Search results for: radial error
733 Vertical Accuracy Evaluation of Indian National DEM (CartoDEM v3) Using Dual Frequency GNSS Derived Ground Control Points for Lower Tapi Basin, Western India
Authors: Jaypalsinh B. Parmar, Pintu Nakrani, Ashish Chaurasia
Abstract:
Digital Elevation Model (DEM) is considered as an important data in GIS-based terrain analysis for many applications and assessment of processes such as environmental and climate change studies, hydrologic modelling, etc. Vertical accuracy of DEM having geographically dynamic nature depends on different parameters which affect the model simulation outcomes. Vertical accuracy assessment in Indian landscape especially in low-lying coastal urban terrain such as lower Tapi Basin is very limited. In the present study, attempt has been made to evaluate the vertical accuracy of 30m resolution open source Indian National Cartosat-1 DEM v3 for Lower Tapi Basin (LTB) from western India. The extensive field investigation is carried out using stratified random fast static DGPS survey in the entire study region, and 117 high accuracy ground control points (GCPs) have been obtained. The above open source DEM was compared with obtained GCPs, and different statistical attributes were envisaged, and vertical error histograms were also evaluated.Keywords: CartoDEM, Digital Elevation Model, GPS, lower Tapi basin
Procedia PDF Downloads 358732 The Effect of Nursing Teamwork Training on Nursing Teamwork Effectiveness
Authors: Manar Ahmed Elbadawy
Abstract:
Background: Empirical evidence suggested that improving nursing teamwork (NTW) may be the key to reducing medical error. The functioning nursing teams require open communication, mutual respect, and shared mental models to activate quality patient care. The complexity and the high demands for specialized nursing knowledge and skill also require nursing staff to consult with one another and work in teams regularly. The current study aimed to evaluate the effect of the nursing teamwork training program on nursing teamwork effectiveness. Design: A quasi-experimental (one group pretest-posttest) design was utilized. Three medical intensive care units at a teaching hospital affiliated to Cairo University Hospital, Egypt. Subjects: A convenient sample of 48 nursing staff worked at the selected units. The Nursing Teamwork Observational Checklist was used. Results: Total (NTW) mean scores exhibited quite elevation post-program implementation compared to preprogram and showed little decrease 3 months later ( = 2.52, SD = ± 0.27, mean % =51.98, = 2.72, SD = ± 0.20, mean %=72.45, = 2.67, SD = ± 0.11, mean %= 67.48 respectively). Conclusion: Implementation of (NTW) training program had a positive effect on increasing (NTW) effectiveness. Regular and frequent short-term teamwork training is important to be introduced as well as sustainable monitoring is required to ensure nursing attitudes, knowledge and skills’ change about teamwork effectiveness.Keywords: effectiveness, nursing, teamwork, training
Procedia PDF Downloads 123731 Chronic wrist pain among handstand practitioners. A questionnaire study.
Authors: Martonovich Noa, Maman David, Alfandari Liad, Behrbalk Eyal.
Abstract:
Introduction: The human body is designed for upright standing and walking, with the lower extremities and axial skeleton supporting weight-bearing. Constant weight-bearing on joints not meant for this action can lead to various pathologies, as seen in wheelchair users. Handstand practitioners use their wrists as weight-bearing joints during activities, but little is known about wrist injuries in this population. This study aims to investigate the epidemiology of wrist pain among handstand practitioners, as no such data currently exist. Methods: The study is a cross-sectional online survey conducted among athletes who regularly practice handstands. Participants were asked to complete a three-part questionnaire regarding their workout regimen, training habits, and history of wrist pain. The inclusion criteria were athletes over 18 years old who practice handstands more than twice a month for at least 4 months. All data were collected using Google Forms, organized and anonymized using Microsoft Excel, and analyzed using IBM SPSS 26.0. Descriptive statistics were calculated, and potential risk factors were tested using asymptotic t-tests and Fisher's tests. Differences were considered significant when p < 0.05. Results: This study surveyed 402 athletes who regularly practice handstands to investigate the prevalence of chronic wrist pain and potential risk factors. The participants had a mean age of 31.3 years, with most being male and having an average of 5 years of training experience. 56% of participants reported chronic wrist pain, and 14.4% reported a history of distal radial fracture. Yoga was the most practiced form, followed by Capoeira. No significant differences were found in demographic data between participants with and without chronic wrist pain, and no significant associations were found between chronic wrist pain prevalence and warm-up routines or protective aids. Conclusion: The lower half of the body is meant to handle weight-bearing and impact, while transferring the load to upper extremities can lead to various pathologies. Athletes who perform handstands are particularly prone to chronic wrist pain, which affects over half of them. Warm-up sessions and protective instruments like wrist braces do not seem to prevent chronic wrist pain, and there are no significant differences in age or training volume between athletes with and without the condition. Further research is needed to understand the causes of chronic wrist pain in athletes, given the growing popularity of sports and activities that can cause this type of injury.Keywords: handstand, handbalance, wrist pain, hand and wrist surgery, yoga, calisthenics, circus, capoeira, movement.
Procedia PDF Downloads 91730 Evaluation of Medication Administration Process in a Paediatric Ward
Authors: Zayed Alsulami, Asma Aldosseri, Ahmed Ezziden, Abdulrahman Alonazi
Abstract:
Children are more susceptible to medication errors than adults. Medication administration process is the last stage in the medication treatment process and most of the errors detected in this stage. Little research has been undertaken about medication errors in children in the Middle East countries. This study was aimed to evaluate how the paediatric nurses adhere to the medication administration policy and also to identify any medication preparation and administration errors or any risk factors. An observational, prospective study of medication administration process from when the nurses preparing patient medication until administration stage (May to August 2014) was conducted in Saudi Arabia. Twelve paediatric nurses serving 90 paediatric patients were observed. 456 drug administered doses were evaluated. Adherence rate was variable in 7 steps out of 16 steps. Patient allergy information, dose calculation, drug expiry date were the steps in medication administration with lowest adherence rates. 63 medication preparation and administration errors were identified with error rate 13.8% of medication administrations. No potentially life-threating errors were witnessed. Few logistic and administrative factors were reported. The results showed that the medication administration policy and procedure need an urgent revision to be more sensible for nurses in practice. Nurses’ knowledge and skills regarding the medication administration process should be improved.Keywords: medication sasfety, paediatric, medication errors, paediatric ward
Procedia PDF Downloads 394729 Evaluating Forecasting Strategies for Day-Ahead Electricity Prices: Insights From the Russia-Ukraine Crisis
Authors: Alexandra Papagianni, George Filis, Panagiotis Papadopoulos
Abstract:
The liberalization of the energy market and the increasing penetration of fluctuating renewables (e.g., wind and solar power) have heightened the importance of the spot market for ensuring efficient electricity supply. This is further emphasized by the EU’s goal of achieving net-zero emissions by 2050. The day-ahead market (DAM) plays a key role in European energy trading, accounting for 80-90% of spot transactions and providing critical insights for next-day pricing. Therefore, short-term electricity price forecasting (EPF) within the DAM is crucial for market participants to make informed decisions and improve their market positioning. Existing literature highlights out-of-sample performance as a key factor in assessing EPF accuracy, with influencing factors such as predictors, forecast horizon, model selection, and strategy. Several studies indicate that electricity demand is a primary price determinant, while renewable energy sources (RES) like wind and solar significantly impact price dynamics, often lowering prices. Additionally, incorporating data from neighboring countries, due to market coupling, further improves forecast accuracy. Most studies predict up to 24 steps ahead using hourly data, while some extend forecasts using higher-frequency data (e.g., half-hourly or quarter-hourly). Short-term EPF methods fall into two main categories: statistical and computational intelligence (CI) methods, with hybrid models combining both. While many studies use advanced statistical methods, particularly through different versions of traditional AR-type models, others apply computational techniques such as artificial neural networks (ANNs) and support vector machines (SVMs). Recent research combines multiple methods to enhance forecasting performance. Despite extensive research on EPF accuracy, a gap remains in understanding how forecasting strategy affects prediction outcomes. While iterated strategies are commonly used, they are often chosen without justification. This paper contributes by examining whether the choice of forecasting strategy impacts the quality of day-ahead price predictions, especially for multi-step forecasts. We evaluate both iterated and direct methods, exploring alternative ways of conducting iterated forecasts on benchmark and state-of-the-art forecasting frameworks. The goal is to assess whether these factors should be considered by end-users to improve forecast quality. We focus on the Greek DAM using data from July 1, 2021, to March 31, 2022. This period is chosen due to significant price volatility in Greece, driven by its dependence on natural gas and limited interconnection capacity with larger European grids. The analysis covers two phases: pre-conflict (January 1, 2022, to February 23, 2022) and post-conflict (February 24, 2022, to March 31, 2022), following the Russian-Ukraine conflict that initiated an energy crisis. We use the mean absolute percentage error (MAPE) and symmetric mean absolute percentage error (sMAPE) for evaluation, as well as the Direction of Change (DoC) measure to assess the accuracy of price movement predictions. Our findings suggest that forecasters need to apply all strategies across different horizons and models. Different strategies may be required for different horizons to optimize both accuracy and directional predictions, ensuring more reliable forecasts.Keywords: short-term electricity price forecast, forecast strategies, forecast horizons, recursive strategy, direct strategy
Procedia PDF Downloads 7728 Multi-Linear Regression Based Prediction of Mass Transfer by Multiple Plunging Jets
Abstract:
The paper aims to compare the performance of vertical and inclined multiple plunging jets and to model and predict their mass transfer capacity by multi-linear regression based approach. The multiple vertical plunging jets have jet impact angle of θ = 90O; whereas, multiple inclined plunging jets have jet impact angle of θ = 600. The results of the study suggests that mass transfer is higher for multiple jets, and inclined multiple plunging jets have up to 1.6 times higher mass transfer than vertical multiple plunging jets under similar conditions. The derived relationship, based on multi-linear regression approach, has successfully predicted the volumetric mass transfer coefficient (KLa) from operational parameters of multiple plunging jets with a correlation coefficient of 0.973, root mean square error of 0.002 and coefficient of determination of 0.946. The results suggests that predicted overall mass transfer coefficient is in good agreement with actual experimental values; thereby suggesting the utility of derived relationship based on multi-linear regression based approach and can be successfully employed in modelling mass transfer by multiple plunging jets.Keywords: mass transfer, multiple plunging jets, multi-linear regression, earth sciences
Procedia PDF Downloads 461727 Analytical Authentication of Butter Using Fourier Transform Infrared Spectroscopy Coupled with Chemometrics
Authors: M. Bodner, M. Scampicchio
Abstract:
Fourier Transform Infrared (FT-IR) spectroscopy coupled with chemometrics was used to distinguish between butter samples and non-butter samples. Further, quantification of the content of margarine in adulterated butter samples was investigated. Fingerprinting region (1400-800 cm–1) was used to develop unsupervised pattern recognition (Principal Component Analysis, PCA), supervised modeling (Soft Independent Modelling by Class Analogy, SIMCA), classification (Partial Least Squares Discriminant Analysis, PLS-DA) and regression (Partial Least Squares Regression, PLS-R) models. PCA of the fingerprinting region shows a clustering of the two sample types. All samples were classified in their rightful class by SIMCA approach; however, nine adulterated samples (between 1% and 30% w/w of margarine) were classified as belonging both at the butter class and at the non-butter one. In the two-class PLS-DA model’s (R2 = 0.73, RMSEP, Root Mean Square Error of Prediction = 0.26% w/w) sensitivity was 71.4% and Positive Predictive Value (PPV) 100%. Its threshold was calculated at 7% w/w of margarine in adulterated butter samples. Finally, PLS-R model (R2 = 0.84, RMSEP = 16.54%) was developed. PLS-DA was a suitable classification tool and PLS-R a proper quantification approach. Results demonstrate that FT-IR spectroscopy combined with PLS-R can be used as a rapid, simple and safe method to identify pure butter samples from adulterated ones and to determine the grade of adulteration of margarine in butter samples.Keywords: adulterated butter, margarine, PCA, PLS-DA, PLS-R, SIMCA
Procedia PDF Downloads 143726 A Comparative Study of Wellness Among Sportsmen and Non Sportsmen
Authors: Jaskaran Singh Sidhu
Abstract:
Aim: The purpose of this study is to find the relationship between wellness among sportsmen and non sportsmen. Methodology: The present study is an experimental study for 80 senior secondary volleyball players of 16-19 years of age from Ludhiana District of Punjab (India), and 80 non-sportsperson were taken from senior secondary school of Ludhiana district. The sample for this study was taken through a random sampling technique. Tools: A five point scale havinf 50 items was used to acess the wellness Statistical Analysis: To find out the relationship among the variables exists or not, a t-test was used to test the significance of the difference between the means. Statistics for each characteristic were calculated; Mean, Standard deviation, Standard error of Mean. Data were analyzed using SPSS (statistical package for the social sciences). Statistical significance was set at p < 0.05. Results: Substantial deviations were noted at p<0.5 in the totality of wellness. Sportsmen show significant differences exist at p<0.5 in three parameters of wellness i.e., physical wellness, mental wellness, and social wellness. In spiritual and emotional wellness attributes, non-sportsmen shows significant difference at p<0.5. Conclusion: From the data interpretation it reflects that overall wellness can be improved by participation in sports. It further noted in study that participation in sports promote the attributes of wellness i.e., physical wellness, mental wellness, emotional wellness and social wellness.Keywords: physical, mental, social, emotional, wellness, spiritual
Procedia PDF Downloads 90725 Evaluating the Effect of Structural Reorientation to Thermochemical and Energetic Properties of 1,4-Diamino-3,6-Dinitropyrazolo[4,3- C]Pyrazole
Authors: Lamla Thungathaa, Conrad Mahlasea, Lisa Ngcebesha
Abstract:
1,4-Diamino-3,6-dinitropyrazolo[4,3-c]pyrazole (LLM-119) and its structural isomer 3,6-dinitropyrazolo[3,4-c]pyrazole-1,4(6H)-diamine were designed by structural reorientation of the fused pyrazole rings and their respective substituents (-NO2 and -NH2). Structural reorientation involves structural rearrangement which result in different structural isomers, employing this approach, six structural isomers of LLM-119 were achieved. The effect of structural reorientation (isomerisation and derivatives) on the enthalpy of formation, detonation properties, impact sensitivity, and density of these molecules is studied Computationally. The computational method used are detailed in the document and they yielded results that are close to the literature values with a relative error of 2% for enthalpy of formation, 2% for density, 0.05% for detonation velocity, and 4% for detonation pressure. The correlation of the structural reorientation to the calculated thermochemical and detonation properties of the molecules indicated that molecules with a -NO2 group attached to a Carbon atom and -NH2 connected to a Nitrogen atom maximize the enthalpy of formation and detonation velocity. The joining of pyrazole molecules has less effect on these parameters. It was seen that density and detonation pressure improved when both –NO2 or -NH2 functional groups were on the same side of the molecular structure. The structural reorientation gave rise to 3,4-dinitropyrazolo[3,4-c]pyrazole-1,6-diamine which exhibited optimal density and detonation performance compared to other molecules.Keywords: LLM-119, fused rings, azole, structural isomers, detonation properties
Procedia PDF Downloads 92724 Solar Radiation Time Series Prediction
Authors: Cameron Hamilton, Walter Potter, Gerrit Hoogenboom, Ronald McClendon, Will Hobbs
Abstract:
A model was constructed to predict the amount of solar radiation that will make contact with the surface of the earth in a given location an hour into the future. This project was supported by the Southern Company to determine at what specific times during a given day of the year solar panels could be relied upon to produce energy in sufficient quantities. Due to their ability as universal function approximators, an artificial neural network was used to estimate the nonlinear pattern of solar radiation, which utilized measurements of weather conditions collected at the Griffin, Georgia weather station as inputs. A number of network configurations and training strategies were utilized, though a multilayer perceptron with a variety of hidden nodes trained with the resilient propagation algorithm consistently yielded the most accurate predictions. In addition, a modeled DNI field and adjacent weather station data were used to bolster prediction accuracy. In later trials, the solar radiation field was preprocessed with a discrete wavelet transform with the aim of removing noise from the measurements. The current model provides predictions of solar radiation with a mean square error of 0.0042, though ongoing efforts are being made to further improve the model’s accuracy.Keywords: artificial neural networks, resilient propagation, solar radiation, time series forecasting
Procedia PDF Downloads 384723 Comparison of Unit Hydrograph Models to Simulate Flood Events at the Field Scale
Authors: Imene Skhakhfa, Lahbaci Ouerdachi
Abstract:
To ensure the overall coherence of simulated results, it is necessary to develop a robust validation process. In many applications, it is no longer content to calibrate and validate the model only in relation to the hydro graph measured at the outlet, but we try to better simulate the functioning of the watershed in space. Therefore the timing also performs compared to other variables such as water level measurements in intermediate stations or groundwater levels. As part of this work, we limit ourselves to modeling flood of short duration for which the process of evapotranspiration is negligible. The main parameters to identify the models are related to the method of unit hydro graph (HU). Three different models were tested: SNYDER, CLARK and SCS. These models differ in their mathematical structure and parameters to be calibrated while hydrological data are the same, the initial water content and precipitation. The models are compared on the basis of their performance in terms six objective criteria, three global criteria and three criteria representing volume, peak flow, and the mean square error. The first type of criteria gives more weight to strong events whereas the second considers all events to be of equal weight. The results show that the calibrated parameter values are dependent and also highlight the problems associated with the simulation of low flow events and intermittent precipitation.Keywords: model calibration, intensity, runoff, hydrograph
Procedia PDF Downloads 486722 An Improved Image Steganography Technique Based on Least Significant Bit Insertion
Authors: Olaiya Folorunsho, Comfort Y. Daramola, Joel N. Ugwu, Lawrence B. Adewole, Olufisayo S. Ekundayo
Abstract:
In today world, there is a tremendous rise in the usage of internet due to the fact that almost all the communication and information sharing is done over the web. Conversely, there is a continuous growth of unauthorized access to confidential data. This has posed a challenge to information security expertise whose major goal is to curtail the menace. One of the approaches to secure the safety delivery of data/information to the rightful destination without any modification is steganography. Steganography is the art of hiding information inside an embedded information. This research paper aimed at designing a secured algorithm with the use of image steganographic technique that makes use of Least Significant Bit (LSB) algorithm for embedding the data into the bit map image (bmp) in order to enhance security and reliability. In the LSB approach, the basic idea is to replace the LSB of the pixels of the cover image with the Bits of the messages to be hidden without destroying the property of the cover image significantly. The system was implemented using C# programming language of Microsoft.NET framework. The performance evaluation of the proposed system was experimented by conducting a benchmarking test for analyzing the parameters like Mean Squared Error (MSE) and Peak Signal to Noise Ratio (PSNR). The result showed that image steganography performed considerably in securing data hiding and information transmission over the networks.Keywords: steganography, image steganography, least significant bits, bit map image
Procedia PDF Downloads 266721 A High Efficiency Reduced Rules Neuro-Fuzzy Based Maximum Power Point Tracking Controller for Photovoltaic Array Connected to Grid
Authors: Lotfi Farah, Nadir Farah, Zaiem Kamar
Abstract:
This paper achieves a maximum power point tracking (MPPT) controller using a high-efficiency reduced rules neuro-fuzzy inference system (HE2RNF) for a 100 kW stand-alone photovoltaic (PV) system connected to the grid. The suggested HE2RNF based MPPT seeks the optimal duty cycle for the boost DC-DC converter, making the designed PV system working at the maximum power point (MPP), then transferring this power to the grid via a three levels voltage source converter (VSC). PV current variation and voltage variation are chosen as HE2RNF-based MPPT controller inputs. By using these inputs with the duty cycle as the only single output, a six rules ANFIS is generated. The high performance of the proposed HE2RNF numerically in the MATLAB/Simulink environment is shown. The 0.006% steady-state error, 0.006s of tracking time, and 0.088s of starting time prove the robustness of this six reduced rules against the widely used twenty-five ones.Keywords: PV, MPPT, ANFIS, HE2RNF-based MPPT controller, VSC, grid connection
Procedia PDF Downloads 183720 Peak Data Rate Enhancement Using Switched Micro-Macro Diversity in Cellular Multiple-Input-Multiple-Output Systems
Authors: Jihad S. Daba, J. P. Dubois, Yvette Antar
Abstract:
With the exponential growth of cellular users, a new generation of cellular networks is needed to enhance the required peak data rates. The co-channel interference between neighboring base stations inhibits peak data rate increase. To overcome this interference, multi-cell cooperation known as coordinated multipoint transmission is proposed. Such a solution makes use of multiple-input-multiple-output (MIMO) systems under two different structures: Micro- and macro-diversity. In this paper, we study the capacity and bit error rate in cellular networks using MIMO technology. We analyse both micro- and macro-diversity schemes and develop a hybrid model that switches between macro- and micro-diversity in the case of hard handoff based on a cut-off range of signal-to-noise ratio values. We conclude that our hybrid switched micro-macro MIMO system outperforms classical MIMO systems at the cost of increased hardware and software complexity.Keywords: cooperative multipoint transmission, ergodic capacity, hard handoff, macro-diversity, micro-diversity, multiple-input-multiple output systems, orthogonal frequency division multiplexing
Procedia PDF Downloads 311719 Gaits Stability Analysis for a Pneumatic Quadruped Robot Using Reinforcement Learning
Authors: Soofiyan Atar, Adil Shaikh, Sahil Rajpurkar, Pragnesh Bhalala, Aniket Desai, Irfan Siddavatam
Abstract:
Deep reinforcement learning (deep RL) algorithms leverage the symbolic power of complex controllers by automating it by mapping sensory inputs to low-level actions. Deep RL eliminates the complex robot dynamics with minimal engineering. Deep RL provides high-risk involvement by directly implementing it in real-world scenarios and also high sensitivity towards hyperparameters. Tuning of hyperparameters on a pneumatic quadruped robot becomes very expensive through trial-and-error learning. This paper presents an automated learning control for a pneumatic quadruped robot using sample efficient deep Q learning, enabling minimal tuning and very few trials to learn the neural network. Long training hours may degrade the pneumatic cylinder due to jerk actions originated through stochastic weights. We applied this method to the pneumatic quadruped robot, which resulted in a hopping gait. In our process, we eliminated the use of a simulator and acquired a stable gait. This approach evolves so that the resultant gait matures more sturdy towards any stochastic changes in the environment. We further show that our algorithm performed very well as compared to programmed gait using robot dynamics.Keywords: model-based reinforcement learning, gait stability, supervised learning, pneumatic quadruped
Procedia PDF Downloads 316718 Monitoring Blood Pressure Using Regression Techniques
Authors: Qasem Qananwah, Ahmad Dagamseh, Hiam AlQuran, Khalid Shaker Ibrahim
Abstract:
Blood pressure helps the physicians greatly to have a deep insight into the cardiovascular system. The determination of individual blood pressure is a standard clinical procedure considered for cardiovascular system problems. The conventional techniques to measure blood pressure (e.g. cuff method) allows a limited number of readings for a certain period (e.g. every 5-10 minutes). Additionally, these systems cause turbulence to blood flow; impeding continuous blood pressure monitoring, especially in emergency cases or critically ill persons. In this paper, the most important statistical features in the photoplethysmogram (PPG) signals were extracted to estimate the blood pressure noninvasively. PPG signals from more than 40 subjects were measured and analyzed and 12 features were extracted. The features were fed to principal component analysis (PCA) to find the most important independent features that have the highest correlation with blood pressure. The results show that the stiffness index means and standard deviation for the beat-to-beat heart rate were the most important features. A model representing both features for Systolic Blood Pressure (SBP) and Diastolic Blood Pressure (DBP) was obtained using a statistical regression technique. Surface fitting is used to best fit the series of data and the results show that the error value in estimating the SBP is 4.95% and in estimating the DBP is 3.99%.Keywords: blood pressure, noninvasive optical system, principal component analysis, PCA, continuous monitoring
Procedia PDF Downloads 161717 Modified Newton's Iterative Method for Solving System of Nonlinear Equations in Two Variables
Authors: Sara Mahesar, Saleem M. Chandio, Hira Soomro
Abstract:
Nonlinear system of equations in two variables is a system which contains variables of degree greater or equal to two or that comprises of the transcendental functions. Mathematical modeling of numerous physical problems occurs as a system of nonlinear equations. In applied and pure mathematics it is the main dispute to solve a system of nonlinear equations. Numerical techniques mainly used for finding the solution to problems where analytical methods are failed, which leads to the inexact solutions. To find the exact roots or solutions in case of the system of non-linear equations there does not exist any analytical technique. Various methods have been proposed to solve such systems with an improved rate of convergence and accuracy. In this paper, a new scheme is developed for solving system of non-linear equation in two variables. The iterative scheme proposed here is modified form of the conventional Newton’s Method (CN) whose order of convergence is two whereas the order of convergence of the devised technique is three. Furthermore, the detailed error and convergence analysis of the proposed method is also examined. Additionally, various numerical test problems are compared with the results of its counterpart conventional Newton’s Method (CN) which confirms the theoretic consequences of the proposed method.Keywords: conventional Newton’s method, modified Newton’s method, order of convergence, system of nonlinear equations
Procedia PDF Downloads 256716 Soil Moisture Control System: A Product Development Approach
Authors: Swapneel U. Naphade, Dushyant A. Patil, Satyabodh M. Kulkarni
Abstract:
In this work, we propose the concept and geometrical design of a soil moisture control system (SMCS) module by following the product development approach to develop an inexpensive, easy to use and quick to install product targeted towards agriculture practitioners. The module delivers water to the agricultural land efficiently by sensing the soil moisture and activating the delivery valve. We start with identifying the general needs of the potential customer. Then, based on customer needs we establish product specifications and identify important measuring quantities to evaluate our product. Keeping in mind the specifications, we develop various conceptual solutions of the product and select the best solution through concept screening and selection matrices. Then, we develop the product architecture by integrating the systems into the final product. In the end, the geometric design is done using human factors engineering concepts like heuristic analysis, task analysis, and human error reduction analysis. The result of human factors analysis reveals the remedies which should be applied while designing the geometry and software components of the product. We find that to design the best grip in terms of comfort and applied force, for a power-type grip, a grip-diameter of 35 mm is the most ideal.Keywords: agriculture, human factors, product design, soil moisture control
Procedia PDF Downloads 172715 Selection of Designs in Ordinal Regression Models under Linear Predictor Misspecification
Authors: Ishapathik Das
Abstract:
The purpose of this article is to find a method of comparing designs for ordinal regression models using quantile dispersion graphs in the presence of linear predictor misspecification. The true relationship between response variable and the corresponding control variables are usually unknown. Experimenter assumes certain form of the linear predictor of the ordinal regression models. The assumed form of the linear predictor may not be correct always. Thus, the maximum likelihood estimates (MLE) of the unknown parameters of the model may be biased due to misspecification of the linear predictor. In this article, the uncertainty in the linear predictor is represented by an unknown function. An algorithm is provided to estimate the unknown function at the design points where observations are available. The unknown function is estimated at all points in the design region using multivariate parametric kriging. The comparison of the designs are based on a scalar valued function of the mean squared error of prediction (MSEP) matrix, which incorporates both variance and bias of the prediction caused by the misspecification in the linear predictor. The designs are compared using quantile dispersion graphs approach. The graphs also visually depict the robustness of the designs on the changes in the parameter values. Numerical examples are presented to illustrate the proposed methodology.Keywords: model misspecification, multivariate kriging, multivariate logistic link, ordinal response models, quantile dispersion graphs
Procedia PDF Downloads 393714 Performance Analysis of PAPR Reduction in OFDM Systems based on Partial Transmit Sequence (PTS) Technique
Authors: Alcardo Alex Barakabitze, Tan Xiaoheng
Abstract:
Orthogonal Frequency Division Multiplexing (OFDM) is a special case of Multi-Carrier Modulation (MCM) technique which transmits a stream of data over a number of lower data rate subcarriers. OFDM splits the total transmission bandwidth into a number of orthogonal and non-overlapping subcarriers and transmit the collection of bits called symbols in parallel using these subcarriers. This paper explores the Peak to Average Power Reduction (PAPR) using the Partial Transmit Sequence technique. We provide the distribution analysis and the basics of OFDM signals and then show how the PAPR increases as the number of subcarriers increases. We provide the performance analysis of CCDF and PAPR expressed in decibels through MATLAB simulations. The simulation results show that, in PTS technique, the performance of PAPR reduction in OFDM systems improves significantly as the number of sub-blocks increases. However, by keeping the same number of sub-blocks variation, oversampling factor and the number of OFDM blocks’ iteration for generating the CCDF, the OFDM systems with 128 subcarriers have an improved performance in PAPR reduction compared to OFDM systems with 256, 512 or >512 subcarriers.Keywords: OFDM, peak to average power reduction (PAPR), bit error rate (BER), subcarriers, wireless communications
Procedia PDF Downloads 514713 Development of Prediction Models of Day-Ahead Hourly Building Electricity Consumption and Peak Power Demand Using the Machine Learning Method
Authors: Dalin Si, Azizan Aziz, Bertrand Lasternas
Abstract:
To encourage building owners to purchase electricity at the wholesale market and reduce building peak demand, this study aims to develop models that predict day-ahead hourly electricity consumption and demand using artificial neural network (ANN) and support vector machine (SVM). All prediction models are built in Python, with tool Scikit-learn and Pybrain. The input data for both consumption and demand prediction are time stamp, outdoor dry bulb temperature, relative humidity, air handling unit (AHU), supply air temperature and solar radiation. Solar radiation, which is unavailable a day-ahead, is predicted at first, and then this estimation is used as an input to predict consumption and demand. Models to predict consumption and demand are trained in both SVM and ANN, and depend on cooling or heating, weekdays or weekends. The results show that ANN is the better option for both consumption and demand prediction. It can achieve 15.50% to 20.03% coefficient of variance of root mean square error (CVRMSE) for consumption prediction and 22.89% to 32.42% CVRMSE for demand prediction, respectively. To conclude, the presented models have potential to help building owners to purchase electricity at the wholesale market, but they are not robust when used in demand response control.Keywords: building energy prediction, data mining, demand response, electricity market
Procedia PDF Downloads 316712 Performance Analysis in 5th Generation Massive Multiple-Input-Multiple-Output Systems
Authors: Jihad S. Daba, Jean-Pierre Dubois, Georges El Soury
Abstract:
Fifth generation wireless networks guarantee significant capacity enhancement to suit more clients and services at higher information rates with better reliability while consuming less power. The deployment of massive multiple-input-multiple-output technology guarantees broadband wireless networks with the use of base station antenna arrays to serve a large number of users on the same frequency and time-slot channels. In this work, we evaluate the performance of massive multiple-input-multiple-output systems (MIMO) systems in 5th generation cellular networks in terms of capacity and bit error rate. Several cases were considered and analyzed to compare the performance of massive MIMO systems while varying the number of antennas at both transmitting and receiving ends. We found that, unlike classical MIMO systems, reducing the number of transmit antennas while increasing the number of antennas at the receiver end provides a better solution to performance enhancement. In addition, enhanced orthogonal frequency division multiplexing and beam division multiple access schemes further improve the performance of massive MIMO systems and make them more reliable.Keywords: beam division multiple access, D2D communication, enhanced OFDM, fifth generation broadband, massive MIMO
Procedia PDF Downloads 258711 High Speed Response Single-Inductor Dual-Output DC-DC Converter with Hysteretic Control
Authors: Y. Kobori, S. Tanaka, N. Tsukiji, N. Takai, H. Kobayashi
Abstract:
This paper proposes two kinds of new single-inductor dual-output (SIDO) DC-DC switching converters with ripple-based hysteretic control. First SIDO converters of type 1 utilize the triangular signal generated by the CR-circuit connected across the inductor. This triangular signal is used for generating the PWM signal instead of the saw-tooth signal used in the conventional converters. Second SIDO converters of type 2 utilize the triangular signal generated by the CR-circuit connected across the voltage error amplifier. This paper describes circuit topologies, Operation principles, simulation results and experimental results of the proposed SIDO converters. In simulation results of both type of SIDO converters, static output voltage ripples are less than 5mVpp and over/under shoots of the dynamic load regulations for the output current step are less than +/- 10mV. In experimental results of single output converter of type 2, static output voltage ripples are about 20mVpp. Output ripples of SIDO type 1 converter are about 80mVpp.Keywords: DC-DC converter, switching converter, SIDO converter, hysteretic control, ripple-based control
Procedia PDF Downloads 573710 Modeling of Tool Flank Wear in Finish Hard Turning of AISI D2 Using Genetic Programming
Authors: V. Pourmostaghimi, M. Zadshakoyan
Abstract:
Efficiency and productivity of the finish hard turning can be enhanced impressively by utilizing accurate predictive models for cutting tool wear. However, the ability of genetic programming in presenting an accurate analytical model is a notable characteristic which makes it more applicable than other predictive modeling methods. In this paper, the genetic equation for modeling of tool flank wear is developed with the use of the experimentally measured flank wear values and genetic programming during finish turning of hardened AISI D2. Series of tests were conducted over a range of cutting parameters and the values of tool flank wear were measured. On the basis of obtained results, genetic model presenting connection between cutting parameters and tool flank wear were extracted. The accuracy of the genetically obtained model was assessed by using two statistical measures, which were root mean square error (RMSE) and coefficient of determination (R²). Evaluation results revealed that presented genetic model predicted flank wear over the study area accurately (R² = 0.9902 and RMSE = 0.0102). These results allow concluding that the proposed genetic equation corresponds well with experimental data and can be implemented in real industrial applications.Keywords: cutting parameters, flank wear, genetic programming, hard turning
Procedia PDF Downloads 178709 Qsar Studies of Certain Novel Heterocycles Derived From bis-1, 2, 4 Triazoles as Anti-Tumor Agents
Authors: Madhusudan Purohit, Stephen Philip, Bharathkumar Inturi
Abstract:
In this paper we report the quantitative structure activity relationship of novel bis-triazole derivatives for predicting the activity profile. The full model encompassed a dataset of 46 Bis- triazoles. Tripos Sybyl X 2.0 program was used to conduct CoMSIA QSAR modeling. The Partial Least-Squares (PLS) analysis method was used to conduct statistical analysis and to derive a QSAR model based on the field values of CoMSIA descriptor. The compounds were divided into test and training set. The compounds were evaluated by various CoMSIA parameters to predict the best QSAR model. An optimum numbers of components were first determined separately by cross-validation regression for CoMSIA model, which were then applied in the final analysis. A series of parameters were used for the study and the best fit model was obtained using donor, partition coefficient and steric parameters. The CoMSIA models demonstrated good statistical results with regression coefficient (r2) and the cross-validated coefficient (q2) of 0.575 and 0.830 respectively. The standard error for the predicted model was 0.16322. In the CoMSIA model, the steric descriptors make a marginally larger contribution than the electrostatic descriptors. The finding that the steric descriptor is the largest contributor for the CoMSIA QSAR models is consistent with the observation that more than half of the binding site area is occupied by steric regions.Keywords: 3D QSAR, CoMSIA, triazoles, novel heterocycles
Procedia PDF Downloads 444708 B Spline Finite Element Method for Drifted Space Fractional Tempered Diffusion Equation
Authors: Ayan Chakraborty, BV. Rathish Kumar
Abstract:
Off-late many models in viscoelasticity, signal processing or anomalous diffusion equations are formulated in fractional calculus. Tempered fractional calculus is the generalization of fractional calculus and in the last few years several important partial differential equations occurring in the different field of science have been reconsidered in this term like diffusion wave equations, Schr$\ddot{o}$dinger equation and so on. In the present paper, a time-dependent tempered fractional diffusion equation of order $\gamma \in (0,1)$ with forcing function is considered. Existence, uniqueness, stability, and regularity of the solution has been proved. Crank-Nicolson discretization is used in the time direction. B spline finite element approximation is implemented. Generally, B-splines basis are useful for representing the geometry of a finite element model, interfacing a finite element analysis program. By utilizing this technique a priori space-time estimate in finite element analysis has been derived and we proved that the convergent order is $\mathcal{O}(h²+T²)$ where $h$ is the space step size and $T$ is the time. A couple of numerical examples have been presented to confirm the accuracy of theoretical results. Finally, we conclude that the studied method is useful for solving tempered fractional diffusion equations.Keywords: B-spline finite element, error estimates, Gronwall's lemma, stability, tempered fractional
Procedia PDF Downloads 192707 Magnetocaloric Effect in Ho₂O₃ Nanopowder at Cryogenic Temperature
Authors: K. P. Shinde, M. V. Tien, H. Lin, H.-R. Park, S.-C.Yu, K. C. Chung, D.-H. Kim
Abstract:
Magnetic refrigeration provides an attractive alternative cooling technology due to its potential advantages such as high cooling efficiency, environmental friendliness, low noise, and compactness over the conventional cooling techniques based on gas compression. Magnetocaloric effect (MCE) occurs by changes in entropy (ΔS) and temperature (ΔT) under external magnetic fields. We have been focused on identifying materials with large MCE in two temperature regimes, not only room temperature but also at cryogenic temperature for specific technological applications, such as space science and liquefaction of hydrogen in fuel industry. To date, the commonly used materials for cryogenic refrigeration are based on hydrated salts. In the present work, we report giant MCE in rare earth Ho2O3 nanopowder at cryogenic temperature. HoN nanoparticles with average size of 30 nm were prepared by using plasma arc discharge method with gas composition of N2/H2 (80%/20%). The prepared HoN was sintered in air atmosphere at 1200 oC for 24 hrs to convert it into oxide. Structural and morphological properties were studied by XRD and SEM. XRD confirms the pure phase and cubic crystal structure of Ho2O3 without any impurity within error range. It has been discovered that Holmium oxide exhibits giant MCE at low temperature without magnetic hysteresis loss with the second-order antiferromagnetic phase transition with Néels temperature around 2 K. The maximum entropy change was found to be 25.2 J/kgK at an applied field of 6 T.Keywords: magnetocaloric effect, Ho₂O₃, magnetic entropy change, nanopowder
Procedia PDF Downloads 149706 An Improved Data Aided Channel Estimation Technique Using Genetic Algorithm for Massive Multi-Input Multiple-Output
Authors: M. Kislu Noman, Syed Mohammed Shamsul Islam, Shahriar Hassan, Raihana Pervin
Abstract:
With the increasing rate of wireless devices and high bandwidth operations, wireless networking and communications are becoming over crowded. To cope with such crowdy and messy situation, massive MIMO is designed to work with hundreds of low costs serving antennas at a time as well as improve the spectral efficiency at the same time. TDD has been used for gaining beamforming which is a major part of massive MIMO, to gain its best improvement to transmit and receive pilot sequences. All the benefits are only possible if the channel state information or channel estimation is gained properly. The common methods to estimate channel matrix used so far is LS, MMSE and a linear version of MMSE also proposed in many research works. We have optimized these methods using genetic algorithm to minimize the mean squared error and finding the best channel matrix from existing algorithms with less computational complexity. Our simulation result has shown that the use of GA worked beautifully on existing algorithms in a Rayleigh slow fading channel and existence of Additive White Gaussian Noise. We found that the GA optimized LS is better than existing algorithms as GA provides optimal result in some few iterations in terms of MSE with respect to SNR and computational complexity.Keywords: channel estimation, LMMSE, LS, MIMO, MMSE
Procedia PDF Downloads 191705 Miniaturization of Germanium Photo-Detectors by Using Micro-Disk Resonator
Authors: Haifeng Zhou, Tsungyang Liow, Xiaoguang Tu, Eujin Lim, Chao Li, Junfeng Song, Xianshu Luo, Ying Huang, Lianxi Jia, Lianwee Luo, Kim Dowon, Qing Fang, Mingbin Yu, Guoqiang Lo
Abstract:
Several Germanium photodetectors (PD) built on silicon micro-disks are fabricated on the standard Si photonics multiple project wafers (MPW) and demonstrated to exhibit very low dark current, satisfactory operation bandwidth and moderate responsivity. Among them, a vertical p-i-n Ge PD based on a 2.0 µm-radius micro-disk has a dark current of as low as 35 nA, compared to a conventional PD current of 1 µA with an area of 100 µm2. The operation bandwidth is around 15 GHz at a reverse bias of 1V. The responsivity is about 0.6 A/W. Microdisk is a striking planar structure in integrated optics to enhance light-matter interaction and construct various photonics devices. The disk geometries feature in strongly and circularly confining light into an ultra-small volume in the form of whispering gallery modes. A laser may benefit from a microdisk in which a single mode overlaps the gain materials both spatially and spectrally. Compared to microrings, micro-disk removes the inner boundaries to enable even better compactness, which also makes it very suitable for some scenarios that electrical connections are needed. For example, an ultra-low power (≈ fJ) athermal Si modulator has been demonstrated with a bit rate of 25Gbit/s by confining both photons and electrically-driven carriers into a microscale volume.In this work, we study Si-based PDs with Ge selectively grown on a microdisk with the radius of a few microns. The unique feature of using microdisk for Ge photodetector is that mode selection is not important. In the applications of laser or other passive optical components, microdisk must be designed very carefully to excite the fundamental mode in a microdisk in that essentially the microdisk usually supports many higher order modes in the radial directions. However, for detector applications, this is not an issue because the local light absorption is mode insensitive. Light power carried by all modes are expected to be converted into photo-current. Another benefit of using microdisk is that the power circulation inside avoids any introduction of the reflector. A complete simulation model with all involved materials taken into account is established to study the promise of microdisk structures for photodetector by using finite difference time domain (FDTD) method. By viewing from the current preliminary data, the directions to further improve the device performance are also discussed.Keywords: integrated optical devices, silicon photonics, micro-resonator, photodetectors
Procedia PDF Downloads 407704 A New Intelligent, Dynamic and Real Time Management System of Sewerage
Authors: R. Tlili Yaakoubi, H.Nakouri, O. Blanpain, S. Lallahem
Abstract:
The current tools for real time management of sewer systems are based on two software tools: the software of weather forecast and the software of hydraulic simulation. The use of the first ones is an important cause of imprecision and uncertainty, the use of the second requires temporal important steps of decision because of their need in times of calculation. This way of proceeding fact that the obtained results are generally different from those waited. The major idea of this project is to change the basic paradigm by approaching the problem by the "automatic" face rather than by that "hydrology". The objective is to make possible the realization of a large number of simulations at very short times (a few seconds) allowing to take place weather forecasts by using directly the real time meditative pluviometric data. The aim is to reach a system where the decision-making is realized from reliable data and where the correction of the error is permanent. A first model of control laws was realized and tested with different return-period rainfalls. The gains obtained in rejecting volume vary from 19 to 100 %. The development of a new algorithm was then used to optimize calculation time and thus to overcome the subsequent combinatorial problem in our first approach. Finally, this new algorithm was tested with 16- year-rainfall series. The obtained gains are 40 % of total volume rejected to the natural environment and of 65 % in the number of discharges.Keywords: automation, optimization, paradigm, RTC
Procedia PDF Downloads 299