to the other well-known regression algorithms.

Keywords: batch bulk methyl methacrylate polymerization, adaptive sampling, machine learning, large margin nearest neighbor regression

Procedia PDF Downloads 305
6125 Parallel Self Organizing Neural Network Based Estimation of Archie’s Parameters and Water Saturation in Sandstone Reservoir

Authors: G. M. Hamada, A. A. Al-Gathe, A. M. Al-Khudafi

Abstract:

Determination of water saturation in sandstone is a vital question to determine the initial oil or gas in place in reservoir rocks. Water saturation determination using electrical measurements is mainly on Archie’s formula. Consequently accuracy of Archie’s formula parameters affects water saturation values rigorously. Determination of Archie’s parameters a, m, and n is proceeded by three conventional techniques, Core Archie-Parameter Estimation (CAPE) and 3-D. This work introduces the hybrid system of parallel self-organizing neural network (PSONN) targeting accepted values of Archie’s parameters and, consequently, reliable water saturation values. This work focuses on Archie’s parameters determination techniques; conventional technique, CAPE technique, and 3-D technique, and then the calculation of water saturation using current. Using the same data, a hybrid parallel self-organizing neural network (PSONN) algorithm is used to estimate Archie’s parameters and predict water saturation. Results have shown that estimated Arche’s parameters m, a, and n are highly accepted with statistical analysis, indicating that the PSONN model has a lower statistical error and higher correlation coefficient. This study was conducted using a high number of measurement points for 144 core plugs from a sandstone reservoir. PSONN algorithm can provide reliable water saturation values, and it can supplement or even replace the conventional techniques to determine Archie’s parameters and thereby calculate water saturation profiles.

Keywords: water saturation, Archie’s parameters, artificial intelligence, PSONN, sandstone reservoir

Procedia PDF Downloads 128
6124 A Mathematical Agent-Based Model to Examine Two Patterns of Language Change

Authors: Gareth Baxter

Abstract:

We use a mathematical model of language change to examine two recently observed patterns of language change: one in which most speakers change gradually, following the mean of the community change, and one in which most individuals use predominantly one variant or another, and change rapidly if they change at all. The model is based on Croft’s Utterance Selection account of language change, which views language change as an evolutionary process, in which different variants (different ‘ways of saying the same thing’) compete for usage in a population of speakers. Language change occurs when a new variant replaces an older one as the convention within a given population. The present model extends a previous simpler model to include effects related to speaker aging and interspeaker variation in behaviour. The two patterns of individual change (one more centralized and the other more polarized) were recently observed in historical language changes, and it was further observed that slower changes were more associated with the centralized pattern, while quicker changes were more polarized. Our model suggests that the two patterns of change can be explained by different balances between the preference of speakers to use one variant over another and the degree of accommodation to (propensity to adapt towards) other speakers. The correlation with the rate of change appears naturally in our model, and results from the fact that both differential weighting of variants and the degree of accommodation affect the time for change to occur, while also determining the patterns of change. This work represents part of an ongoing effort to examine phenomena in language change through the use of mathematical models. This offers another way to evaluate qualitative explanations that cannot be practically tested (or cannot be tested at all) in a real-world, large-scale speech community.

Keywords: agent based modeling, cultural evolution, language change, social behavior modeling, social influence

Procedia PDF Downloads 235
6123 The Competitiveness of Small and Medium Sized Enterprises: Digital Transformation of Business Models

Authors: Chante Van Tonder, Bart Bossink, Chris Schachtebeck, Cecile Nieuwenhuizen

Abstract:

Small and Medium-Sized Enterprises (SMEs) play a key role in national economies around the world, being contributors to economic and social well-being. Due to this, the success, growth and competitiveness of SMEs are critical. However, there are many factors that undermine this, such as resource constraints, poor information communication infrastructure (ICT), skills shortages and poor management. The Fourth Industrial Revolution offers new tools and opportunities such as digital transformation and business model innovation (BMI) to the SME sector to enhance its competitiveness. Adopting and leveraging digital technologies such as cloud, mobile technologies, big data and analytics can significantly improve business efficiencies, value proposition and customer experiences. Digital transformation can contribute to the growth and competitiveness of SMEs. However, SMEs are lagging behind in the participation of digital transformation. Extant research lacks conceptual and empirical research on how digital transformation drives BMI and the impact it has on the growth and competitiveness of SMEs. The purpose of the study is, therefore, to close this gap by developing and empirically validating a conceptual model to determine if SMEs are achieving BMI through digital transformation and how this is impacting the growth, competitiveness and overall business performance. An empirical study is being conducted on 300 SMEs, consisting of 150 South-African and 150 Dutch SMEs, to achieve this purpose. Structural equation modeling is used, since it is a multivariate statistical analysis technique that is used to analyse structural relationships and is a suitable research method to test the hypotheses in the model. Empirical research is needed to gather more insight into how and if SMEs are digitally transformed and how BMI can be driven through digital transformation. The findings of this study can be used by SME business owners, managers and employees at all levels. The findings will indicate if digital transformation can indeed impact the growth, competitiveness and overall performance of an SME, reiterating the importance and potential benefits of adopting digital technologies. In addition, the findings will also exhibit how BMI can be achieved in light of digital transformation. This study contributes to the body of knowledge in a highly relevant and important topic in management studies by analysing the impact of digital transformation on BMI on a large number of SMEs that are distinctly different in economic and cultural factors

Keywords: business models, business model innovation, digital transformation, SMEs

Procedia PDF Downloads 240
6122 The Effect of Mathematical Modeling of Damping on the Seismic Energy Demands

Authors: Selamawit Dires, Solomon Tesfamariam, Thomas Tannert

Abstract:

Modern earthquake engineering and design encompass performance-based design philosophy. The main objective in performance-based design is to achieve a system performing precisely to meet the design objectives so to reduce unintended seismic risks and associated losses. Energy-based earthquake-resistant design is one of the design methodologies that can be implemented in performance-based earthquake engineering. In energy-based design, the seismic demand is usually described as the ratio of the hysteretic to input energy. Once the hysteretic energy is known as a percentage of the input energy, it is distributed among energy-dissipating components of a structure. The hysteretic to input energy ratio is highly dependent on the inherent damping of a structural system. In numerical analysis, damping can be modeled as stiffness-proportional, mass-proportional, or a linear combination of stiffness and mass. In this study, the effect of mathematical modeling of damping on the estimation of seismic energy demands is investigated by considering elastic-perfectly-plastic single-degree-of-freedom systems representing short to long period structures. Furthermore, the seismicity of Vancouver, Canada, is used in the nonlinear time history analysis. According to the preliminary results, the input energy demand is not sensitive to the type of damping models deployed. Hence, consistent results are achieved regardless of the damping models utilized in the numerical analyses. On the other hand, the hysteretic to input energy ratios vary significantly for the different damping models.

Keywords: damping, energy-based seismic design, hysteretic energy, input energy

Procedia PDF Downloads 168
6121 Local Binary Patterns-Based Statistical Data Analysis for Accurate Soccer Match Prediction

Authors: Mohammad Ghahramani, Fahimeh Saei Manesh

Abstract:

Winning a soccer game is based on thorough and deep analysis of the ongoing match. On the other hand, giant gambling companies are in vital need of such analysis to reduce their loss against their customers. In this research work, we perform deep, real-time analysis on every soccer match around the world that distinguishes our work from others by focusing on particular seasons, teams and partial analytics. Our contributions are presented in the platform called “Analyst Masters.” First, we introduce various sources of information available for soccer analysis for teams around the world that helped us record live statistical data and information from more than 50,000 soccer matches a year. Our second and main contribution is to introduce our proposed in-play performance evaluation. The third contribution is developing new features from stable soccer matches. The statistics of soccer matches and their odds before and in-play are considered in the image format versus time including the halftime. Local Binary patterns, (LBP) is then employed to extract features from the image. Our analyses reveal incredibly interesting features and rules if a soccer match has reached enough stability. For example, our “8-minute rule” implies if 'Team A' scores a goal and can maintain the result for at least 8 minutes then the match would end in their favor in a stable match. We could also make accurate predictions before the match of scoring less/more than 2.5 goals. We benefit from the Gradient Boosting Trees, GBT, to extract highly related features. Once the features are selected from this pool of data, the Decision trees decide if the match is stable. A stable match is then passed to a post-processing stage to check its properties such as betters’ and punters’ behavior and its statistical data to issue the prediction. The proposed method was trained using 140,000 soccer matches and tested on more than 100,000 samples achieving 98% accuracy to select stable matches. Our database from 240,000 matches shows that one can get over 20% betting profit per month using Analyst Masters. Such consistent profit outperforms human experts and shows the inefficiency of the betting market. Top soccer tipsters achieve 50% accuracy and 8% monthly profit in average only on regional matches. Both our collected database of more than 240,000 soccer matches from 2012 and our algorithm would greatly benefit coaches and punters to get accurate analysis.

Keywords: soccer, analytics, machine learning, database

Procedia PDF Downloads 238
6120 Comparison of the Effect of Heart Rate Variability Biofeedback and Slow Breathing Training on Promoting Autonomic Nervous Function Related Performance

Authors: Yi Jen Wang, Yu Ju Chen

Abstract:

Background: Heart rate variability (HRV) biofeedback can promote autonomic nervous function, sleep quality and reduce psychological stress. In HRV biofeedback training, it is hoped that through the guidance of machine video or audio, the patient can breathe slowly according to his own heart rate changes so that the heart and lungs can achieve resonance, thereby promoting the related effects of autonomic nerve function; while, it is also pointed out that if slow breathing of 6 times per minute can also guide the case to achieve the effect of cardiopulmonary resonance. However, there is no relevant research to explore the comparison of the effectiveness of cardiopulmonary resonance by using video or audio HRV biofeedback training and metronome-guided slow breathing. Purpose: To compare the promotion of autonomic nervous function performance between using HRV biofeedback and slow breathing guided by a metronome. Method: This research is a kind of experimental design with convenient sampling; the cases are randomly divided into the heart rate variability biofeedback training group and the slow breathing training group. The HRV biofeedback training group will conduct HRV biofeedback training in a four-week laboratory and use the home training device for autonomous training; while the slow breathing training group will conduct slow breathing training in the four-week laboratory using the mobile phone APP breathing metronome to guide the slow breathing training, and use the mobile phone APP for autonomous training at home. After two groups were enrolled and four weeks after the intervention, the autonomic nervous function-related performance was repeatedly measured. Using the chi-square test, student’s t-test and other statistical methods to analyze the results, and use p <0.05 as the basis for statistical significance. Results: A total of 27 subjects were included in the analysis. After four weeks of training, the HRV biofeedback training group showed significant improvement in the HRV indexes (SDNN, RMSSD, HF, TP) and sleep quality. Although the stress index also decreased, it did not reach statistical significance; the slow breathing training group was not statistically significant after four weeks of training, only sleep quality improved significantly, while the HRV indexes (SDNN, RMSSD, TP) all increased. Although HF and stress indexes decreased, they were not statistically significant. Comparing the difference between the two groups after training, it was found that the HF index improved significantly and reached statistical significance in the HRV biofeedback training group. Although the sleep quality of the two groups improved, it did not reach that level in a statistically significant difference. Conclusion: HRV biofeedback training is more effective in promoting autonomic nervous function than slow breathing training, but the effects of reducing stress and promoting sleep quality need to be explored after increasing the number of samples. The results of this study can provide a reference for clinical or community health promotion. In the future, it can also be further designed to integrate heart rate variability biological feedback training into the development of AI artificial intelligence wearable devices, which can make it more convenient for people to train independently and get effective feedback in time.

Keywords: autonomic nervous function, HRV biofeedback, heart rate variability, slow breathing

Procedia PDF Downloads 176
6119 [Keynote Talk]: sEMG Interface Design for Locomotion Identification

Authors: Rohit Gupta, Ravinder Agarwal

Abstract:

Surface electromyographic (sEMG) signal has the potential to identify the human activities and intention. This potential is further exploited to control the artificial limbs using the sEMG signal from residual limbs of amputees. The paper deals with the development of multichannel cost efficient sEMG signal interface for research application, along with evaluation of proposed class dependent statistical approach of the feature selection method. The sEMG signal acquisition interface was developed using ADS1298 of Texas Instruments, which is a front-end interface integrated circuit for ECG application. Further, the sEMG signal is recorded from two lower limb muscles for three locomotions namely: Plane Walk (PW), Stair Ascending (SA), Stair Descending (SD). A class dependent statistical approach is proposed for feature selection and also its performance is compared with 12 preexisting feature vectors. To make the study more extensive, performance of five different types of classifiers are compared. The outcome of the current piece of work proves the suitability of the proposed feature selection algorithm for locomotion recognition, as compared to other existing feature vectors. The SVM Classifier is found as the outperformed classifier among compared classifiers with an average recognition accuracy of 97.40%. Feature vector selection emerges as the most dominant factor affecting the classification performance as it holds 51.51% of the total variance in classification accuracy. The results demonstrate the potentials of the developed sEMG signal acquisition interface along with the proposed feature selection algorithm.

Keywords: classifiers, feature selection, locomotion, sEMG

Procedia PDF Downloads 293
6118 Age and Sex Identification among Egyptian Population Using Fingerprint Ridge Density

Authors: Nazih Ramadan, Manal Mohy-Eldine, Amani Hanoon, Alaa Shehab

Abstract:

Background and Aims: The study of fingerprints is widely used in providing a clue regarding identity. Age and gender identification from fingerprints is an important step in forensic anthropology in order to minimize the list of suspects search. The aim of this study was to determine finger ridge density and patterns among Egyptians, and to estimate age and gender using ridge densities. Materials and Methods: This study was conducted on 177 randomly-selected healthy Egyptian subjects (90 males and 87 females). They were divided into three age groups; Group (a): from 6-< 12 years, group (b) from 12-< 18 years and group (c) ≥ 18 years. Bilateral digital prints, from every subject, were obtained by the inking procedure. Ridge count per 25 mm² was determined together with assessment of ridge pattern type. Statistical analysis was done with references to different age and sex groups. Results: There was a statistical significant difference in ridge density between the different age groups; where younger ages had significantly higher ridge density than older ages. Females proved to have significantly higher ridge density than males. Also, there was a statistically significant negative correlation between age and ridge density. Ulnar loops were the most frequent pattern among Egyptians then whorls then arches then radial loops. Finally, different regression models were constructed to estimate age and gender from fingerprints ridge density. Conclusion: fingerprint ridge density can be used to identify both age and sex of subjects. Further studies are recommended on different populations, larger samples or using different methods of fingerprint recording and finger ridge counting.

Keywords: age, sex identification, Egyptian population, fingerprints, ridge density

Procedia PDF Downloads 364
6117 Estimation of Scour Using a Coupled Computational Fluid Dynamics and Discrete Element Model

Authors: Zeinab Yazdanfar, Dilan Robert, Daniel Lester, S. Setunge

Abstract:

Scour has been identified as the most common threat to bridge stability worldwide. Traditionally, scour around bridge piers is calculated using the empirical approaches that have considerable limitations and are difficult to generalize. The multi-physic nature of scouring which involves turbulent flow, soil mechanics and solid-fluid interactions cannot be captured by simple empirical equations developed based on limited laboratory data. These limitations can be overcome by direct numerical modeling of coupled hydro-mechanical scour process that provides a robust prediction of bridge scour and valuable insights into the scour process. Several numerical models have been proposed in the literature for bridge scour estimation including Eulerian flow models and coupled Euler-Lagrange models incorporating an empirical sediment transport description. However, the contact forces between particles and the flow-particle interaction haven’t been taken into consideration. Incorporating collisional and frictional forces between soil particles as well as the effect of flow-driven forces on particles will facilitate accurate modeling of the complex nature of scour. In this study, a coupled Computational Fluid Dynamics and Discrete Element Model (CFD-DEM) has been developed to simulate the scour process that directly models the hydro-mechanical interactions between the sediment particles and the flowing water. This approach obviates the need for an empirical description as the fundamental fluid-particle, and particle-particle interactions are fully resolved. The sediment bed is simulated as a dense pack of particles and the frictional and collisional forces between particles are calculated, whilst the turbulent fluid flow is modeled using a Reynolds Averaged Navier Stocks (RANS) approach. The CFD-DEM model is validated against experimental data in order to assess the reliability of the CFD-DEM model. The modeling results reveal the criticality of particle impact on the assessment of scour depth which, to the authors’ best knowledge, hasn’t been considered in previous studies. The results of this study open new perspectives to the scour depth and time assessment which is the key to manage the failure risk of bridge infrastructures.

Keywords: bridge scour, discrete element method, CFD-DEM model, multi-phase model

Procedia PDF Downloads 131
6116 Tourism Area Development Optimation Based on Solar-Generated Renewable Energy Technology at Karimunjawa, Central Java Province, Indonesia

Authors: Yanuar Tri Wahyu Saputra, Ramadhani Pamapta Putra

Abstract:

Karimunjawa is one among Indonesian islands which is lacking of electricity supply. Despite condition above, Karimunjawa is an important tourism object in Indonesia's Central Java Province. Solar Power Plant is a potential technology to be applied in Karimunjawa, in order to fulfill the island's electrical supply need and to increase daily life and tourism quality among tourists and local population. This optimation modeling of Karimunjawa uses HOMER software program. The data we uses include wind speed data in Karimunjawa from BMKG (Indonesian Agency for Meteorology, Climatology and Geophysics), annual weather data in Karimunjawa from NASA, electricity requirements assumption data based on number of houses and business infrastructures in Karimunjawa. This modeling aims to choose which three system categories offer the highest financial profit with the lowest total Net Present Cost (NPC). The first category uses only PV with 8000 kW of electrical power and NPC value of $6.830.701. The second category uses hybrid system which involves both 1000 kW PV and 100 kW generator which results in total NPC of $6.865.590. The last category uses only generator with 750 kW of electrical power that results in total NPC of $ 16.368.197, the highest total NPC among the three categories. Based on the analysis above, we can conclude that the most optimal way to fulfill the electricity needs in Karimunjawa is to use 8000 kW PV with lower maintenance cost.

Keywords: Karimunjawa, renewable energy, solar power plant, HOMER

Procedia PDF Downloads 467
6115 Effect of Laser Ablation OTR Films on the Storability of Endive and Pak Choi by Baby Vegetables in Modified Atmosphere Condition

Authors: In-Lee Choi, Min Jae Jeong, Jun Pill Baek, Ho-Min Kang

Abstract:

As the consumption trends of vegetables become different from the past, it is increased using vegetable more convenience such as fresh-cut vegetables, sprouts, baby vegetables rather than an existing hole piece of vegetables. Selected baby vegetables have various functional materials but they have short shelf life. This study was conducted to improve storability by using suitable laser ablation OTR (oxygen transmission rate) films. Baby vegetable of endive (Cichorium endivia L.) and pak choi (Brassica rapa chinensis) for this research, around 10 cm height, cultivated in glass greenhouse during 3 weeks. Harvested endive and pak choi were stored at 8 ℃ for 5 days and were packed by PP (Polypropylene) container and covered different types of laser ablation OTR film (DaeRyung Co., Ltd.) such as 1,300 cc, 10,000 cc, 20,000 cc, 40,000 cc /m2•day•atm, and control (perforated film) with heat sealing machine (SC200-IP, Kumkang, Korea). All the samples conducted 5 times replication. Statistical analysis was carried out using a Microsoft Excel 2010 program and results were expressed as standard deviations. The fresh weight loss rate of both baby vegetables were less than 0.3 % in treated films as maximum weight loss rate. On the other hands, control in the final storage day had around 3.0 % weight loss rate and it followed decreasing quantity. Endive had less 2.0 % carbon dioxide contents as maximum contents in 20,000 cc and 40,000 cc. Oxygen contents was maintained between 17 and 20 % in endive, 19 and 20 % in pak choi. Ethylene concentration of both vegetables maintained little lower contents in 20,000 cc treatments than others at final storage day without statistical significance. In the case of hardness, 40,000 cc film was shown little higher value at both baby vegetables without statistical significance. Visual quality was good at 10,000 cc and 20,000 cc in endive and pak choi, and off-flavor was not appeard any off-flavor in both vegetables. Chlorophyll (SPAD-502, Minolta, Japan) value of endive was shown as similar result with initial in all treatments except 20,000 cc as little lower. And chlorophyll value of pak choi decreased in all treatments compared with initial value but was not shown significantly difference each other. Color of leaves (CR-400, Minolta, Japan) changed significantly in 40,000 cc at endive. In an event of pak choi, all the treatments started yellowing by increasing hunter b value, among them control increased substantially. As above the result, 10,000 cc film was most reasonable packaging film for storing at endive and 20,000 cc at pak choi with good quality.

Keywords: carbon dioxide, shelf-life, visual quality, pak choi

Procedia PDF Downloads 789
6114 Influence of Alkali Aggregate Reaction Induced Expansion Level on Confinement Efficiency of Carbon Fiber Reinforcement Polymer Wrapping Applied to Damaged Concrete Columns

Authors: Thamer Kubat, Riadh Al-Mahaidi, Ahmad Shayan

Abstract:

The alkali-aggregate reaction (AAR) in concrete has a negative influence on the mechanical properties and durability of concrete. Confinement by carbon fibre-reinforced polymer (CFRP) is an effective method of treatment for some AAR-affected elements. Eighteen reinforced columns affected by different levels of expansion due to AAR were confined using CFRP to evaluate the effect of expansion level on confinement efficiency. Strength and strain capacities (axial and circumferential) were measured using photogrammetry under uniaxial compressive loading to evaluate the efficiency of CFRP wrapping for the rehabilitation of affected columns. In relation to uniaxial compression capacity, the results indicated that the confinement of AAR-affected columns by one layer of CFRP is sufficient to reach and exceed the load capacity of unaffected sound columns. Parallel to the experimental study, finite element (FE) modeling using ATENA software was employed to predict the behavior of CFRP-confined damaged concrete and determine the possibility of using the model in a parametric study by simulating the number of CFRP layers. A comparison of the experimental results with the results of the theoretical models showed that FE modeling could be used for the prediction of the behavior of confined AAR-damaged concrete.

Keywords: carbon fiber reinforced polymer (CFRP), finite element (FE), ATENA, confinement efficiency

Procedia PDF Downloads 78
6113 Comparative Performance Analysis for Selected Behavioral Learning Systems versus Ant Colony System Performance: Neural Network Approach

Authors: Hassan M. H. Mustafa

Abstract:

This piece of research addresses an interesting comparative analytical study. Which considers two concepts of diverse algorithmic computational intelligence approaches related tightly with Neural and Non-Neural Systems. The first algorithmic intelligent approach concerned with observed obtained practical results after three neural animal systems’ activities. Namely, they are Pavlov’s, and Thorndike’s experimental work. Besides a mouse’s trial during its movement inside figure of eight (8) maze, to reach an optimal solution for reconstruction problem. Conversely, second algorithmic intelligent approach originated from observed activities’ results for Non-Neural Ant Colony System (ACS). These results obtained after reaching an optimal solution while solving Traveling Sales-man Problem (TSP). Interestingly, the effect of increasing number of agents (either neurons or ants) on learning performance shown to be similar for both introduced systems. Finally, performance of both intelligent learning paradigms shown to be in agreement with learning convergence process searching for least mean square error LMS algorithm. While its application for training some Artificial Neural Network (ANN) models. Accordingly, adopted ANN modeling is a relevant and realistic tool to investigate observations and analyze performance for both selected computational intelligence (biological behavioral learning) systems.

Keywords: artificial neural network modeling, animal learning, ant colony system, traveling salesman problem, computational biology

Procedia PDF Downloads 470
6112 Evaluation of Vitamin D Levels in Obese and Morbid Obese Children

Authors: Orkide Donma, Mustafa M. Donma

Abstract:

Obesity may lead to growing serious health problems throughout the world. Vitamin D appears to play a role in cardiovascular and metabolic health. Vitamin D deficiency may add to derangements in human metabolic systems, particularly those of children. Childhood obesity is associated with an increased risk of chronic and sophisticated diseases. The aim of this study is to investigate associations as well as possible differences related to parameters affected by obesity and their relations with vitamin D status in obese (OB) and morbid obese (MO) children. This study included a total of 78 children. Of them, 41 and 37 were OB and MO, respectively. WHO BMI-for age percentiles were used for the classification of obesity. The values above 99 percentile were defined as MO. Those between 95 and 99 percentiles were included into OB group. Anthropometric measurements were recorded. Basal metabolic rates (BMRs) were measured. Vitamin D status is determined by the measurement of 25-hydroxy cholecalciferol [25- hydroxyvitamin D3, 25(OH)D] using high-performance liquid chromatography. Vitamin D status was evaluated as deficient, insufficient and sufficient. Values < 20.0 ng/ml, values between 20-30 ng/ml and values > 30.0 ng/ml were defined as vitamin D deficient, insufficient and sufficient, respectively. Optimal 25(OH)D level was defined as ≥ 30 ng/ml. SPSSx statistical package program was used for the evaluation of the data. The statistical significance degree was accepted as p < 0.05. Mean ages did not differ between the groups. Significantly increased body mass index (BMI), waist circumference (C) and neck C as well as significantly decreased fasting blood glucose (FBG) and vitamin D values were observed in MO group (p < 0.05). In OB group, 37.5% of the children were vitamin D deficient, and in MO group the corresponding value was 53.6%. No difference between the groups in terms of lipid profile, systolic blood pressure (SBP), diastolic blood pressure (DBP) and insulin values was noted. There was a severe statistical significance between FBG values of the groups (p < 0.001). Important correlations between BMI, waist C, hip C, neck C and both SBP as well as DBP were found in OB group. In MO group, correlations only with SBP were obtained. In a similar manner, in OB group, correlations were detected between SBP-BMR and DBP-BMR. However, in MO children, BMR correlated only with SBP. The associations of vitamin D with anthropometric indices as well as some lipid parameters were defined. In OB group BMI, waist C, hip C and triglycerides (TRG) were negatively correlated with vitamin D concentrations whereas none of them were detected in MO group. Vitamin D deficiency may contribute to the complications associated with childhood obesity. Loss of correlations between obesity indices-DBP, vitamin D-TRG, as well as relatively lower FBG values, observed in MO group point out that the emergence of MetS components starts during obesity state just before the transition to morbid obesity. Aside from its deficiency state, associations of vitamin D with anthropometric measurements, blood pressures and TRG should also be evaluated before the development of morbid obesity.

Keywords: children, morbid obesity, obesity, vitamin D

Procedia PDF Downloads 141
6111 Impact of Data and Model Choices to Urban Flood Risk Assessments

Authors: Abhishek Saha, Serene Tay, Gerard Pijcke

Abstract:

The availability of high-resolution topography and rainfall information in urban areas has made it necessary to revise modeling approaches used for simulating flood risk assessments. Lidar derived elevation models that have 1m or lower resolutions are becoming widely accessible. The classical approaches of 1D-2D flow models where channel flow is simulated and coupled with a coarse resolution 2D overland flow models may not fully utilize the information provided by high-resolution data. In this context, a study was undertaken to compare three different modeling approaches to simulate flooding in an urban area. The first model used is the base model used is Sobek, which uses 1D model formulation together with hydrologic boundary conditions and couples with an overland flow model in 2D. The second model uses a full 2D model for the entire area with shallow water equations at the resolution of the digital elevation model (DEM). These models are compared against another shallow water equation solver in 2D, which uses a subgrid method for grid refinement. These models are simulated for different horizontal resolutions of DEM varying between 1m to 5m. The results show a significant difference in inundation extents and water levels for different DEMs. They are also sensitive to the different numerical models with the same physical parameters, such as friction. The study shows the importance of having reliable field observations of inundation extents and levels before a choice of model and data can be made for spatial flood risk assessments.

Keywords: flooding, DEM, shallow water equations, subgrid

Procedia PDF Downloads 141
6110 Optimal Wind Based DG Placement Considering Monthly Changes Modeling in Wind Speed

Authors: Belal Mohamadi Kalesar, Raouf Hasanpour

Abstract:

Proper placement of Distributed Generation (DG) units such as wind turbine generators in distribution system are still very challenging issue for obtaining their maximum potential benefits because inappropriate placement may increase the system losses. This paper proposes Particle Swarm Optimization (PSO) technique for optimal placement of wind based DG (WDG) in the primary distribution system to reduce energy losses and voltage profile improvement with four different wind levels modeling in year duration. Also, wind turbine is modeled as a DFIG that will be operated at unity power factor and only one wind turbine tower will be considered to install at each bus of network. Finally, proposed method will be implemented on widely used 69 bus power distribution system in MATLAB software environment under four scenario (without, one, two and three WDG units) and for capability test of implemented program it is supposed that all buses of standard system can be candidate for WDG installing (large search space), though this program can consider predetermined number of candidate location in WDG placement to model financial limitation of project. Obtained results illustrate that wind speed increasing in some months will increase output power generated but this can increase / decrease power loss in some wind level, also results show that it is required about 3MW WDG capacity to install in different buses but when this is distributed in overall network (more number of WDG) it can cause better solution from point of view of power loss and voltage profile.

Keywords: wind turbine, DG placement, wind levels effect, PSO algorithm

Procedia PDF Downloads 448
6109 Modeling of an Insulin Mircopump

Authors: Ahmed Slami, Med El Amine Brixi Nigassa, Nassima Labdelli, Sofiane Soulimane, Arnaud Pothier

Abstract:

Many people suffer from diabetes, a disease marked by abnormal levels of sugar in the blood; 285 million people have diabetes, 6.6% of the world adult population (in 2010), according to the International Diabetes Federation. Insulin medicament is invented to be injected into the body. Generally, the injection requires the patient to do it manually. However, in many cases he will be unable to inject the drug, saw that among the side effects of hyperglycemia is the weakness of the whole body. The researchers designed a medical device that injects insulin too autonomously by using micro-pumps. Many micro-pumps of concepts have been investigated during the last two decades for injecting molecules in blood or in the body. However, all these micro-pumps are intended for slow infusion of drug (injection of few microliters by minute). Now, the challenge is to develop micro-pumps for fast injections (1 microliter in 10 seconds) with accuracy of the order of microliter. Recently, studies have shown that only piezoelectric actuators can achieve this performance, knowing that few systems at the microscopic level were presented. These reasons lead us to design new smart microsystems injection drugs. Therefore, many technological advances are still to achieve the improvement of materials to their uses, while going through their characterization and modeling action mechanisms themselves. Moreover, it remains to study the integration of the piezoelectric micro-pump in the microfluidic platform features to explore and evaluate the performance of these new micro devices. In this work, we propose a new micro-pump model based on piezoelectric actuation with a new design. Here, we use a finite element model with Comsol software. Our device is composed of two pumping chambers, two diaphragms and two actuators (piezoelectric disks). The latter parts will apply a mechanical force on the membrane in a periodic manner. The membrane deformation allows the fluid pumping, the suction and discharge of the liquid. In this study, we present the modeling results as function as device geometry properties, films thickness, and materials properties. Here, we demonstrate that we can achieve fast injection. The results of these simulations will provide quantitative performance of our micro-pumps. Concern the spatial actuation, fluid rate and allows optimization of the fabrication process in terms of materials and integration steps.

Keywords: COMSOL software, piezoelectric, micro-pump, microfluidic

Procedia PDF Downloads 342
6108 Mechanical Ventilation: Relationship between Body Mass Index and Selected Patients' Outcomes at a University Hospital in Cairo

Authors: Mohamed Mamdouh Al-Banna, Warda Youssef Mohamed Morsy, Hanaa Ali El-Feky, Ashraf Hussein Abdelmohsen

Abstract:

Background: The mechanically ventilated patients need a special nursing care with continuous closed observation. The patients’ body mass index may affect their prognosis or outcomes. Aim of the study: to investigate the relationship between BMI and selected outcomes of critically ill mechanically ventilated patients. Research Design: A descriptive correlational research design was utilized Research questions: a) what is the BMI profile of mechanically ventilated patients admitted to critical care units over a period of six months? b) What is the relationship between body mass index and frequency of organ dysfunction, length of ICU stay, weaning from mechanical ventilation, and the mortality rate among adult critically ill mechanically ventilated patients? Setting: different intensive care units of Cairo University Hospitals. Sample: A convenience sample of 30 mechanically ventilated patients for at least 72 hours. Tools of data collection: Three tools were utilized to collect data pertinent to the current study: tool 1: patients’ sociodemographic and medical data sheet, tool 2: BURNS Wean Assessment Program (BWAP) checklist, tool 3: Sequential organ failure assessment (SOFA score) sheet. Results: The majority of the studied sample (77%) was males, and (26.7 %) of the studied sample were in the age group of 18-28 years old, and (26.7 %) were in the age group of 40-50 years old. Moreover, two thirds (66.7%) of the studied sample were within normal BMI. No significant statistical relationship between BMI category and ICU length of stay or the mortality rate among the studied sample, (X² = 11.31, P value = 0.79), (X² = 0.15, P value = 0.928) respectively. No significant statistical relationship between BMI category and the weaning trials from mechanical ventilation among the studied sample, (X² = 0.15, P value = 0.928). No significant statistical relationship was found between BMI category and the occurrence of organ dysfunction among the studied sample, (X² = 2.54, P value = 0.637). Conclusion: No relationship between the BMI categories and the selected patients’ outcomes (weaning from MV, length of ICU stay, occurrence of organ dysfunction, mortality rate). Recommendations: Replication of this study on a larger sample from different geographical locations in Arab Republic of Egypt, conducting farther studies to assess the effect of the quality of nursing care on the mechanically ventilated patients’ outcomes.

Keywords: mechanical ventilation, body mass index, outcomes of mechanically ventilated patient, organ failure

Procedia PDF Downloads 252
6107 Optimizing Agricultural Packaging in Fiji: Strategic Barrier Analysis Using Interpretive Structural Modeling and Cross-Impact Matrix Multiplication Applied to Classification

Authors: R. Ananthanarayanan, S. B. Nakula, D. R. Seenivasagam, J. Naua, B. Sharma

Abstract:

Product packaging is a critical component of production, trade, and marketing, playing numerous vital roles that often go unnoticed by consumers. Packaging is essential for maintaining the shelf life, quality assurance, and safety of both manufactured and agricultural products. For example, harvested produce or processed foods can quickly lose quality and freshness, making secure packaging crucial for preservation and safety throughout the food supply chain. In Fiji, agricultural packaging has primarily been managed by local companies for international trade, with gradual advancements in these practices. To further enhance the industry’s performance, this study examines the challenges and constraints hindering the optimization of agricultural packaging practices in Fiji. The study utilizes Multi-Criteria Decision Making (MCDM) tools, specifically Interpretive Structural Modeling (ISM) and Cross-Impact Matrix Multiplication Applied to Classification (MICMAC). ISM analyzes the hierarchical structure of barriers, categorizing them from the least to the most influential, while MICMAC classifies barriers based on their driving and dependence power. This approach helps identify the interrelationships between barriers, providing valuable insights for policymakers and decision-makers to propose innovative solutions for sustainable development in the agricultural packaging sector, ultimately shaping the future of packaging practices in Fiji.

Keywords: agricultural packaging, barriers, ISM, MICMAC

Procedia PDF Downloads 30
6106 Global Emission Inventories of Air Pollutants from Combustion Sources

Authors: Shu Tao

Abstract:

Based on a global fuel consumption data product (PKU-FUEL-2007) compiled recently and a series of databases for emission factors of various sources, global emission inventories of a number of greenhouse gases and air pollutants, including CO2, CO, SO2, NOx, primary particulate matter (total, PM 10, and PM 2.5), black carbon, organic carbon, mercury, volatile organic carbons, and polycyclic aromatic hydrocarbons, from combustion sources have been developed. The inventories feather high spatial and sectorial resolutions. The spatial resolution of the inventories are 0.1 by 0.1 degree, based on a sub-national disaggregation approach to reduce spatial bias due to uneven distribution of per person fuel consumption within countries. The finely resolved inventories provide critical information for chemical transport modeling and exposure modeling. Emissions from more than 60 sources in energy, industry, agriculture, residential, transportation, and wildfire sectors were quantified in this study. With the detailed sectorial information, the inventories become an important tool for policy makers. For residential sector, a set of models were developed to simulate temporal variation of fuel consumption, consequently pollutant emissions. The models can be used to characterize seasonal as well as inter-annual variations in the emissions in history and to predict future changes. The models can even be used to quantify net change of fuel consumption and pollutant emissions due to climate change. The inventories has been used for model ambient air quality, population exposure, and even health effects. A few examples of the applications are discussed.

Keywords: air pollutants, combustion, emission inventory, sectorial information

Procedia PDF Downloads 369
6105 Modeling Operating Theater Scheduling and Configuration: An Integrated Model in Health-Care Logistics

Authors: Sina Keyhanian, Abbas Ahmadi, Behrooz Karimi

Abstract:

We present a multi-objective binary programming model which considers surgical cases are scheduling among operating rooms and the configuration of surgical instruments in limited capacity hospital trays, simultaneously. Many mathematical models have been developed previously in the literature addressing different challenges in health-care logistics such as assigning operating rooms, leveling beds, etc. But what happens inside the operating rooms along with the inventory management of required instruments for various operations, and also their integration with surgical scheduling have been poorly discussed. Our model considers the minimization of movements between trays during a surgery which recalls the famous cell formation problem in group technology. This assumption can also provide a major potential contribution to robotic surgeries. The tray configuration problem which consumes surgical instruments requirement plan (SIRP) and sequence of surgical procedures based on required instruments (SIRO) is nested inside the bin packing problem. This modeling approach helps us understand that most of the same-output solutions will not be necessarily identical when it comes to the rearrangement of surgeries among rooms. A numerical example has been dealt with via a proposed nested simulated annealing (SA) optimization approach which provides insights about how various configurations inside a solution can alter the optimal condition.

Keywords: health-care logistics, hospital tray configuration, off-line bin packing, simulated annealing optimization, surgical case scheduling

Procedia PDF Downloads 282
6104 The Microflora Assessment of the Urethra Area of Children with Newly Diagnosed Type 1 Diabetes

Authors: Ewa Rusak, Sebastian Seget, Aleksandra Mroskowiak, Mirosław Partyka, Ewa Samulska, Julia Strózik, Anna Wilk, Przemysława Jarosz-Chobot

Abstract:

Introduction: Various infections can affect children suffering from Type 1 Diabetes (T1D) because of dysfunctions of the immune system. The urinary tract and urethra of these children can be easily infected areas because of glycosuria. Aim: The microflora assessment of the urethra area of children with newly diagnosed T1D. Methods: The materials of the study were swabs taken prospectively from the urethral area of 63 children at the time of diagnosis of T1D (37 boys), then the results were correlated to the clinical parameters. In the statistical analysis, there were T student, Chi square, and U Mann-Whitney tests used. Results: The mean age was 9.4 years (6 months-17.4 years). The mean HbA1c value was 12.1% (5,6% - 20.1%). The mean value of glycosuria was 4463.2 mg/dl (0 - 9770 mg/dl). Ketoacidosis was diagnosed in 29 children (49%). The following microbial species were isolated in the collected materials: Staphylococcus epidermidis in 18 children (28.6%), Enterococcus faecalis in 17 children (27%), Candida albicans in 15 children (23.8%), coagulase-negative staphylococciin 11 children (17.5%), group B Streptococcus beta-hemolysis in 10 children (15.9%), S. aureus, E. coli, S. anginosus, C. glucuronolyticum, and A. urinae in 7 children each (11.1%), group B Streptococcus beta-hemolysis and S. hominis in 6 children each (9.5%), L. gasseri in 5 children (7.5%), C. dubliniensis in 4 children (6.3) and other, isolated cases. 2 of diagnosed patients were cultured negatively (3.2%). There were statistical correlations between the type of colonisation and patients’ sex and HbA1C value. Conclusions: It is extremely important to examine the urethral area at the time of diagnosis of T1D in order to detect inflammation and to undertake the appropriate and effective intervention.

Keywords: diabetology, skin disorders, microbiology, microflora

Procedia PDF Downloads 143
6103 Big Data in Construction Project Management: The Colombian Northeast Case

Authors: Sergio Zabala-Vargas, Miguel Jiménez-Barrera, Luz VArgas-Sánchez

Abstract:

In recent years, information related to project management in organizations has been increasing exponentially. Performance data, management statistics, indicator results have forced the collection, analysis, traceability, and dissemination of project managers to be essential. In this sense, there are current trends to facilitate efficient decision-making in emerging technology projects, such as: Machine Learning, Data Analytics, Data Mining, and Big Data. The latter is the most interesting in this project. This research is part of the thematic line Construction methods and project management. Many authors present the relevance that the use of emerging technologies, such as Big Data, has taken in recent years in project management in the construction sector. The main focus is the optimization of time, scope, budget, and in general mitigating risks. This research was developed in the northeastern region of Colombia-South America. The first phase was aimed at diagnosing the use of emerging technologies (Big-Data) in the construction sector. In Colombia, the construction sector represents more than 50% of the productive system, and more than 2 million people participate in this economic segment. The quantitative approach was used. A survey was applied to a sample of 91 companies in the construction sector. Preliminary results indicate that the use of Big Data and other emerging technologies is very low and also that there is interest in modernizing project management. There is evidence of a correlation between the interest in using new data management technologies and the incorporation of Building Information Modeling BIM. The next phase of the research will allow the generation of guidelines and strategies for the incorporation of technological tools in the construction sector in Colombia.

Keywords: big data, building information modeling, tecnology, project manamegent

Procedia PDF Downloads 128
6102 Optimization by Means of Genetic Algorithm of the Equivalent Electrical Circuit Model of Different Order for Li-ion Battery Pack

Authors: V. Pizarro-Carmona, S. Castano-Solis, M. Cortés-Carmona, J. Fraile-Ardanuy, D. Jimenez-Bermejo

Abstract:

The purpose of this article is to optimize the Equivalent Electric Circuit Model (EECM) of different orders to obtain greater precision in the modeling of Li-ion battery packs. Optimization includes considering circuits based on 1RC, 2RC and 3RC networks, with a dependent voltage source and a series resistor. The parameters are obtained experimentally using tests in the time domain and in the frequency domain. Due to the high non-linearity of the behavior of the battery pack, Genetic Algorithm (GA) was used to solve and optimize the parameters of each EECM considered (1RC, 2RC and 3RC). The objective of the estimation is to minimize the mean square error between the measured impedance in the real battery pack and those generated by the simulation of different proposed circuit models. The results have been verified by comparing the Nyquist graphs of the estimation of the complex impedance of the pack. As a result of the optimization, the 2RC and 3RC circuit alternatives are considered as viable to represent the battery behavior. These battery pack models are experimentally validated using a hardware-in-the-loop (HIL) simulation platform that reproduces the well-known New York City cycle (NYCC) and Federal Test Procedure (FTP) driving cycles for electric vehicles. The results show that using GA optimization allows obtaining EECs with 2RC or 3RC networks, with high precision to represent the dynamic behavior of a battery pack in vehicular applications.

Keywords: Li-ion battery packs modeling optimized, EECM, GA, electric vehicle applications

Procedia PDF Downloads 125