Search results for: multi-temporal image classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4564

Search results for: multi-temporal image classification

3034 X-Ray Detector Technology Optimization in Computed Tomography

Authors: Aziz Ikhlef

Abstract:

Most of multi-slices Computed Tomography (CT) scanners are built with detectors composed of scintillator - photodiodes arrays. The photodiodes arrays are mainly based on front-illuminated technology for detectors under 64 slices and on back-illuminated photodiode for systems of 64 slices or more. The designs based on back-illuminated photodiodes were being investigated for CT machines to overcome the challenge of the higher number of runs and connection required in front-illuminated diodes. In backlit diodes, the electronic noise has already been improved because of the reduction of the load capacitance due to the routing reduction. This is translated by a better image quality in low signal application, improving low dose imaging in large patient population. With the fast development of multi-detector-rows CT (MDCT) scanners and the increasing number of examinations, the clinical community has raised significant concerns on radiation dose received by the patient in both medical and regulatory community. In order to reduce individual exposure and in response to the recommendations of the International Commission on Radiological Protection (ICRP) which suggests that all exposures should be kept as low as reasonably achievable (ALARA), every manufacturer is trying to implement strategies and solutions to optimize dose efficiency and image quality based on x-ray emission and scanning parameters. The added demands on the CT detector performance also comes from the increased utilization of spectral CT or dual-energy CT in which projection data of two different tube potentials are collected. One of the approaches utilizes a technology called fast-kVp switching in which the tube voltage is switched between 80 kVp and 140 kVp in fraction of a millisecond. To reduce the cross-contamination of signals, the scintillator based detector temporal response has to be extremely fast to minimize the residual signal from previous samples. In addition, this paper will present an overview of detector technologies and image chain improvement which have been investigated in the last few years to improve the signal-noise ratio and the dose efficiency CT scanners in regular examinations and in energy discrimination techniques. Several parameters of the image chain in general and in the detector technology contribute in the optimization of the final image quality. We will go through the properties of the post-patient collimation to improve the scatter-to-primary ratio, the scintillator material properties such as light output, afterglow, primary speed, crosstalk to improve the spectral imaging, the photodiode design characteristics and the data acquisition system (DAS) to optimize for crosstalk, noise and temporal/spatial resolution.

Keywords: computed tomography, X-ray detector, medical imaging, image quality, artifacts

Procedia PDF Downloads 194
3033 Semi-Supervised Learning Using Pseudo F Measure

Authors: Mahesh Balan U, Rohith Srinivaas Mohanakrishnan, Venkat Subramanian

Abstract:

Positive and unlabeled learning (PU) has gained more attention in both academic and industry research literature recently because of its relevance to existing business problems today. Yet, there still seems to be some existing challenges in terms of validating the performance of PU learning, as the actual truth of unlabeled data points is still unknown in contrast to a binary classification where we know the truth. In this study, we propose a novel PU learning technique based on the Pseudo-F measure, where we address this research gap. In this approach, we train the PU model to discriminate the probability distribution of the positive and unlabeled in the validation and spy data. The predicted probabilities of the PU model have a two-fold validation – (a) the predicted probabilities of reliable positives and predicted positives should be from the same distribution; (b) the predicted probabilities of predicted positives and predicted unlabeled should be from a different distribution. We experimented with this approach on a credit marketing case study in one of the world’s biggest fintech platforms and found evidence for benchmarking performance and backtested using historical data. This study contributes to the existing literature on semi-supervised learning.

Keywords: PU learning, semi-supervised learning, pseudo f measure, classification

Procedia PDF Downloads 235
3032 Digital Watermarking Based on Visual Cryptography and Histogram

Authors: R. Rama Kishore, Sunesh

Abstract:

Nowadays, robust and secure watermarking algorithm and its optimization have been need of the hour. A watermarking algorithm is presented to achieve the copy right protection of the owner based on visual cryptography, histogram shape property and entropy. In this, both host image and watermark are preprocessed. Host image is preprocessed by using Butterworth filter, and watermark is with visual cryptography. Applying visual cryptography on water mark generates two shares. One share is used for embedding the watermark, and the other one is used for solving any dispute with the aid of trusted authority. Usage of histogram shape makes the process more robust against geometric and signal processing attacks. The combination of visual cryptography, Butterworth filter, histogram, and entropy can make the algorithm more robust, imperceptible, and copy right protection of the owner.

Keywords: digital watermarking, visual cryptography, histogram, butter worth filter

Procedia PDF Downloads 358
3031 Damage Micromechanisms of Coconut Fibers and Chopped Strand Mats of Coconut Fibers

Authors: Rios A. S., Hild F., Deus E. P., Aimedieu P., Benallal A.

Abstract:

The damage micromechanisms of chopped strand mats manufactured by compression of Brazilian coconut fiber and coconut fibers in different external conditions (chemical treatment) were used in this study. Mechanical analysis testing uniaxial traction were used with Digital Image Correlation (DIC). The images captured during the tensile test in the coconut fibers and coconut fiber mats showed an uncertainty of measurement in order centipixels. The initial modulus (modulus of elasticity) and tensile strength decreased with increasing diameter for the four conditions of coconut fibers. The DIC showed heterogeneous deformation fields for coconut fibers and mats and the displacement fields showed the rupture process of coconut fiber. The determination of poisson’s ratio of the mat was performed through of transverse and longitudinal deformations found in the elastic region.

Keywords: coconut fiber, mechanical behavior, digital image correlation, micromechanism

Procedia PDF Downloads 459
3030 Spontaneous Message Detection of Annoying Situation in Community Networks Using Mining Algorithm

Authors: P. Senthil Kumari

Abstract:

Main concerns in data mining investigation are social controls of data mining for handling ambiguity, noise, or incompleteness on text data. We describe an innovative approach for unplanned text data detection of community networks achieved by classification mechanism. In a tangible domain claim with humble secrecy backgrounds provided by community network for evading annoying content is presented on consumer message partition. To avoid this, mining methodology provides the capability to unswervingly switch the messages and similarly recover the superiority of ordering. Here we designated learning-centered mining approaches with pre-processing technique to complete this effort. Our involvement of work compact with rule-based personalization for automatic text categorization which was appropriate in many dissimilar frameworks and offers tolerance value for permits the background of comments conferring to a variety of conditions associated with the policy or rule arrangements processed by learning algorithm. Remarkably, we find that the choice of classifier has predicted the class labels for control of the inadequate documents on community network with great value of effect.

Keywords: text mining, data classification, community network, learning algorithm

Procedia PDF Downloads 508
3029 Classification of Random Doppler-Radar Targets during the Surveillance Operations

Authors: G. C. Tikkiwal, Mukesh Upadhyay

Abstract:

During the surveillance operations at war or peace time, the Radar operator gets a scatter of targets over the screen. This may be a tracked vehicle like tank vis-à-vis T72, BMP etc, or it may be a wheeled vehicle like ALS, TATRA, 2.5Tonne, Shaktiman or moving the army, moving convoys etc. The radar operator selects one of the promising targets into single target tracking (STT) mode. Once the target is locked, the operator gets a typical audible signal into his headphones. With reference to the gained experience and training over the time, the operator then identifies the random target. But this process is cumbersome and is solely dependent on the skills of the operator, thus may lead to misclassification of the object. In this paper, we present a technique using mathematical and statistical methods like fast fourier transformation (FFT) and principal component analysis (PCA) to identify the random objects. The process of classification is based on transforming the audible signature of target into music octave-notes. The whole methodology is then automated by developing suitable software. This automation increases the efficiency of identification of the random target by reducing the chances of misclassification. This whole study is based on live data.

Keywords: radar target, FFT, principal component analysis, eigenvector, octave-notes, DSP

Procedia PDF Downloads 394
3028 Prevalence of Lower Third Molar Impactions and Angulations Among Yemeni Population

Authors: Khawlah Al-Khalidi

Abstract:

Prevalence of lower third molar impactions and angulations among Yemeni population The purpose of this study was to look into the prevalence of lower third molars in a sample of patients from Ibb University Affiliated Hospital, as well as to study and categorise their position by using Pell and Gregory classification, and to look into a possible correlation between their position and the indication for extraction. Materials and methods: This is a retrospective, observational study in which a sample of 200 patients from Ibb University Affiliated Hospital were studied, including patient record validation and orthopantomography performed in screening appointments in people aged 16 to 21. Results and discussion: Males make up 63% of the sample, while people aged 19 to 20 make up 41.2%. Lower third molars were found in 365 of the 365 instances examined, accounting for 91% of the sample under study. According to Pell and Gregory's categorisation, the most common position is IIB, with 37%, followed by IIA with 21%; less common classes are IIIA, IC, and IIIC, with 1%, 3%, and 3%, respectively. It was feasible to determine that 56% of the lower third molars in the sample were recommended for extraction during the screening consultation. Finally, there are differences in third molar location and angulation. There was, however, a link between the available space for third molar eruption and the need for tooth extraction.

Keywords: lower third molar, extraction, Pell and Gregory classification, lower third molar impaction

Procedia PDF Downloads 55
3027 Detecting HCC Tumor in Three Phasic CT Liver Images with Optimization of Neural Network

Authors: Mahdieh Khalilinezhad, Silvana Dellepiane, Gianni Vernazza

Abstract:

The aim of the present work is to build a model based on tissue characterization that is able to discriminate pathological and non-pathological regions from three-phasic CT images. Based on feature selection in different phases, in this research, we design a neural network system that has optimal neuron number in a hidden layer. Our approach consists of three steps: feature selection, feature reduction, and classification. For each ROI, 6 distinct set of texture features are extracted such as first order histogram parameters, absolute gradient, run-length matrix, co-occurrence matrix, autoregressive model, and wavelet, for a total of 270 texture features. We show that with the injection of liquid and the analysis of more phases the high relevant features in each region changed. Our results show that for detecting HCC tumor phase3 is the best one in most of the features that we apply to the classification algorithm. The percentage of detection between these two classes according to our method, relates to first order histogram parameters with the accuracy of 85% in phase 1, 95% phase 2, and 95% in phase 3.

Keywords: multi-phasic liver images, texture analysis, neural network, hidden layer

Procedia PDF Downloads 262
3026 Retina Registration for Biometrics Based on Characterization of Retinal Feature Points

Authors: Nougrara Zineb

Abstract:

The unique structure of the blood vessels in the retina has been used for biometric identification. The retina blood vessel pattern is a unique pattern in each individual and it is almost impossible to forge that pattern in a false individual. The retina biometrics’ advantages include high distinctiveness, universality, and stability overtime of the blood vessel pattern. Once the creases have been extracted from the images, a registration stage is necessary, since the position of the retinal vessel structure could change between acquisitions due to the movements of the eye. Image registration consists of following steps: Feature detection, feature matching, transform model estimation and image resembling and transformation. In this paper, we present an algorithm of registration; it is based on the characterization of retinal feature points. For experiments, retinal images from the DRIVE database have been tested. The proposed methodology achieves good results for registration in general.

Keywords: fovea, optic disc, registration, retinal images

Procedia PDF Downloads 266
3025 Comparative Analysis of Patent Protection between Health System and Enterprises in Shanghai, China

Authors: Na Li, Yunwei Zhang, Yuhong Niu

Abstract:

The study discussed the patent protections of health system and enterprises in Shanghai. The comparisons of technical distribution and scopes of patent protections between Shanghai health system and enterprises were used by the methods of IPC classification, co-words analysis and visual social network. Results reflected a decreasing order within IPC A61 area, namely A61B, A61K, A61M, and A61F. A61B required to be further investigated. The highest authorized patents A61B17 of A61B of IPC A61 area was found. Within A61B17, fracture fixation, ligament reconstruction, cardiac surgery, and biopsy detection were regarded as common concerned fields by Shanghai health system and enterprises. However, compared with cardiac closure which Shanghai enterprises paid attention to, Shanghai health system was more inclined to blockages and hemostatic tools. The results also revealed that the scopes of patent protections of Shanghai enterprises were relatively centralized. Shanghai enterprises had a series of comprehensive strategies for protecting core patents. In contrast, Shanghai health system was considered to be lack of strategic patent protections for core patents.

Keywords: co-words analysis, IPC classification, patent protection, technical distribution

Procedia PDF Downloads 134
3024 Effect of Cement Amount on California Bearing Ratio Values of Different Soil

Authors: Ayse Pekrioglu Balkis, Sawash Mecid

Abstract:

Due to continued growth and rapid development of road construction in worldwide, road sub-layers consist of soil layers, therefore, identification and recognition of type of soil and soil behavior in different condition help to us to select soil according to specification and engineering characteristic, also if necessary sometimes stabilize the soil and treat undesirable properties of soils by adding materials such as bitumen, lime, cement, etc. If the soil beneath the road is not done according to the standards and construction will need more construction time. In this case, a large part of soil should be removed, transported and sometimes deposited. Then purchased sand and gravel is transported to the site and full depth filled and compacted. Stabilization by cement or other treats gives an opportunity to use the existing soil as a base material instead of removing it and purchasing and transporting better fill materials. Classification of soil according to AASHTOO system and USCS help engineers to anticipate soil behavior and select best treatment method. In this study soil classification and the relation between soil classification and stabilization method is discussed, cement stabilization with different percentages have been selected for soil treatment based on NCHRP. There are different parameters to define the strength of soil. In this study, CBR will be used to define the strength of soil. Cement by percentages, 0%, 3%, 7% and 10% added to soil for evaluation effect of added cement to CBR of treated soil. Implementation of stabilization process by different cement content help engineers to select an economic cement amount for the stabilization process according to project specification and characteristics. Stabilization process in optimum moisture content (OMC) and mixing rate effect on the strength of soil in the laboratory and field construction operation have been performed to see the improvement rate in strength and plasticity. Cement stabilization is quicker than a universal method such as removing and changing field soils. Cement addition increases CBR values of different soil types by the range of 22-69%.

Keywords: California Bearing Ratio, cement stabilization, clayey soil, mechanical properties

Procedia PDF Downloads 397
3023 Investigation of New Gait Representations for Improving Gait Recognition

Authors: Chirawat Wattanapanich, Hong Wei

Abstract:

This study presents new gait representations for improving gait recognition accuracy on cross gait appearances, such as normal walking, wearing a coat and carrying a bag. Based on the Gait Energy Image (GEI), two ideas are implemented to generate new gait representations. One is to append lower knee regions to the original GEI, and the other is to apply convolutional operations to the GEI and its variants. A set of new gait representations are created and used for training multi-class Support Vector Machines (SVMs). Tests are conducted on the CASIA dataset B. Various combinations of the gait representations with different convolutional kernel size and different numbers of kernels used in the convolutional processes are examined. Both the entire images as features and reduced dimensional features by Principal Component Analysis (PCA) are tested in gait recognition. Interestingly, both new techniques, appending the lower knee regions to the original GEI and convolutional GEI, can significantly contribute to the performance improvement in the gait recognition. The experimental results have shown that the average recognition rate can be improved from 75.65% to 87.50%.

Keywords: convolutional image, lower knee, gait

Procedia PDF Downloads 202
3022 Engagement Analysis Using DAiSEE Dataset

Authors: Naman Solanki, Souraj Mondal

Abstract:

With the world moving towards online communication, the video datastore has exploded in the past few years. Consequently, it has become crucial to analyse participant’s engagement levels in online communication videos. Engagement prediction of people in videos can be useful in many domains, like education, client meetings, dating, etc. Video-level or frame-level prediction of engagement for a user involves the development of robust models that can capture facial micro-emotions efficiently. For the development of an engagement prediction model, it is necessary to have a widely-accepted standard dataset for engagement analysis. DAiSEE is one of the datasets which consist of in-the-wild data and has a gold standard annotation for engagement prediction. Earlier research done using the DAiSEE dataset involved training and testing standard models like CNN-based models, but the results were not satisfactory according to industry standards. In this paper, a multi-level classification approach has been introduced to create a more robust model for engagement analysis using the DAiSEE dataset. This approach has recorded testing accuracies of 0.638, 0.7728, 0.8195, and 0.866 for predicting boredom level, engagement level, confusion level, and frustration level, respectively.

Keywords: computer vision, engagement prediction, deep learning, multi-level classification

Procedia PDF Downloads 114
3021 Data Mining Model for Predicting the Status of HIV Patients during Drug Regimen Change

Authors: Ermias A. Tegegn, Million Meshesha

Abstract:

Human Immunodeficiency Virus and Acquired Immunodeficiency Syndrome (HIV/AIDS) is a major cause of death for most African countries. Ethiopia is one of the seriously affected countries in sub Saharan Africa. Previously in Ethiopia, having HIV/AIDS was almost equivalent to a death sentence. With the introduction of Antiretroviral Therapy (ART), HIV/AIDS has become chronic, but manageable disease. The study focused on a data mining technique to predict future living status of HIV/AIDS patients at the time of drug regimen change when the patients become toxic to the currently taking ART drug combination. The data is taken from University of Gondar Hospital ART program database. Hybrid methodology is followed to explore the application of data mining on ART program dataset. Data cleaning, handling missing values and data transformation were used for preprocessing the data. WEKA 3.7.9 data mining tools, classification algorithms, and expertise are utilized as means to address the research problem. By using four different classification algorithms, (i.e., J48 Classifier, PART rule induction, Naïve Bayes and Neural network) and by adjusting their parameters thirty-two models were built on the pre-processed University of Gondar ART program dataset. The performances of the models were evaluated using the standard metrics of accuracy, precision, recall, and F-measure. The most effective model to predict the status of HIV patients with drug regimen substitution is pruned J48 decision tree with a classification accuracy of 98.01%. This study extracts interesting attributes such as Ever taking Cotrim, Ever taking TbRx, CD4 count, Age, Weight, and Gender so as to predict the status of drug regimen substitution. The outcome of this study can be used as an assistant tool for the clinician to help them make more appropriate drug regimen substitution. Future research directions are forwarded to come up with an applicable system in the area of the study.

Keywords: HIV drug regimen, data mining, hybrid methodology, predictive model

Procedia PDF Downloads 142
3020 Artificial Intelligence Based Abnormality Detection System and Real Valuᵀᴹ Product Design

Authors: Junbeom Lee, Jaehyuck Cho, Wookyeong Jeong, Jonghan Won, Jungmin Hwang, Youngseok Song, Taikyeong Jeong

Abstract:

This paper investigates and analyzes meta-learning technologies that use multiple-cameras to monitor and check abnormal behavior in people in real-time in the area of healthcare fields. Advances in artificial intelligence and computer vision technologies have confirmed that cameras can be useful for individual health monitoring and abnormal behavior detection. Through this, it is possible to establish a system that can respond early by automatically detecting abnormal behavior of the elderly, such as patients and the elderly. In this paper, we use a technique called meta-learning to analyze image data collected from cameras and develop a commercial product to determine abnormal behavior. Meta-learning applies machine learning algorithms to help systems learn and adapt quickly to new real data. Through this, the accuracy and reliability of the abnormal behavior discrimination system can be improved. In addition, this study proposes a meta-learning-based abnormal behavior detection system that includes steps such as data collection and preprocessing, feature extraction and selection, and classification model development. Various healthcare scenarios and experiments analyze the performance of the proposed system and demonstrate excellence compared to other existing methods. Through this study, we present the possibility that camera-based meta-learning technology can be useful for monitoring and testing abnormal behavior in the healthcare area.

Keywords: artificial intelligence, abnormal behavior, early detection, health monitoring

Procedia PDF Downloads 87
3019 Late Roman-Byzantine Glass Bracelet Finds at Amorium and Comparison with Other Cultures

Authors: Atilla Tekin

Abstract:

Amorium was one of the biggest cities of Byzantine Empire, located under and around the modern village of Hisarköy, Emirdağ, Afyonkarahisar Province, Turkey. It was situated on the routes of trades and Byzantine military road from Constantinople to Cilicia. In addition, it was on the routes of trades and a center of bishopric. After Arab invasion, Amorium gradually lost importance. The research consists of 1372 pieces of glass bracelet finds from mostly at 1998- 2009 excavations. Most of them were found as glass bracelets fragments. The fragments are of various size, forms, colors, and decorations. During the research, they were measured and grouped according to their crossings, at first. After being photographed, they were sketched by Adobe Illustrator and decoupaged by Photoshop. All forms, colors, and decorations were specified and compared to each other. Thus, they have been tried to be dated and uncovered the place of manufacture. The importance of the research is presenting the perception of image and admiration and comparing with other cultures.

Keywords: Amorium, glass bracelets, image, Byzantine empire, jewelry

Procedia PDF Downloads 196
3018 CT Medical Images Denoising Based on New Wavelet Thresholding Compared with Curvelet and Contourlet

Authors: Amir Moslemi, Amir movafeghi, Shahab Moradi

Abstract:

One of the most important challenging factors in medical images is nominated as noise.Image denoising refers to the improvement of a digital medical image that has been infected by Additive White Gaussian Noise (AWGN). The digital medical image or video can be affected by different types of noises. They are impulse noise, Poisson noise and AWGN. Computed tomography (CT) images are subjected to low quality due to the noise. The quality of CT images is dependent on the absorbed dose to patients directly in such a way that increase in absorbed radiation, consequently absorbed dose to patients (ADP), enhances the CT images quality. In this manner, noise reduction techniques on the purpose of images quality enhancement exposing no excess radiation to patients is one the challenging problems for CT images processing. In this work, noise reduction in CT images was performed using two different directional 2 dimensional (2D) transformations; i.e., Curvelet and Contourlet and Discrete wavelet transform(DWT) thresholding methods of BayesShrink and AdaptShrink, compared to each other and we proposed a new threshold in wavelet domain for not only noise reduction but also edge retaining, consequently the proposed method retains the modified coefficients significantly that result in good visual quality. Data evaluations were accomplished by using two criterions; namely, peak signal to noise ratio (PSNR) and Structure similarity (Ssim).

Keywords: computed tomography (CT), noise reduction, curve-let, contour-let, signal to noise peak-peak ratio (PSNR), structure similarity (Ssim), absorbed dose to patient (ADP)

Procedia PDF Downloads 441
3017 Traffic Sign Recognition System Using Convolutional Neural NetworkDevineni

Authors: Devineni Vijay Bhaskar, Yendluri Raja

Abstract:

We recommend a model for traffic sign detection stranded on Convolutional Neural Networks (CNN). We first renovate the unique image into the gray scale image through with support vector machines, then use convolutional neural networks with fixed and learnable layers for revealing and understanding. The permanent layer can reduction the amount of attention areas to notice and crop the limits very close to the boundaries of traffic signs. The learnable coverings can rise the accuracy of detection significantly. Besides, we use bootstrap procedures to progress the accuracy and avoid overfitting problem. In the German Traffic Sign Detection Benchmark, we obtained modest results, with an area under the precision-recall curve (AUC) of 99.49% in the group “Risk”, and an AUC of 96.62% in the group “Obligatory”.

Keywords: convolutional neural network, support vector machine, detection, traffic signs, bootstrap procedures, precision-recall curve

Procedia PDF Downloads 122
3016 Objects Tracking in Catadioptric Images Using Spherical Snake

Authors: Khald Anisse, Amina Radgui, Mohammed Rziza

Abstract:

Tracking objects on video sequences is a very challenging task in many works in computer vision applications. However, there is no article that treats this topic in catadioptric vision. This paper is an attempt that tries to describe a new approach of omnidirectional images processing based on inverse stereographic projection in the half-sphere. We used the spherical model proposed by Gayer and al. For object tracking, our work is based on snake method, with optimization using the Greedy algorithm, by adapting its different operators. The algorithm will respect the deformed geometries of omnidirectional images such as spherical neighborhood, spherical gradient and reformulation of optimization algorithm on the spherical domain. This tracking method that we call "spherical snake" permitted to know the change of the shape and the size of object in different replacements in the spherical image.

Keywords: computer vision, spherical snake, omnidirectional image, object tracking, inverse stereographic projection

Procedia PDF Downloads 402
3015 An Ensemble Deep Learning Architecture for Imbalanced Classification of Thoracic Surgery Patients

Authors: Saba Ebrahimi, Saeed Ahmadian, Hedie Ashrafi

Abstract:

Selecting appropriate patients for surgery is one of the main issues in thoracic surgery (TS). Both short-term and long-term risks and benefits of surgery must be considered in the patient selection criteria. There are some limitations in the existing datasets of TS patients because of missing values of attributes and imbalanced distribution of survival classes. In this study, a novel ensemble architecture of deep learning networks is proposed based on stacking different linear and non-linear layers to deal with imbalance datasets. The categorical and numerical features are split using different layers with ability to shrink the unnecessary features. Then, after extracting the insight from the raw features, a novel biased-kernel layer is applied to reinforce the gradient of the minority class and cause the network to be trained better comparing the current methods. Finally, the performance and advantages of our proposed model over the existing models are examined for predicting patient survival after thoracic surgery using a real-life clinical data for lung cancer patients.

Keywords: deep learning, ensemble models, imbalanced classification, lung cancer, TS patient selection

Procedia PDF Downloads 145
3014 Imagology: The Study of Multicultural Imagery Reflected in the Heart of Elif Shafak’s 'The Bastard of Istanbul'

Authors: Mohammad Reza Haji Babai, Sepideh Ahmadkhan Beigi

Abstract:

Internationalization and modernization of the globe have played their roles in the process of cultural interaction between globalized societies and, consequently, found their way to the world of literature under the name of ‘imagology’. Imagology has made it possible for the reader to understand the author’s thoughts and judgments of others. The present research focuses on the intercultural images portrayed in the novel of a popular Turkish-French writer, Elif Shafak, about the lifestyle, traditions, habits, and social norms of Turkish, Americans, and Armenians. The novel seeks to articulate a more intricate multicultural memory of Turkishness by grieving over the Armenian massacre. This study finds that, as a mixture of multiple lifestyles and discourses, The Bastard of Istanbul reflects not only images of oriental culture but also occidental cultures. This means that the author has attempted to maintain selfhood through historical and cultural recollection, which resulted in constructing the self and another identity.

Keywords: imagology, Elif Shafak, The Bastard of Istanbul, self-image, other-image

Procedia PDF Downloads 141
3013 Deep Learning Based on Image Decomposition for Restoration of Intrinsic Representation

Authors: Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Kensuke Nakamura, Dongeun Choi, Byung-Woo Hong

Abstract:

Artefacts are commonly encountered in the imaging process of clinical computed tomography (CT) where the artefact refers to any systematic discrepancy between the reconstructed observation and the true attenuation coefficient of the object. It is known that CT images are inherently more prone to artefacts due to its image formation process where a large number of independent detectors are involved, and they are assumed to yield consistent measurements. There are a number of different artefact types including noise, beam hardening, scatter, pseudo-enhancement, motion, helical, ring, and metal artefacts, which cause serious difficulties in reading images. Thus, it is desired to remove nuisance factors from the degraded image leaving the fundamental intrinsic information that can provide better interpretation of the anatomical and pathological characteristics. However, it is considered as a difficult task due to the high dimensionality and variability of data to be recovered, which naturally motivates the use of machine learning techniques. We propose an image restoration algorithm based on the deep neural network framework where the denoising auto-encoders are stacked building multiple layers. The denoising auto-encoder is a variant of a classical auto-encoder that takes an input data and maps it to a hidden representation through a deterministic mapping using a non-linear activation function. The latent representation is then mapped back into a reconstruction the size of which is the same as the size of the input data. The reconstruction error can be measured by the traditional squared error assuming the residual follows a normal distribution. In addition to the designed loss function, an effective regularization scheme using residual-driven dropout determined based on the gradient at each layer. The optimal weights are computed by the classical stochastic gradient descent algorithm combined with the back-propagation algorithm. In our algorithm, we initially decompose an input image into its intrinsic representation and the nuisance factors including artefacts based on the classical Total Variation problem that can be efficiently optimized by the convex optimization algorithm such as primal-dual method. The intrinsic forms of the input images are provided to the deep denosing auto-encoders with their original forms in the training phase. In the testing phase, a given image is first decomposed into the intrinsic form and then provided to the trained network to obtain its reconstruction. We apply our algorithm to the restoration of the corrupted CT images by the artefacts. It is shown that our algorithm improves the readability and enhances the anatomical and pathological properties of the object. The quantitative evaluation is performed in terms of the PSNR, and the qualitative evaluation provides significant improvement in reading images despite degrading artefacts. The experimental results indicate the potential of our algorithm as a prior solution to the image interpretation tasks in a variety of medical imaging applications. This work was supported by the MISP(Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by the IITP(Institute for Information and Communications Technology Promotion).

Keywords: auto-encoder neural network, CT image artefact, deep learning, intrinsic image representation, noise reduction, total variation

Procedia PDF Downloads 190
3012 Characterization of Anisotropic Deformation in Sandstones Using Micro-Computed Tomography Technique

Authors: Seyed Mehdi Seyed Alizadeh, Christoph Arns, Shane Latham

Abstract:

Geomechanical characterization of rocks in detail and its possible implications on flow properties is an important aspect of reservoir characterization workflow. In order to gain more understanding of the microstructure evolution of reservoir rocks under stress a series of axisymmetric triaxial tests were performed on two different analogue rock samples. In-situ compression tests were coupled with high resolution micro-Computed Tomography to elucidate the changes in the pore/grain network of the rocks under pressurized conditions. Two outcrop sandstones were chosen in the current study representing a various cementation status of well-consolidated and weakly-consolidated granular system respectively. High resolution images were acquired while the rocks deformed in a purpose-built compression cell. A detailed analysis of the 3D images in each series of step-wise compression tests (up to the failure point) was conducted which includes the registration of the deformed specimen images with the reference pristine dry rock image. Digital Image Correlation (DIC) technique based on the intensity of the registered 3D subsets and particle tracking are utilized to map the displacement fields in each sample. The results suggest the complex architecture of the localized shear zone in well-cemented Bentheimer sandstone whereas for the weakly-consolidated Castlegate sandstone no discernible shear band could be observed even after macroscopic failure. Post-mortem imaging a sister plug from the friable rock upon undergoing continuous compression reveals signs of a shear band pattern. This suggests that for friable sandstones at small scales loading mode may affect the pattern of deformation. Prior to mechanical failure, the continuum digital image correlation approach can reasonably capture the kinematics of deformation. As failure occurs, however, discrete image correlation (i.e. particle tracking) reveals superiority in both tracking the grains as well as quantifying their kinematics (in terms of translations/rotations) with respect to any stage of compaction. An attempt was made to quantify the displacement field in compression using continuum Digital Image Correlation which is based on the reference and secondary image intensity correlation. Such approach has only been previously applied to unconsolidated granular systems under pressure. We are applying this technique to sandstones with various degrees of consolidation. Such element of novelty will set the results of this study apart from previous attempts to characterize the deformation pattern in consolidated sands.

Keywords: deformation mechanism, displacement field, shear behavior, triaxial compression, X-ray micro-CT

Procedia PDF Downloads 190
3011 Image Instance Segmentation Using Modified Mask R-CNN

Authors: Avatharam Ganivada, Krishna Shah

Abstract:

The Mask R-CNN is recently introduced by the team of Facebook AI Research (FAIR), which is mainly concerned with instance segmentation in images. Here, the Mask R-CNN is based on ResNet and feature pyramid network (FPN), where a single dropout method is employed. This paper provides a modified Mask R-CNN by adding multiple dropout methods into the Mask R-CNN. The proposed model has also utilized the concepts of Resnet and FPN to extract stage-wise network feature maps, wherein a top-down network path having lateral connections is used to obtain semantically strong features. The proposed model produces three outputs for each object in the image: class label, bounding box coordinates, and object mask. The performance of the proposed network is evaluated in the segmentation of every instance in images using COCO and cityscape datasets. The proposed model achieves better performance than the state-of-the-networks for the datasets.

Keywords: instance segmentation, object detection, convolutional neural networks, deep learning, computer vision

Procedia PDF Downloads 73
3010 Analysis of Big Data on Leisure Activities and Depression for the Disabled

Authors: Hee-Jung Seo, Yunjung Lee, Areum Han, Heeyoung Park, Se-Hyuk Park

Abstract:

The purpose of this study was to analyze the relationship between happiness and depression among people with disabilities and to analyze the social phenomenon of leisure activities among them to promote physical and leisure activities for people with disabilities. The research methods included analyzing differences in happiness according to depression classification. A total of 281 people with disabilities were analyzed using SPSS WIN Ver. 29.0. In addition, the SumTrend platform was used to analyze terms related to 'leisure activities for the disabled.' The findings can be summarized into two main points: First, there were significant differences in happiness according to depression classification. Second, there were 20 mentions before COVID-19, 34 mentions after COVID-19, and currently 43 mentions, with high positive rates observed in each period. Based on these results, the following conclusions were drawn: First, measures for people with disabilities include strengthening online resources and services, social distancing response policies, improving accessibility, and providing support and financial assistance. Second, measures for non-disabled individuals emphasize the need for education and information provision, promoting dialogue and interaction, ensuring accessibility, and promoting inclusive cultural awareness and attitude change.

Keywords: leisure activities, individuals with disabilities, COVID-19 pandemic, depression

Procedia PDF Downloads 48
3009 Proteomic Analysis of Excretory Secretory Antigen (ESA) from Entamoeba histolytica HM1: IMSS

Authors: N. Othman, J. Ujang, M. N. Ismail, R. Noordin, B. H. Lim

Abstract:

Amoebiasis is caused by the Entamoeba histolytica and still endemic in many parts of the tropical region, worldwide. Currently, there is no available vaccine against amoebiasis. Hence, there is an urgent need to develop a vaccine. The excretory secretory antigen (ESA) of E. histolytica is a suitable biomarker for the vaccine candidate since it can modulate the host immune response. Hence, the objective of this study is to identify the proteome of the ESA towards finding suitable biomarker for the vaccine candidate. The non-gel based and gel-based proteomics analyses were performed to identify proteins. Two kinds of mass spectrometry with different ionization systems were utilized i.e. LC-MS/MS (ESI) and MALDI-TOF/TOF. Then, the functional proteins classification analysis was performed using PANTHER software. Combination of the LC -MS/MS for the non-gel based and MALDI-TOF/TOF for the gel-based approaches identified a total of 273 proteins from the ESA. Both systems identified 29 similar proteins whereby 239 and 5 more proteins were identified by LC-MS/MS and MALDI-TOF/TOF, respectively. Functional classification analysis showed the majority of proteins involved in the metabolic process (24%), primary metabolic process (19%) and protein metabolic process (10%). Thus, this study has revealed the proteome the E. histolytica ESA and the identified proteins merit further investigations as a vaccine candidate.

Keywords: E. histolytica, ESA, proteomics, biomarker

Procedia PDF Downloads 344
3008 Immobilized Iron Oxide Nanoparticles for Stem Cell Reconstruction in Magnetic Particle Imaging

Authors: Kolja Them, Johannes Salamon, Harald Ittrich, Michael Kaul, Tobias Knopp

Abstract:

Superparamagnetic iron oxide nanoparticles (SPIONs) are nanoscale magnets which can be biologically functionalized for biomedical applications. Stem cell therapies to repair damaged tissue, magnetic fluid hyperthermia for cancer therapy and targeted drug delivery based on SPIONs are prominent examples where the visualization of a preferably low concentrated SPION distribution is essential. In 2005 a new method for tomographic SPION imaging has been introduced. The method named magnetic particle imaging (MPI) takes advantage of the nanoparticles magnetization change caused by an oscillating, external magnetic field and allows to directly image the time-dependent nanoparticle distribution. The SPION magnetization can be changed by the electron spin dynamics as well as by a mechanical rotation of the nanoparticle. In this work different calibration methods in MPI are investigated for image reconstruction of magnetically labeled stem cells. It is shown that a calibration using rotationally immobilized SPIONs provides a higher quality of stem cell images with fewer artifacts than a calibration using mobile SPIONs. The enhancement of the image quality and the reduction of artifacts enables the localization and identification of a smaller number of magnetically labeled stem cells. This is important for future medical applications where low concentrations of functionalized SPIONs interacting with biological matter have to be localized.

Keywords: biomedical imaging, iron oxide nanoparticles, magnetic particle imaging, stem cell imaging

Procedia PDF Downloads 464
3007 The Relationship among Perceived Risk, Product Knowledge, Brand Image and the Insurance Purchase Intention of Taiwanese Working Holiday Youths

Authors: Wan-Ling Chang, Hsiu-Ju Huang, Jui-Hsiu Chang

Abstract:

In 2004, the Ministry of Foreign Affairs Taiwan launched ‘An Arrangement on Working Holiday Scheme’ with 15 countries including New Zealand, Japan, Canada, Germany, South Korea, Britain, Australia and others. The aim of the scheme is to allow young people to work and study English or other foreign languages. Each year, there are 30,000 Taiwanese youths applied for participating in the working holiday schemes. However, frequent accidents could cause huge medical expenses and post-delivery fee, which are usually unaffordable for most families. Therefore, this study explored the relationship among perceived risk toward working holiday, insurance product knowledge, brand image and insurance purchase intention for Taiwanese youths who plan to apply for working holiday. A survey questionnaire was distributed for data collection. A total of 316 questionnaires were collected for data analyzed. Data were analyzed using descriptive statistics, independent samples T-test, one-way ANOVA, correlation analysis, regression analysis and hierarchical regression methods of analysis and hypothesis testing. The results of this research indicate that perceived risk has a negative influence on insurance purchase intention. On the opposite, product knowledge has brand image has a positive influence on the insurance purchase intention. According to the mentioned results, practical implications were further addressed for insurance companies when developing a future marketing plan.

Keywords: insurance product knowledges, insurance purchase intention, perceived risk, working holiday

Procedia PDF Downloads 250
3006 Using Machine-Learning Methods for Allergen Amino Acid Sequence's Permutations

Authors: Kuei-Ling Sun, Emily Chia-Yu Su

Abstract:

Allergy is a hypersensitive overreaction of the immune system to environmental stimuli, and a major health problem. These overreactions include rashes, sneezing, fever, food allergies, anaphylaxis, asthmatic, shock, or other abnormal conditions. Allergies can be caused by food, insect stings, pollen, animal wool, and other allergens. Their development of allergies is due to both genetic and environmental factors. Allergies involve immunoglobulin E antibodies, a part of the body’s immune system. Immunoglobulin E antibodies will bind to an allergen and then transfer to a receptor on mast cells or basophils triggering the release of inflammatory chemicals such as histamine. Based on the increasingly serious problem of environmental change, changes in lifestyle, air pollution problem, and other factors, in this study, we both collect allergens and non-allergens from several databases and use several machine learning methods for classification, including logistic regression (LR), stepwise regression, decision tree (DT) and neural networks (NN) to do the model comparison and determine the permutations of allergen amino acid’s sequence.

Keywords: allergy, classification, decision tree, logistic regression, machine learning

Procedia PDF Downloads 303
3005 Automatic Furrow Detection for Precision Agriculture

Authors: Manpreet Kaur, Cheol-Hong Min

Abstract:

The increasing advancement in the robotics equipped with machine vision sensors applied to precision agriculture is a demanding solution for various problems in the agricultural farms. An important issue related with the machine vision system concerns crop row and weed detection. This paper proposes an automatic furrow detection system based on real-time processing for identifying crop rows in maize fields in the presence of weed. This vision system is designed to be installed on the farming vehicles, that is, submitted to gyros, vibration and other undesired movements. The images are captured under image perspective, being affected by above undesired effects. The goal is to identify crop rows for vehicle navigation which includes weed removal, where weeds are identified as plants outside the crop rows. The images quality is affected by different lighting conditions and gaps along the crop rows due to lack of germination and wrong plantation. The proposed image processing method consists of four different processes. First, image segmentation based on HSV (Hue, Saturation, Value) decision tree. The proposed algorithm used HSV color space to discriminate crops, weeds and soil. The region of interest is defined by filtering each of the HSV channels between maximum and minimum threshold values. Then the noises in the images were eliminated by the means of hybrid median filter. Further, mathematical morphological processes, i.e., erosion to remove smaller objects followed by dilation to gradually enlarge the boundaries of regions of foreground pixels was applied. It enhances the image contrast. To accurately detect the position of crop rows, the region of interest is defined by creating a binary mask. The edge detection and Hough transform were applied to detect lines represented in polar coordinates and furrow directions as accumulations on the angle axis in the Hough space. The experimental results show that the method is effective.

Keywords: furrow detection, morphological, HSV, Hough transform

Procedia PDF Downloads 231