Search results for: location based data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 44727

Search results for: location based data

43197 Analysis and Forecasting of Bitcoin Price Using Exogenous Data

Authors: J-C. Leneveu, A. Chereau, L. Mansart, T. Mesbah, M. Wyka

Abstract:

Extracting and interpreting information from Big Data represent a stake for years to come in several sectors such as finance. Currently, numerous methods are used (such as Technical Analysis) to try to understand and to anticipate market behavior, with mixed results because it still seems impossible to exactly predict a financial trend. The increase of available data on Internet and their diversity represent a great opportunity for the financial world. Indeed, it is possible, along with these standard financial data, to focus on exogenous data to take into account more macroeconomic factors. Coupling the interpretation of these data with standard methods could allow obtaining more precise trend predictions. In this paper, in order to observe the influence of exogenous data price independent of other usual effects occurring in classical markets, behaviors of Bitcoin users are introduced in a model reconstituting Bitcoin value, which is elaborated and tested for prediction purposes.

Keywords: big data, bitcoin, data mining, social network, financial trends, exogenous data, global economy, behavioral finance

Procedia PDF Downloads 355
43196 Hard Disk Failure Predictions in Supercomputing System Based on CNN-LSTM and Oversampling Technique

Authors: Yingkun Huang, Li Guo, Zekang Lan, Kai Tian

Abstract:

Hard disk drives (HDD) failure of the exascale supercomputing system may lead to service interruption and invalidate previous calculations, and it will cause permanent data loss. Therefore, initiating corrective actions before hard drive failures materialize is critical to the continued operation of jobs. In this paper, a highly accurate analysis model based on CNN-LSTM and oversampling technique was proposed, which can correctly predict the necessity of a disk replacement even ten days in advance. Generally, the learning-based method performs poorly on a training dataset with long-tail distribution, especially fault prediction is a very classic situation as the scarcity of failure data. To overcome the puzzle, a new oversampling was employed to augment the data, and then, an improved CNN-LSTM with the shortcut was built to learn more effective features. The shortcut transmits the results of the previous layer of CNN and is used as the input of the LSTM model after weighted fusion with the output of the next layer. Finally, a detailed, empirical comparison of 6 prediction methods is presented and discussed on a public dataset for evaluation. The experiments indicate that the proposed method predicts disk failure with 0.91 Precision, 0.91 Recall, 0.91 F-measure, and 0.90 MCC for 10 days prediction horizon. Thus, the proposed algorithm is an efficient algorithm for predicting HDD failure in supercomputing.

Keywords: HDD replacement, failure, CNN-LSTM, oversampling, prediction

Procedia PDF Downloads 80
43195 Spectral Anomaly Detection and Clustering in Radiological Search

Authors: Thomas L. McCullough, John D. Hague, Marylesa M. Howard, Matthew K. Kiser, Michael A. Mazur, Lance K. McLean, Johanna L. Turk

Abstract:

Radiological search and mapping depends on the successful recognition of anomalies in large data sets which contain varied and dynamic backgrounds. We present a new algorithmic approach for real-time anomaly detection which is resistant to common detector imperfections, avoids the limitations of a source template library and provides immediate, and easily interpretable, user feedback. This algorithm is based on a continuous wavelet transform for variance reduction and evaluates the deviation between a foreground measurement and a local background expectation using methods from linear algebra. We also present a technique for recognizing and visualizing spectrally similar clusters of data. This technique uses Laplacian Eigenmap Manifold Learning to perform dimensional reduction which preserves the geometric "closeness" of the data while maintaining sensitivity to outlying data. We illustrate the utility of both techniques on real-world data sets.

Keywords: radiological search, radiological mapping, radioactivity, radiation protection

Procedia PDF Downloads 696
43194 Census and Mapping of Oil Palms Over Satellite Dataset Using Deep Learning Model

Authors: Gholba Niranjan Dilip, Anil Kumar

Abstract:

Conduct of accurate reliable mapping of oil palm plantations and census of individual palm trees is a huge challenge. This study addresses this challenge and developed an optimized solution implemented deep learning techniques on remote sensing data. The oil palm is a very important tropical crop. To improve its productivity and land management, it is imperative to have accurate census over large areas. Since, manual census is costly and prone to approximations, a methodology for automated census using panchromatic images from Cartosat-2, SkySat and World View-3 satellites is demonstrated. It is selected two different study sites in Indonesia. The customized set of training data and ground-truth data are created for this study from Cartosat-2 images. The pre-trained model of Single Shot MultiBox Detector (SSD) Lite MobileNet V2 Convolutional Neural Network (CNN) from the TensorFlow Object Detection API is subjected to transfer learning on this customized dataset. The SSD model is able to generate the bounding boxes for each oil palm and also do the counting of palms with good accuracy on the panchromatic images. The detection yielded an F-Score of 83.16 % on seven different images. The detections are buffered and dissolved to generate polygons demarcating the boundaries of the oil palm plantations. This provided the area under the plantations and also gave maps of their location, thereby completing the automated census, with a fairly high accuracy (≈100%). The trained CNN was found competent enough to detect oil palm crowns from images obtained from multiple satellite sensors and of varying temporal vintage. It helped to estimate the increase in oil palm plantations from 2014 to 2021 in the study area. The study proved that high-resolution panchromatic satellite image can successfully be used to undertake census of oil palm plantations using CNNs.

Keywords: object detection, oil palm tree census, panchromatic images, single shot multibox detector

Procedia PDF Downloads 160
43193 Role of Information and Communication Technology in Pharmaceutical Innovation: Case of Firms in Developing Countries

Authors: Ilham Benali, Nasser Hajji, Nawfel Acha

Abstract:

The pharmaceutical sector is ongoing different constraints related to the Research and Development (R&D) costs, the patents extinction, the demand pressing, the regulatory requirement and the generics development, which drive leading firms in the sector to undergo technological change and to shift to biotechnological paradigm. Based on a large literature review, we present a background of innovation trajectory in pharmaceutical industry and reasons behind this technological transformation. Then we investigate the role that Information and Communication Technology (ICT) is playing in this revolution. In order to situate pharmaceutical firms in developing countries in this trajectory, and to examine the degree of their involvement in the innovation process, we did not find any previous empirical work or sources generating gathered data that allow us to analyze this phenomenon. Therefore, and for the case of Morocco, we tried to do it from scratch by gathering relevant data of the last five years from different sources. As a result, only about 4% of all innovative drugs that have access to the local market in the mentioned period are made locally which substantiates that the industrial model in pharmaceutical sector in developing countries is based on the 'license model'. Finally, we present another alternative, based on ICT use and big data tools that can allow developing countries to shift from status of simple consumers to active actors in the innovation process.

Keywords: biotechnologies, developing countries, innovation, information and communication technology, pharmaceutical firms

Procedia PDF Downloads 151
43192 Knowledge Engineering Based Smart Healthcare Solution

Authors: Rhaed Khiati, Muhammad Hanif

Abstract:

In the past decade, smart healthcare systems have been on an ascendant drift, especially with the evolution of hospitals and their increasing reliance on bioinformatics and software specializing in healthcare. Doctors have become reliant on technology more than ever, something that in the past would have been looked down upon, as technology has become imperative in reducing overall costs and improving the quality of patient care. With patient-doctor interactions becoming more necessary and more complicated than ever, systems must be developed while taking into account costs, patient comfort, and patient data, among other things. In this work, we proposed a smart hospital bed, which mixes the complexity and big data usage of traditional healthcare systems with the comfort found in soft beds while taking certain concerns like data confidentiality, security, and maintaining SLA agreements, etc. into account. This research work potentially provides users, namely patients and doctors, with a seamless interaction with to their respective nurses, as well as faster access to up-to-date personal data, including prescriptions and severity of the condition in contrast to the previous research in the area where there is lack of consideration of such provisions.

Keywords: big data, smart healthcare, distributed systems, bioinformatics

Procedia PDF Downloads 198
43191 Development of Value Based Planning Methodology Incorporating Risk Assessment for Power Distribution Network

Authors: Asnawi Mohd Busrah, Au Mau Teng, Tan Chin Hooi, Lau Chee Chong

Abstract:

This paper describes value based planning (VBP) methodology incorporating risk assessment as an enhanced and more practical approach to evaluate distribution network projects in Peninsular Malaysia. Assessment indicators associated with economics, performance and risks are formulated to evaluate distribution projects to quantify their benefits against investment. The developed methodology is implemented in a web-based software customized to capture investment and network data, compute assessment indicators and rank the proposed projects according to their benefits. Value based planning approach addresses economic factors in the power distribution planning assessment, so as to minimize cost solution to the power utility while at the same time provide maximum benefits to customers.

Keywords: value based planning, distribution network, value of loss load (VoLL), energy not served (ENS)

Procedia PDF Downloads 480
43190 Relative Navigation with Laser-Based Intermittent Measurement for Formation Flying Satellites

Authors: Jongwoo Lee, Dae-Eun Kang, Sang-Young Park

Abstract:

This study presents a precise relative navigational method for satellites flying in formation using laser-based intermittent measurement data. The measurement data for the relative navigation between two satellites consist of a relative distance measured by a laser instrument and relative attitude angles measured by attitude determination. The relative navigation solutions are estimated by both the Extended Kalman filter (EKF) and unscented Kalman filter (UKF). The solutions estimated by the EKF may become inaccurate or even diverge as measurement outage time gets longer because the EKF utilizes a linearization approach. However, this study shows that the UKF with the appropriate scaling parameters provides a stable and accurate relative navigation solutions despite the long measurement outage time and large initial error as compared to the relative navigation solutions of the EKF. Various navigation results have been analyzed by adjusting the scaling parameters of the UKF.

Keywords: satellite relative navigation, laser-based measurement, intermittent measurement, unscented Kalman filter

Procedia PDF Downloads 357
43189 Vibration-Based Data-Driven Model for Road Health Monitoring

Authors: Guru Prakash, Revanth Dugalam

Abstract:

A road’s condition often deteriorates due to harsh loading such as overload due to trucks, and severe environmental conditions such as heavy rain, snow load, and cyclic loading. In absence of proper maintenance planning, this results in potholes, wide cracks, bumps, and increased roughness of roads. In this paper, a data-driven model will be developed to detect these damages using vibration and image signals. The key idea of the proposed methodology is that the road anomaly manifests in these signals, which can be detected by training a machine learning algorithm. The use of various machine learning techniques such as the support vector machine and Radom Forest method will be investigated. The proposed model will first be trained and tested with artificially simulated data, and the model architecture will be finalized by comparing the accuracies of various models. Once a model is fixed, the field study will be performed, and data will be collected. The field data will be used to validate the proposed model and to predict the future road’s health condition. The proposed will help to automate the road condition monitoring process, repair cost estimation, and maintenance planning process.

Keywords: SVM, data-driven, road health monitoring, pot-hole

Procedia PDF Downloads 86
43188 The Developing of Teaching Materials Online for Students in Thailand

Authors: Pitimanus Bunlue

Abstract:

The objectives of this study were to identify the unique characteristics of Salaya Old market, Phutthamonthon, Nakhon Pathom and develop the effective video media to promote the homeland awareness among local people and the characteristic features of this community were collectively summarized based on historical data, community observation, and people’s interview. The acquired data were used to develop a media describing prominent features of the community. The quality of the media was later assessed by interviewing local people in the old market in terms of content accuracy, video, and narration qualities, and sense of homeland awareness after watching the video. The result shows a 6-minute video media containing historical data and outstanding features of this community was developed. Based on the interview, the content accuracy was good. The picture quality and the narration were very good. Most people developed a sense of homeland awareness after watching the video also as well.

Keywords: audio-visual, creating homeland awareness, Phutthamonthon Nakhon Pathom, research and development

Procedia PDF Downloads 291
43187 Development of a Numerical Model to Predict Wear in Grouted Connections for Offshore Wind Turbine Generators

Authors: Paul Dallyn, Ashraf El-Hamalawi, Alessandro Palmeri, Bob Knight

Abstract:

In order to better understand the long term implications of the grout wear failure mode in large-diameter plain-sided grouted connections, a numerical model has been developed and calibrated that can take advantage of existing operational plant data to predict the wear accumulation for the actual load conditions experienced over a given period, thus limiting the need for expensive monitoring systems. This model has been derived and calibrated based on site structural condition monitoring (SCM) data and supervisory control and data acquisition systems (SCADA) data for two operational wind turbine generator substructures afflicted with this challenge, along with experimentally derived wear rates.

Keywords: grouted connection, numerical model, offshore structure, wear, wind energy

Procedia PDF Downloads 454
43186 Context Detection in Spreadsheets Based on Automatically Inferred Table Schema

Authors: Alexander Wachtel, Michael T. Franzen, Walter F. Tichy

Abstract:

Programming requires years of training. With natural language and end user development methods, programming could become available to everyone. It enables end users to program their own devices and extend the functionality of the existing system without any knowledge of programming languages. In this paper, we describe an Interactive Spreadsheet Processing Module (ISPM), a natural language interface to spreadsheets that allows users to address ranges within the spreadsheet based on inferred table schema. Using the ISPM, end users are able to search for values in the schema of the table and to address the data in spreadsheets implicitly. Furthermore, it enables them to select and sort the spreadsheet data by using natural language. ISPM uses a machine learning technique to automatically infer areas within a spreadsheet, including different kinds of headers and data ranges. Since ranges can be identified from natural language queries, the end users can query the data using natural language. During the evaluation 12 undergraduate students were asked to perform operations (sum, sort, group and select) using the system and also Excel without ISPM interface, and the time taken for task completion was compared across the two systems. Only for the selection task did users take less time in Excel (since they directly selected the cells using the mouse) than in ISPM, by using natural language for end user software engineering, to overcome the present bottleneck of professional developers.

Keywords: natural language processing, natural language interfaces, human computer interaction, end user development, dialog systems, data recognition, spreadsheet

Procedia PDF Downloads 311
43185 Agro-Climatic Analysis in the Northern Areas of Khyber Pakhtunkhwa, Pakistan

Authors: Zia Ullah, Ruh Ullah

Abstract:

A research study was conceded in four locations (Swat, Dir, Kakul and Balakot) of Khyber Pakhtunkhwa, to find agro-climatic classes by using aridity index, Growing Degree Days of wheat and maize, crop growth index and Spatio-temporal analysis of rainfall by using long term climatic data (1970-2010). The climatic data used for research was acquired from Pakistan Meteorological Department (PMD) Islamabad, Agriculture Research Institute, Weather Station Peshawar and Tarnab Peshawar. Agro-climatic classes of each location were determined using three criteria mean temperature of the coldest month, mean temperature of the warmest month and aridity index. The agro-climatic classes of Dir, Swat, Kakul and Balakot were classified as Humid, Cold and very Warm (H-K-VW). Average aridity index of wheat for Dir, Swat, Kakul, and Balakot was 2.23, 2.67, 1.94 and 2.34 and for Maize was 1.31, 1.26, 1.97, and 2.83 respectively. The overall and decade-wise trend of GDD of Wheat and Maize was declined in Swat and Kakul while increased in Dir and Balakot.The average maximum CGI (1.26) and (0.73) of Wheat and Maize was observed for Balakot and Dir, while the minimum (1.09) and (0.62) was observed for Swat and Kakul. Spatio-temporal analysis of rainfall shows that the trend has increased in Swat while decreased in Dir, Kakul and Balakot. From the relation between rainfalls with altitude showed that there was an increasing trend between rainfalls with altitude. The maximum average rainfall was in Swat (2703mm) on altitude 2000m while the minimum average rainfall was observed in Kakul (1410mm) on altitude of 1255m.

Keywords: agro-climatic zones, aridity index, GDD, rainfall

Procedia PDF Downloads 419
43184 Educase–Intelligent System for Pedagogical Advising Using Case-Based Reasoning

Authors: Elionai Moura, José A. Cunha, César Analide

Abstract:

This work introduces a proposal scheme for an Intelligent System applied to Pedagogical Advising using Case-Based Reasoning, to find consolidated solutions before used for the new problems, making easier the task of advising students to the pedagogical staff. We do intend, through this work, introduce the motivation behind the choices for this system structure, justifying the development of an incremental and smart web system who learns bests solutions for new cases when it’s used, showing technics and technology.

Keywords: case-based reasoning, pedagogical advising, educational data-mining (EDM), machine learning

Procedia PDF Downloads 421
43183 On the Combination of Patient-Generated Data with Data from a Secure Clinical Network Environment: A Practical Example

Authors: Jeroen S. de Bruin, Karin Schindler, Christian Schuh

Abstract:

With increasingly more mobile health applications appearing due to the popularity of smartphones, the possibility arises that these data can be used to improve the medical diagnostic process, as well as the overall quality of healthcare, while at the same time lowering costs. However, as of yet there have been no reports of a successful combination of patient-generated data from smartphones with data from clinical routine. In this paper, we describe how these two types of data can be combined in a secure way without modification to hospital information systems, and how they can together be used in a medical expert system for automatic nutritional classification and triage.

Keywords: mobile health, data integration, expert systems, disease-related malnutrition

Procedia PDF Downloads 477
43182 Sparse Coding Based Classification of Electrocardiography Signals Using Data-Driven Complete Dictionary Learning

Authors: Fuad Noman, Sh-Hussain Salleh, Chee-Ming Ting, Hadri Hussain, Syed Rasul

Abstract:

In this paper, a data-driven dictionary approach is proposed for the automatic detection and classification of cardiovascular abnormalities. Electrocardiography (ECG) signal is represented by the trained complete dictionaries that contain prototypes or atoms to avoid the limitations of pre-defined dictionaries. The data-driven trained dictionaries simply take the ECG signal as input rather than extracting features to study the set of parameters that yield the most descriptive dictionary. The approach inherently learns the complicated morphological changes in ECG waveform, which is then used to improve the classification. The classification performance was evaluated with ECG data under two different preprocessing environments. In the first category, QT-database is baseline drift corrected with notch filter and it filters the 60 Hz power line noise. In the second category, the data are further filtered using fast moving average smoother. The experimental results on QT database confirm that our proposed algorithm shows a classification accuracy of 92%.

Keywords: electrocardiogram, dictionary learning, sparse coding, classification

Procedia PDF Downloads 386
43181 The Prospects of Leveraging (Big) Data for Accelerating a Just Sustainable Transition around Different Contexts

Authors: Sombol Mokhles

Abstract:

This paper tries to show the prospects of utilising (big)data for enabling just the transition of diverse cities. Our key purpose is to offer a framework of applications and implications of utlising (big) data in comparing sustainability transitions across different cities. Relying on the cosmopolitan comparison, this paper explains the potential application of (big) data but also its limitations. The paper calls for adopting a data-driven and just perspective in including different cities around the world. Having a just and inclusive approach at the front and centre ensures a just transition with synergistic effects that leave nobody behind.

Keywords: big data, just sustainable transition, cosmopolitan city comparison, cities

Procedia PDF Downloads 99
43180 Strategic Workplace Security: The Role of Malware and the Threat of Internal Vulnerability

Authors: Modesta E. Ezema, Christopher C. Ezema, Christian C. Ugwu, Udoka F. Eze, Florence M. Babalola

Abstract:

Some employees knowingly or unknowingly contribute to loss of data and also expose data to threat in the process of getting their jobs done. Many organizations today are faced with the challenges of how to secure their data as cyber criminals constantly devise new ways of attacking the organization’s secret data. However, this paper enlists the latest strategies that must be put in place in order to protect these important data from being attacked in a collaborative work place. It also introduces us to Advanced Persistent Threats (APTs) and how it works. The empirical study was conducted to collect data from the employee in data centers on how data could be protected from malicious codes and cyber criminals and their responses are highly considered to help checkmate the activities of malicious code and cyber criminals in our work places.

Keywords: data, employee, malware, work place

Procedia PDF Downloads 383
43179 Part of Geomatics Technology in the Capability to Implement an on Demand Transport in Oran Wilaya (the Northwestern of Algeria)

Authors: N. Brahmia

Abstract:

The growing needs of displacements led advanced countries in this field install new specific transport systems, able to palliate any deficiencies, especially when regular public transport does not adequately meet the requests of users. In this context, on-demand transport systems (ODT) are very efficient; they rely on techniques based on the location of trip generators which should be assured effectively with the use of operators responsible of the advance reservation, planning and organization, and studying the different ODT criteria. As the advanced countries in the field of transport, some developing countries are involved in the adaptation of the new technologies to reduce the deficit in their communication system. This communication presents the study of an ODT implementation in the west of Algeria, by developing the Geomatics side of the study. This part requires the use of specific systems such as Geographic Information System (GIS), Road Database Management System (RDBMS)… so we developed the process through an application in an environment of mobility by using the computer tools dedicated to the management of the entities related to the transport field.

Keywords: geomatics, GIS, ODT, transport systems

Procedia PDF Downloads 600
43178 C-eXpress: A Web-Based Analysis Platform for Comparative Functional Genomics and Proteomics in Human Cancer Cell Line, NCI-60 as an Example

Authors: Chi-Ching Lee, Po-Jung Huang, Kuo-Yang Huang, Petrus Tang

Abstract:

Background: Recent advances in high-throughput research technologies such as new-generation sequencing and multi-dimensional liquid chromatography makes it possible to dissect the complete transcriptome and proteome in a single run for the first time. However, it is almost impossible for many laboratories to handle and analysis these “BIG” data without the support from a bioinformatics team. We aimed to provide a web-based analysis platform for users with only limited knowledge on bio-computing to study the functional genomics and proteomics. Method: We use NCI-60 as an example dataset to demonstrate the power of the web-based analysis platform and data delivering system: C-eXpress takes a simple text file that contain the standard NCBI gene or protein ID and expression levels (rpkm or fold) as input file to generate a distribution map of gene/protein expression levels in a heatmap diagram organized by color gradients. The diagram is hyper-linked to a dynamic html table that allows the users to filter the datasets based on various gene features. A dynamic summary chart is generated automatically after each filtering process. Results: We implemented an integrated database that contain pre-defined annotations such as gene/protein properties (ID, name, length, MW, pI); pathways based on KEGG and GO biological process; subcellular localization based on GO cellular component; functional classification based on GO molecular function, kinase, peptidase and transporter. Multiple ways of sorting of column and rows is also provided for comparative analysis and visualization of multiple samples.

Keywords: cancer, visualization, database, functional annotation

Procedia PDF Downloads 619
43177 Identifying the Factors Influencing the Success of the Centers for Distance Knowledge Sharing in Iran

Authors: Abdolreza Noroozi Chakoli

Abstract:

This study aims to examine the impact of five effective factors on the success of the managers of distance knowledge sharing centers in Iran. To conduct it, 3 centers, including the National Library and Archives of Iran (NLAI), Scientific Information Database Center (SID), and Islamic World Science Citation Center (ISC), were selected to study the effect of five factors 'infrastructure of information technology', 'experienced staff', 'specialized staff', 'employee public relations' and 'the geographical location of the establishment' on the success of the centers. ANOVA test, Scheffe test, and Pearson's correlation test were used to analyze the data. The findings confirmed the effect of all 5 factors on the success of these centers. However, their effects are not the same on each factor. The results show each of these factors is not only individually but also together affect the success of centers for distance knowledge sharing. Moreover, it was demonstrated that there is a correlation between these factors. The results of this study show what factors determine the success of the centers and their efficiency in distance knowledge sharing in Iran.

Keywords: distance knowledge sharing centers, Iran’s knowledge centers, knowledge sharing centers, staff success

Procedia PDF Downloads 145
43176 A Study on Sentiment Analysis Using Various ML/NLP Models on Historical Data of Indian Leaders

Authors: Sarthak Deshpande, Akshay Patil, Pradip Pandhare, Nikhil Wankhede, Rushali Deshmukh

Abstract:

Among the highly significant duties for any language most effective is the sentiment analysis, which is also a key area of NLP, that recently made impressive strides. There are several models and datasets available for those tasks in popular and commonly used languages like English, Russian, and Spanish. While sentiment analysis research is performed extensively, however it is lagging behind for the regional languages having few resources such as Hindi, Marathi. Marathi is one of the languages that included in the Indian Constitution’s 8th schedule and is the third most widely spoken language in the country and primarily spoken in the Deccan region, which encompasses Maharashtra and Goa. There isn’t sufficient study on sentiment analysis methods based on Marathi text due to lack of available resources, information. Therefore, this project proposes the use of different ML/NLP models for the analysis of Marathi data from the comments below YouTube content, tweets or Instagram posts. We aim to achieve a short and precise analysis and summary of the related data using our dataset (Dates, names, root words) and lexicons to locate exact information.

Keywords: multilingual sentiment analysis, Marathi, natural language processing, text summarization, lexicon-based approaches

Procedia PDF Downloads 74
43175 H∞ Sampled-Data Control for Linear Systems Time-Varying Delays: Application to Power System

Authors: Chang-Ho Lee, Seung-Hoon Lee, Myeong-Jin Park, Oh-Min Kwon

Abstract:

This paper investigates improved stability criteria for sampled-data control of linear systems with disturbances and time-varying delays. Based on Lyapunov-Krasovskii stability theory, delay-dependent conditions sufficient to ensure H∞ stability for the system are derived in the form of linear matrix inequalities(LMI). The effectiveness of the proposed method will be shown in numerical examples.

Keywords: sampled-data control system, Lyapunov-Krasovskii functional, time delay-dependent, LMI, H∞ control

Procedia PDF Downloads 320
43174 Unmanned Aerial Vehicle Landing Based on Ultra-Wideband Localization System and Optimal Strategy for Searching Optimal Landing Point

Authors: Meng Wu

Abstract:

Unmanned aerial vehicle (UAV) landing technology is a common task that is required to be fulfilled by fly robots. In this paper, the crazyflie2.0 is located by ultra-wideband (UWB) localization system that contains 4 UWB anchors. Another UWB anchor is introduced and installed on a stationary platform. One cost function is designed to find the minimum distance between crazyflie2.0 and the anchor installed on the stationary platform. The coordinates of the anchor are unknown in advance, and the goal of the cost function is to define the location of the anchor, which can be considered as an optimal landing point. When the cost function reaches the minimum value, the corresponding coordinates of the UWB anchor fixed on the stationary platform can be calculated and defined as the landing point. The simulation shows the effectiveness of the method in this paper.

Keywords: UAV landing, UWB localization system, UWB anchor, cost function, stationary platform

Procedia PDF Downloads 87
43173 Acceptance of Big Data Technologies and Its Influence towards Employee’s Perception on Job Performance

Authors: Jia Yi Yap, Angela S. H. Lee

Abstract:

With the use of big data technologies, organization can get result that they are interested in. Big data technologies simply load all the data that is useful for the organizations and provide organizations a better way of analysing data. The purpose of this research is to get employees’ opinion from films in Malaysia to explore the use of big data technologies in their organization in order to provide how it may affect the perception of the employees on job performance. Therefore, in order to identify will accepting big data technologies in the organization affect the perception of the employee, questionnaire will be distributed to different employee from different Small and medium-sized enterprises (SME) organization listed in Malaysia. The conceptual model proposed will test with other variables in order to see the relationship between variables.

Keywords: big data technologies, employee, job performance, questionnaire

Procedia PDF Downloads 298
43172 Adaptive Decision Feedback Equalizer Utilizing Fixed-Step Error Signal for Multi-Gbps Serial Links

Authors: Alaa Abdullah Altaee

Abstract:

This paper presents an adaptive decision feedback equalizer (ADFE) for multi-Gbps serial links utilizing a fix-step error signal extracted from cross-points of received data symbols. The extracted signal is generated based on violation of received data symbols with minimum detection requirements at the clock and data recovery (CDR) stage. The iterations of the adaptation process search for the optimum feedback tap coefficients to maximize the data eye-opening and minimize the adaptation convergence time. The effectiveness of the proposed architecture is validated using the simulation results of a serial link designed in an IBM 130 nm 1.2V CMOS technology. The data link with variable channel lengths is analyzed using Spectre from Cadence Design Systems with BSIM4 device models.

Keywords: adaptive DFE, CMOS equalizer, error detection, serial links, timing jitter, wire-line communication

Procedia PDF Downloads 120
43171 Perceived Barriers and Benefits of Technology-Based Progress Monitoring for Non-Academic Individual Education Program Goals

Authors: A. Drelick, T. Sondergeld, M. Decarlo-Tecce, K. McGinley

Abstract:

In 1975, a free, appropriate public education (FAPE) was granted for all students in the United States regardless of their disabilities. As a result, the special education landscape has been reshaped through new policies and legislation. Progress monitoring, a specific component of an Individual Education Program (IEP) calls, for the use of data collection to determine the appropriateness of services provided to students with disabilities. The recent US Supreme Court ruling in Endrew F. v. Douglas County warrants giving increased attention to student progress, specifically pertaining to improving functional, or non-academic, skills that are addressed outside the general education curriculum. While using technology to enhance data collection has become a common practice for measuring academic growth, its application for non-academic IEP goals is uncertain. A mixed-methods study examined current practices and rationales for implementing technology-based progress monitoring focused on non-academic IEP goals. Fifty-seven participants responded to an online survey regarding their progress monitoring programs for non-academic goals. After isolated analysis and interpretation of quantitative and qualitative results, data were synthesized to produce meta-inferences that drew broader conclusions on the topic. For the purpose of this paper, specific focus will be placed on the perceived barriers and benefits of implementing technology-based progress monitoring protocols for non-academic IEP goals. The findings of this study highlight facts impacting the use of technology-based progress monitoring. Perceived barriers to implementation include: (1) lack of training, (2) access to technology, (3) outdated or inoperable technology, (4) reluctance to change, (5) cost, (6) lack of individualization within technology-based programs, and (7) legal issues in special education; while perceived benefits include: (1) overall ease of use, (2) accessibility, (3) organization, (4) potential for improved presentation of data, (5) streamlining the progress-monitoring process, and (6) legal issues in special education. Based on these conclusions, recommendations are made to IEP teams, school districts, and software developers to improve the progress-monitoring process for functional skills.

Keywords: special education, progress monitoring, functional skills, technology

Procedia PDF Downloads 247
43170 A Numerical Description of a Fibre Reinforced Concrete Using a Genetic Algorithm

Authors: Henrik L. Funke, Lars Ulke-Winter, Sandra Gelbrich, Lothar Kroll

Abstract:

This work reports about an approach for an automatic adaptation of concrete formulations based on genetic algorithms (GA) to optimize a wide range of different fit-functions. In order to achieve the goal, a method was developed which provides a numerical description of a fibre reinforced concrete (FRC) mixture regarding the production technology and the property spectrum of the concrete. In a first step, the FRC mixture with seven fixed components was characterized by varying amounts of the components. For that purpose, ten concrete mixtures were prepared and tested. The testing procedure comprised flow spread, compressive and bending tensile strength. The analysis and approximation of the determined data was carried out by GAs. The aim was to obtain a closed mathematical expression which best describes the given seven-point cloud of FRC by applying a Gene Expression Programming with Free Coefficients (GEP-FC) strategy. The seven-parametric FRC-mixtures model which is generated according to this method correlated well with the measured data. The developed procedure can be used for concrete mixtures finding closed mathematical expressions, which are based on the measured data.

Keywords: concrete design, fibre reinforced concrete, genetic algorithms, GEP-FC

Procedia PDF Downloads 280
43169 Machine Learning Facing Behavioral Noise Problem in an Imbalanced Data Using One Side Behavioral Noise Reduction: Application to a Fraud Detection

Authors: Salma El Hajjami, Jamal Malki, Alain Bouju, Mohammed Berrada

Abstract:

With the expansion of machine learning and data mining in the context of Big Data analytics, the common problem that affects data is class imbalance. It refers to an imbalanced distribution of instances belonging to each class. This problem is present in many real world applications such as fraud detection, network intrusion detection, medical diagnostics, etc. In these cases, data instances labeled negatively are significantly more numerous than the instances labeled positively. When this difference is too large, the learning system may face difficulty when tackling this problem, since it is initially designed to work in relatively balanced class distribution scenarios. Another important problem, which usually accompanies these imbalanced data, is the overlapping instances between the two classes. It is commonly referred to as noise or overlapping data. In this article, we propose an approach called: One Side Behavioral Noise Reduction (OSBNR). This approach presents a way to deal with the problem of class imbalance in the presence of a high noise level. OSBNR is based on two steps. Firstly, a cluster analysis is applied to groups similar instances from the minority class into several behavior clusters. Secondly, we select and eliminate the instances of the majority class, considered as behavioral noise, which overlap with behavior clusters of the minority class. The results of experiments carried out on a representative public dataset confirm that the proposed approach is efficient for the treatment of class imbalances in the presence of noise.

Keywords: machine learning, imbalanced data, data mining, big data

Procedia PDF Downloads 130
43168 An Exponential Field Path Planning Method for Mobile Robots Integrated with Visual Perception

Authors: Magdy Roman, Mostafa Shoeib, Mostafa Rostom

Abstract:

Global vision, whether provided by overhead fixed cameras, on-board aerial vehicle cameras, or satellite images can always provide detailed information on the environment around mobile robots. In this paper, an intelligent vision-based method of path planning and obstacle avoidance for mobile robots is presented. The method integrates visual perception with a new proposed field-based path-planning method to overcome common path-planning problems such as local minima, unreachable destination and unnecessary lengthy paths around obstacles. The method proposes an exponential angle deviation field around each obstacle that affects the orientation of a close robot. As the robot directs toward, the goal point obstacles are classified into right and left groups, and a deviation angle is exponentially added or subtracted to the orientation of the robot. Exponential field parameters are chosen based on Lyapunov stability criterion to guarantee robot convergence to the destination. The proposed method uses obstacles' shape and location, extracted from global vision system, through a collision prediction mechanism to decide whether to activate or deactivate obstacles field. In addition, a search mechanism is developed in case of robot or goal point is trapped among obstacles to find suitable exit or entrance. The proposed algorithm is validated both in simulation and through experiments. The algorithm shows effectiveness in obstacles' avoidance and destination convergence, overcoming common path planning problems found in classical methods.

Keywords: path planning, collision avoidance, convergence, computer vision, mobile robots

Procedia PDF Downloads 195