Search results for: dense discrete phase model (DDPM)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20906

Search results for: dense discrete phase model (DDPM)

19376 Consumer Preferences when Buying Second Hand Luxury Items

Authors: K. A. Schuck, J. K. Perret, A. Mehn, K. Rommel

Abstract:

Consumers increasingly consider sustainability aspects in their consumption behavior. Although, few fashion brands are already active in the second-hand luxury market with their own online platforms. Separating between base and high-end luxury brands, two online discrete choice experiments determine the drivers behind consumers’ willingness-to-pay for platform characteristics like the type of ownership, giving brands the opportunity to elicit a financial scope they can operate within.

Keywords: choice experiment, luxury, preferences, second-hand, platform, online

Procedia PDF Downloads 127
19375 Consumer Utility Analysis of Halal Certification on Beef Using Discrete Choice Experiment: A Case Study in the Netherlands

Authors: Rosa Amalia Safitri, Ine van der Fels-Klerx, Henk Hogeveen

Abstract:

Halal is a dietary law observed by people following Islamic faith. It is considered as a type of credence food quality which cannot be easily assured by consumers even upon and after consumption. Therefore, Halal certification takes place as a practical tool for the consumers to make an informed choice particularly in a non-Muslim majority country, including the Netherlands. Discrete choice experiment (DCE) was employed in this study for its ability to assess the importance of attributes attached to Halal beef in the Dutch market and to investigate consumer utilities. Furthermore, willingness to pay (WTP) for the desired Halal certification was estimated. Four most relevant attributes were selected, i.e., the slaughter method, traceability information, place of purchase, and Halal certification. Price was incorporated as an attribute to allow estimation of willingness to pay for Halal certification. There were 242 Muslim respondents who regularly consumed Halal beef completed the survey, from Dutch (53%) and non-Dutch consumers living in the Netherlands (47%). The vast majority of the respondents (95%) were within the age of 18-45 years old, with the largest group being student (43%) followed by employee (30%) and housewife (12%). Majority of the respondents (76%) had disposable monthly income less than € 2,500, while the rest earned more than € 2,500. The respondents assessed themselves of having good knowledge of the studied attributes, except for traceability information with 62% of the respondents considered themselves not knowledgeable. The findings indicated that slaughter method was valued as the most important attribute, followed by Halal certificate, place of purchase, price, and traceability information. This order of importance varied across sociodemographic variables, except for the slaughter method. Both Dutch and non-Dutch subgroups valued Halal certification as the third most important attributes. However, non-Dutch respondents valued it with higher importance (0,20) than their Dutch counterparts (0,16). For non-Dutch, the price was more important than Halal certification. The ideal product preferred by the consumers indicated the product serving the highest utilities for consumers, and characterized by beef obtained without pre-slaughtering stunning, with traceability info, available at Halal store, certified by an official certifier, and sold at 2.75 € per 500 gr. In general, an official Halal certifier was mostly preferred. However, consumers were not willing to pay for premium for any type of Halal certifiers, indicated by negative WTP of -0.73 €, -0.93 €, and -1,03€ for small, official, and international certifiers, respectively. This finding indicated that consumers tend to lose their utility when confronted with price. WTP estimates differ across socio-demographic variables with male and non-Dutch respondents had the lowest WTP. The unfamiliarity to traceability information might cause respondents to perceive it as the least important attribute. In the context of Halal certified meat, adding traceability information into meat packaging can serve two functions, first consumers can justify for themselves whether the processes comply with Halal requirements, for example, the use of pre-slaughtering stunning, and secondly to assure its safety. Therefore, integrating traceability info into meat packaging can help to make informed decision for both Halal status and food safety.

Keywords: consumer utilities, discrete choice experiments, Halal certification, willingness to pay

Procedia PDF Downloads 128
19374 Chemical Modification of Biosorbent for Prconcentation of Cadmium in Water Sample

Authors: Homayon Ahmad Panahi, Niusha Mohseni Darabi, Elham Moniri

Abstract:

A new biosorbent is prepared by coupling a cibacron blue to yeast cells. The modified yeast cells with cibacron blue has been characterized by Fourier transform infrared spectroscopy (FT-IR) and elemental analysis and applied for the preconcentration and solid phase extraction of trace cadmium ion from water samples. The optimum pH value for sorption of the cadmium ions by yeast cells- cibacron blue was 5.5. The sorption capacity of modified biosorbent was 45 mg. g−1. A recovery of 98.2% was obtained for Cd(II) when eluted with 0.5 M nitric acid. The method was applied for Cd(II) preconcentration and determination in sea water sample.

Keywords: solid phase extraction, yeast cells, Nickl, isotherm study

Procedia PDF Downloads 264
19373 The Grand Unified Theory of Everything as a Generalization to the Standard Model Called as the General Standard Model

Authors: Amir Deljoo

Abstract:

The endeavor to comprehend the existence have been the center of thought for human in form of different disciplines and now basically in physics as the theory of everything. Here, after a brief review of the basic frameworks of thought, and a history of thought since ancient up to present, a logical methodology is presented based on a core axiom after which a function, a proto-field and then a coordinates are explained. Afterwards a generalization to Standard Model is proposed as General Standard Model which is believed to be the base of the Unified Theory of Everything.

Keywords: general relativity, grand unified theory, quantum mechanics, standard model, theory of everything

Procedia PDF Downloads 100
19372 Numerical Method for Productivity Prediction of Water-Producing Gas Well with Complex 3D Fractures: Case Study of Xujiahe Gas Well in Sichuan Basin

Authors: Hong Li, Haiyang Yu, Shiqing Cheng, Nai Cao, Zhiliang Shi

Abstract:

Unconventional resources have gradually become the main direction for oil and gas exploration and development. However, the productivity of gas wells, the level of water production, and the seepage law in tight fractured gas reservoirs are very different. These are the reasons why production prediction is so difficult. Firstly, a three-dimensional multi-scale fracture and multiphase mathematical model based on an embedded discrete fracture model (EDFM) is established. And the material balance method is used to calculate the water body multiple according to the production performance characteristics of water-producing gas well. This will help construct a 'virtual water body'. Based on these, this paper presents a numerical simulation process that can adapt to different production modes of gas wells. The research results show that fractures have a double-sided effect. The positive side is that it can increase the initial production capacity, but the negative side is that it can connect to the water body, which will lead to the gas production drop and the water production rise both rapidly, showing a 'scissor-like' characteristic. It is worth noting that fractures with different angles have different abilities to connect with the water body. The higher the angle of gas well development, the earlier the water maybe break through. When the reservoir is a single layer, there may be a stable production period without water before the fractures connect with the water body. Once connected, a 'scissors shape' will appear. If the reservoir has multiple layers, the gas and water will produce at the same time. The above gas-water relationship can be matched with the gas well production date of the Xujiahe gas reservoir in the Sichuan Basin. This method is used to predict the productivity of a well with hydraulic fractures in this gas reservoir, and the prediction results are in agreement with on-site production data by more than 90%. It shows that this research idea has great potential in the productivity prediction of water-producing gas wells. Early prediction results are of great significance to guide the design of development plans.

Keywords: EDFM, multiphase, multilayer, water body

Procedia PDF Downloads 193
19371 On-Chip Aging Sensor Circuit Based on Phase Locked Loop Circuit

Authors: Ararat Khachatryan, Davit Mirzoyan

Abstract:

In sub micrometer technology, the aging phenomenon starts to have a significant impact on the reliability of integrated circuits by bringing performance degradation. For that reason, it is important to have a capability to evaluate the aging effects accurately. This paper presents an accurate aging measurement approach based on phase-locked loop (PLL) and voltage-controlled oscillator (VCO) circuit. The architecture is rejecting the circuit self-aging effect from the characteristics of PLL, which is generating the frequency without any aging phenomena affects. The aging monitor is implemented in low power 32 nm CMOS technology, and occupies a pretty small area. Aging simulation results show that the proposed aging measurement circuit improves accuracy by about 2.8% at high temperature and 19.6% at high voltage.

Keywords: aging effect, HCI, NBTI, nanoscale

Procedia PDF Downloads 359
19370 Comparative Review of Models for Forecasting Permanent Deformation in Unbound Granular Materials

Authors: Shamsulhaq Amin

Abstract:

Unbound granular materials (UGMs) are pivotal in ensuring long-term quality, especially in the layers under the surface of flexible pavements and other constructions. This study seeks to better understand the behavior of the UGMs by looking at popular models for predicting lasting deformation under various levels of stresses and load cycles. These models focus on variables such as the number of load cycles, stress levels, and features specific to materials and were evaluated on the basis of their ability to accurately predict outcomes. The study showed that these factors play a crucial role in how well the models work. Therefore, the research highlights the need to look at a wide range of stress situations to more accurately predict how much the UGMs bend or shift. The research looked at important factors, like how permanent deformation relates to the number of times a load is applied, how quickly this phenomenon happens, and the shakedown effect, in two different types of UGMs: granite and limestone. A detailed study was done over 100,000 load cycles, which provided deep insights into how these materials behave. In this study, a number of factors, such as the level of stress applied, the number of load cycles, the density of the material, and the moisture present were seen as the main factors affecting permanent deformation. It is vital to fully understand these elements for better designing pavements that last long and handle wear and tear. A series of laboratory tests were performed to evaluate the mechanical properties of materials and acquire model parameters. The testing included gradation tests, CBR tests, and Repeated load triaxial tests. The repeated load triaxial tests were crucial for studying the significant components that affect deformation. This test involved applying various stress levels to estimate model parameters. In addition, certain model parameters were established by regression analysis, and optimization was conducted to improve outcomes. Afterward, the material parameters that were acquired were used to construct graphs for each model. The graphs were subsequently compared to the outcomes obtained from the repeated load triaxial testing. Additionally, the models were evaluated to determine if they demonstrated the two inherent deformation behaviors of materials when subjected to repetitive load: the initial phase, post-compaction, and the second phase volumetric changes. In this study, using log-log graphs was key to making the complex data easier to understand. This method made the analysis clearer and helped make the findings easier to interpret, adding both precision and depth to the research. This research provides important insight into picking the right models for predicting how these materials will act under expected stress and load conditions. Moreover, it offers crucial information regarding the effect of load cycle and permanent deformation as well as the shakedown effect on granite and limestone UGMs.

Keywords: permanent deformation, unbound granular materials, load cycles, stress level

Procedia PDF Downloads 39
19369 Storage Tank Overfill Protection in Compliance with Functional Safety Standard: IEC 61511

Authors: Hassan Alsada

Abstract:

Tank overfill accidents are major concerns for industries handling large volumes of hydrocarbons. Buncefield, Jaipur, Puerto Rico, and West Virginia are just a few accidents with catastrophic consequences. Thus, it is very important for any industry to take the right safety measures for overfill prevention. Moreover, one of the main causative factors in the overfill accidents was inadequate risk analysis and, subsequently, inadequate design. This study aims to provide a full assessment in accordance with the Functional safety standard: “IEC 615 11 – Safety instrumented systems for the process industry” to the tank overfill scenario according to the standard’s Safety Life Cycle (SLC), which includes: the analysis phase, the implementation phase, and the operation phase. The paper discusses in depth the tank overfills Independent Protection Layers (IPLs) with systematic analysis to avoid the safety risks of under-design and the financial risk of facility overdesign. The result shows a clear and systematic assessment in compliance with the standards that can help to assist existing tank overfilling setup or a guide to support designing new storage facilities overfill protection.

Keywords: IEC 61511, PHA, LOPA, process safety, safety, health, environment, safety instrumented systems, safety instrumented function, functional safety, safety life cycle

Procedia PDF Downloads 90
19368 Matrix Completion with Heterogeneous Cost

Authors: Ilqar Ramazanli

Abstract:

The matrix completion problem has been studied broadly under many underlying conditions. The problem has been explored under adaptive or non-adaptive, exact or estimation, single-phase or multi-phase, and many other categories. In most of these cases, the observation cost of each entry is uniform and has the same cost across the columns. However, in many real-life scenarios, we could expect elements from distinct columns or distinct positions to have a different cost. In this paper, we explore this generalization under adaptive conditions. We approach the problem under two different cost models. The first one is that entries from different columns have different observation costs, but within the same column, each entry has a uniform cost. The second one is any two entry has different observation cost, despite being the same or different columns. We provide complexity analysis of our algorithms and provide tightness guarantees.

Keywords: matroid optimization, matrix completion, linear algebra, algorithms

Procedia PDF Downloads 109
19367 Development of Long and Short Range Ordered Domains in a High Specific Strength Steel

Authors: Nikhil Kumar, Aparna Singh

Abstract:

Microstructural development when annealed at different temperatures in a high aluminum and manganese light weight steel has been examined. The FCC matrix of the manganese (Mn)-rich and nickel (Ni)-rich areas in the studied Fe-Mn-Al-Ni-C-light weight steel have been found to contain anti phase domains. In the Mn-rich region short order range of domains manifested by the diffuse scattering in the electron diffraction patterns was observed. Domains in the Ni-rich region were found to be arranged periodically validated through lattice imaging. The nature of these domains can be tuned with annealing temperature resulting in profound influence in the mechanical properties.

Keywords: Anti-phase domain boundaries, BCC, FCC, Light Weight Steel

Procedia PDF Downloads 141
19366 Definition of a Computing Independent Model and Rules for Transformation Focused on the Model-View-Controller Architecture

Authors: Vanessa Matias Leite, Jandira Guenka Palma, Flávio Henrique de Oliveira

Abstract:

This paper presents a model-oriented development approach to software development in the Model-View-Controller (MVC) architectural standard. This approach aims to expose a process of extractions of information from the models, in which through rules and syntax defined in this work, assists in the design of the initial model and its future conversions. The proposed paper presents a syntax based on the natural language, according to the rules agreed in the classic grammar of the Portuguese language, added to the rules of conversions generating models that follow the norms of the Object Management Group (OMG) and the Meta-Object Facility MOF.

Keywords: BNF Syntax, model driven architecture, model-view-controller, transformation, UML

Procedia PDF Downloads 395
19365 Extractive Bioconversion of Polyhydroxyalkanoates (PHAs) from Ralstonia Eutropha Via Aqueous Two-Phase System-An Integrated Approach

Authors: Y. K. Leong, J. C. W. Lan, H. S. Loh, P. L. Show

Abstract:

Being biodegradable, non-toxic, renewable and have similar or better properties as commercial plastics, polyhydroxy alkanoates (PHAs) can be a potential game changer in the polymer industry. PHAs are the biodegradable polymer produced by bacteria, which are in interest as a sustainable alternative to petrochemical-derived plastics; however, its commercial value has significantly limited by high production and recovery cost of PHA. Aqueous two-phase system (ATPS) offers different chemical and physical environments, which contains about 80-90% water delivers an excellent environment for partitioning of cells, cell organelles and biologically active substances. Extractive bioconversion via ATPS allows the integration of PHA upstream fermentation and downstream purification process, which reduces production steps and time, thus lead to cost reduction. The ability of Ralstonia eutropha to grow under different ATPS conditions was investigated for its potential to be used in a bioconversion system. Changes in tie-line length (TLL) and a volume ratio (Vr) were shown to have an effect on PHA partition coefficient. High PHA recovery yield of 65% with a relatively high purity of 73% was obtained in PEG 6000/Sodium sulphate system with 42.6 wt/wt % TLL and 1.25 Vr. Extractive bioconversion via ATPS is an attractive approach for the combination of PHA production and recovery process.

Keywords: aqueous two-phase system, extractive bioconversion, polyhydroxy alkanoates, purification

Procedia PDF Downloads 310
19364 Electrical Characteristics of SiON/GaAs MOS Capacitor with Various Passivations

Authors: Ming-Kwei Lee, Chih-Feng Yen

Abstract:

The electrical characteristics of liquid phase deposited silicon oxynitride film on ammonium sulfide treated p-type (100) gallium arsenide substrate were investigated. Hydrofluosilicic acid, ammonia and boric acid aqueous solutions were used as precursors. The electrical characteristics of silicon oxynitride film are much improved on gallium arsenide substrate with ammonium sulfide treatment. With post-metallization annealing, hydrogen ions can further passivate defects in SiON/GaAs film and interface. The leakage currents can reach 7.1 × 10-8 and 1.8 × 10-7 at ± 2 V. The dielectric constant and effective oxide charges are 5.6 and -5.3 × 1010 C/cm2, respectively. The hysteresis offset of hysteresis loop is merely 0.09 V.

Keywords: liquid phase deposition, SiON, GaAs, PMA, (NH4)2S

Procedia PDF Downloads 643
19363 Application of Deep Learning Algorithms in Agriculture: Early Detection of Crop Diseases

Authors: Manaranjan Pradhan, Shailaja Grover, U. Dinesh Kumar

Abstract:

Farming community in India, as well as other parts of the world, is one of the highly stressed communities due to reasons such as increasing input costs (cost of seeds, fertilizers, pesticide), droughts, reduced revenue leading to farmer suicides. Lack of integrated farm advisory system in India adds to the farmers problems. Farmers need right information during the early stages of crop’s lifecycle to prevent damage and loss in revenue. In this paper, we use deep learning techniques to develop an early warning system for detection of crop diseases using images taken by farmers using their smart phone. The research work leads to building a smart assistant using analytics and big data which could help the farmers with early diagnosis of the crop diseases and corrective actions. The classical approach for crop disease management has been to identify diseases at crop level. Recently, ImageNet Classification using the convolutional neural network (CNN) has been successfully used to identify diseases at individual plant level. Our model uses convolution filters, max pooling, dense layers and dropouts (to avoid overfitting). The models are built for binary classification (healthy or not healthy) and multi class classification (identifying which disease). Transfer learning is used to modify the weights of parameters learnt through ImageNet dataset and apply them on crop diseases, which reduces number of epochs to learn. One shot learning is used to learn from very few images, while data augmentation techniques are used to improve accuracy with images taken from farms by using techniques such as rotation, zoom, shift and blurred images. Models built using combination of these techniques are more robust for deploying in the real world. Our model is validated using tomato crop. In India, tomato is affected by 10 different diseases. Our model achieves an accuracy of more than 95% in correctly classifying the diseases. The main contribution of our research is to create a personal assistant for farmers for managing plant disease, although the model was validated using tomato crop, it can be easily extended to other crops. The advancement of technology in computing and availability of large data has made possible the success of deep learning applications in computer vision, natural language processing, image recognition, etc. With these robust models and huge smartphone penetration, feasibility of implementation of these models is high resulting in timely advise to the farmers and thus increasing the farmers' income and reducing the input costs.

Keywords: analytics in agriculture, CNN, crop disease detection, data augmentation, image recognition, one shot learning, transfer learning

Procedia PDF Downloads 120
19362 Worst-Case Load Shedding in Electric Power Networks

Authors: Fu Lin

Abstract:

We consider the worst-case load-shedding problem in electric power networks where a number of transmission lines are to be taken out of service. The objective is to identify a prespecified number of line outages that lead to the maximum interruption of power generation and load at the transmission level, subject to the active power-flow model, the load and generation capacity of the buses, and the phase-angle limit across the transmission lines. For this nonlinear model with binary constraints, we show that all decision variables are separable except for the nonlinear power-flow equations. We develop an iterative decomposition algorithm, which converts the worst-case load shedding problem into a sequence of small subproblems. We show that the subproblems are either convex problems that can be solved efficiently or nonconvex problems that have closed-form solutions. Consequently, our approach is scalable for large networks. Furthermore, we prove the convergence of our algorithm to a critical point, and the objective value is guaranteed to decrease throughout the iterations. Numerical experiments with IEEE test cases demonstrate the effectiveness of the developed approach.

Keywords: load shedding, power system, proximal alternating linearization method, vulnerability analysis

Procedia PDF Downloads 140
19361 1D Velocity Model for the Gobi-Altai Region from Local Earthquakes

Authors: Dolgormaa Munkhbaatar, Munkhsaikhan Adiya, Tseedulam Khuut

Abstract:

We performed an inversion method to determine the 1D-velocity model with station corrections of the Gobi-Altai area in the southern part of Mongolia using earthquake data collected in the National Data Center during the last 10 years. In this study, the concept of the new 1D model has been employed to minimize the average RMS of a set of well-located earthquakes, recorded at permanent (between 2006 and 2016) and temporary seismic stations (between 2014 and 2016), compute solutions for the coupled hypocenter and 1D velocity model. We selected 4800 events with RMS less than 0.5 seconds and with a maximum GAP of 170 degrees and determined velocity structures. Also, we relocated all possible events located in the Gobi-Altai area using the new 1D velocity model and achieved constrained hypocentral determinations for events within this area. We concluded that the estimated new 1D velocity model is a relatively low range compared to the previous velocity model in a significant improvement intend to, and the quality of the information basis for future research center locations to determine the earthquake epicenter area with this new transmission model.

Keywords: 1D velocity model, earthquake, relocation, Velest

Procedia PDF Downloads 167
19360 VISMA: A Method for System Analysis in Early Lifecycle Phases

Authors: Walter Sebron, Hans Tschürtz, Peter Krebs

Abstract:

The choice of applicable analysis methods in safety or systems engineering depends on the depth of knowledge about a system, and on the respective lifecycle phase. However, the analysis method chain still shows gaps as it should support system analysis during the lifecycle of a system from a rough concept in pre-project phase until end-of-life. This paper’s goal is to discuss an analysis method, the VISSE Shell Model Analysis (VISMA) method, which aims at closing the gap in the early system lifecycle phases, like the conceptual or pre-project phase, or the project start phase. It was originally developed to aid in the definition of the system boundary of electronic system parts, like e.g. a control unit for a pump motor. Furthermore, it can be also applied to non-electronic system parts. The VISMA method is a graphical sketch-like method that stratifies a system and its parts in inner and outer shells, like the layers of an onion. It analyses a system in a two-step approach, from the innermost to the outermost components followed by the reverse direction. To ensure a complete view of a system and its environment, the VISMA should be performed by (multifunctional) development teams. To introduce the method, a set of rules and guidelines has been defined in order to enable a proper shell build-up. In the first step, the innermost system, named system under consideration (SUC), is selected, which is the focus of the subsequent analysis. Then, its directly adjacent components, responsible for providing input to and receiving output from the SUC, are identified. These components are the content of the first shell around the SUC. Next, the input and output components to the components in the first shell are identified and form the second shell around the first one. Continuing this way, shell by shell is added with its respective parts until the border of the complete system (external border) is reached. Last, two external shells are added to complete the system view, the environment and the use case shell. This system view is also stored for future use. In the second step, the shells are examined in the reverse direction (outside to inside) in order to remove superfluous components or subsystems. Input chains to the SUC, as well as output chains from the SUC are described graphically via arrows, to highlight functional chains through the system. As a result, this method offers a clear and graphical description and overview of a system, its main parts and environment; however, the focus still remains on a specific SUC. It helps to identify the interfaces and interfacing components of the SUC, as well as important external interfaces of the overall system. It supports the identification of the first internal and external hazard causes and causal chains. Additionally, the method promotes a holistic picture and cross-functional understanding of a system, its contributing parts, internal relationships and possible dangers within a multidisciplinary development team.

Keywords: analysis methods, functional safety, hazard identification, system and safety engineering, system boundary definition, system safety

Procedia PDF Downloads 225
19359 Stabilizing a Failed Slope in Islamabad, Pakistan

Authors: Muhammad Umer Zubair, Kamran Akhtar, Muhammad Arsalan Khan

Abstract:

This paper is based on a research carried out on a failed slope in Defence Housing Authority (DHA) Phase I, Islamabad. The research included determination of Soil parameters, Site Surveying and Cost Estimation. Apart from these, the use of three dimensional (3D) slope stability analysis in conjunction with two dimensional (2D) analysis was used determination of slope conditions. In addition collection of soil reports, a detailed survey was carried out to create a 3D model in Surfer 8 software. 2D cross-sections that needed to be analyzed for stability were generated from 3D model. Slope stability softwares, Rocscience Slide 6.0 and Clara-W were employed for 2D and 3D Analyses respectively which have the ability to solve complex mathematical functions. Results of the analyses were used to confirm site conditions and the threats were identified to recommend suitable remedies.The most effective remedy was suggested for slope stability after analyzing all remedies in software Slide 6 and its feasibility was determined through cost benefit analysis. This paper should be helpful to Geotechnical engineers, design engineers and the organizations working with slope stability.

Keywords: slope stability, Rocscience, Clara W., 2d analysis, 3D analysis, sensitivity analysis

Procedia PDF Downloads 525
19358 Estimation of Population Mean under Random Non-Response in Two-Phase Successive Sampling

Authors: M. Khalid, G. N. Singh

Abstract:

In this paper, we have considered the problem of estimation for population mean, on current (second) occasion in the presence of random non response in two-occasion successive sampling under two phase set-up. Modified exponential type estimators have been proposed, and their properties are studied under the assumptions that numbers of sampling units follow a distribution due to random non response situations. The performances of the proposed estimators are compared with linear combinations of two estimators, (a) sample mean estimator for fresh sample and (b) ratio estimator for matched sample under the complete response situations. Results are demonstrated through empirical studies which present the effectiveness of the proposed estimators. Suitable recommendations have been made to the survey practitioners.

Keywords: successive sampling, random non-response, auxiliary variable, bias, mean square error

Procedia PDF Downloads 522
19357 Approximation Property Pass to Free Product

Authors: Kankeyanathan Kannan

Abstract:

On approximation properties of group C* algebras is everywhere; it is powerful, important, backbone of countless breakthroughs. For a discrete group G, let A(G) denote its Fourier algebra, and let M₀A(G) denote the space of completely bounded Fourier multipliers on G. An approximate identity on G is a sequence (Φn) of finitely supported functions such that (Φn) uniformly converge to constant function 1 In this paper we prove that approximation property pass to free product.

Keywords: approximation property, weakly amenable, strong invariant approximation property, invariant approximation property

Procedia PDF Downloads 675
19356 Cantilever Secant Pile Constructed in Sand: Numerical Comparative Study and Design Aids – Part II

Authors: Khaled R. Khater

Abstract:

All civil engineering projects include excavation work and therefore need some retaining structures. Cantilever secant pile walls are an economical supporting system up to 5.0-m depths. The parameters controlling wall tip displacement are the focus of this paper. So, two analysis techniques have been investigated and arbitrated. They are the conventional method and finite element analysis. Accordingly, two computer programs have been used, Excel sheet and Plaxis-2D. Two soil models have been used throughout this study. They are Mohr-Coulomb soil model and Isotropic Hardening soil models. During this study, two soil densities have been considered, i.e. loose and dense sand. Ten wall rigidities have been analyzed covering ranges of perfectly flexible to completely rigid walls. Three excavation depths, i.e. 3.0-m, 4.0-m and 5.0-m were tested to cover the practical range of secant piles. This work submits beneficial hints about secant piles to assist designers and specification committees. Also, finite element analysis, isotropic hardening, is recommended to be the fair judge when two designs conflict. A rational procedure using empirical equations has been suggested to upgrade the conventional method to predict wall tip displacement ‘δ’. Also, a reasonable limitation of ‘δ’ as a function of excavation depth, ‘h’ has been suggested. Also, it has been found that, after a certain penetration depth any further increase of it does not positively affect the wall tip displacement, i.e. over design and uneconomic.

Keywords: design aids, numerical analysis, secant pile, Wall tip displacement

Procedia PDF Downloads 189
19355 CO₂ Absorption Studies Using Amine Solvents with Fourier Transform Infrared Analysis

Authors: Avoseh Funmilola, Osman Khalid, Wayne Nelson, Paramespri Naidoo, Deresh Ramjugernath

Abstract:

The increasing global atmospheric temperature is of great concern and this has led to the development of technologies to reduce the emission of greenhouse gases into the atmosphere. Flue gas emissions from fossil fuel combustion are major sources of greenhouse gases. One of the ways to reduce the emission of CO₂ from flue gases is by post combustion capture process and this can be done by absorbing the gas into suitable chemical solvents before emitting the gas into the atmosphere. Alkanolamines are promising solvents for this capture process. Vapour liquid equilibrium of CO₂-alkanolamine systems is often represented by CO₂ loading and partial pressure of CO₂ without considering the liquid phase. The liquid phase of this system is a complex one comprising of 9 species. Online analysis of the process is important to monitor the concentrations of the liquid phase reacting and product species. Liquid phase analysis of CO₂-diethanolamine (DEA) solution was performed by attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. A robust Calibration was performed for the CO₂-aqueous DEA system prior to an online monitoring experiment. The partial least square regression method was used for the analysis of the calibration spectra obtained. The models obtained were used for prediction of DEA and CO₂ concentrations in the online monitoring experiment. The experiment was performed with a newly built recirculating experimental set up in the laboratory. The set up consist of a 750 ml equilibrium cell and ATR-FTIR liquid flow cell. Measurements were performed at 400°C. The results obtained indicated that the FTIR spectroscopy combined with Partial least square method is an effective tool for online monitoring of speciation.

Keywords: ATR-FTIR, CO₂ capture, online analysis, PLS regression

Procedia PDF Downloads 198
19354 Synthesis of Microencapsulated Phase Change Material for Adhesives with Thermoregulating Properties

Authors: Christin Koch, Andreas Winkel, Martin Kahlmeyer, Stefan Böhm

Abstract:

Due to environmental regulations on greenhouse gas emissions and the depletion of fossil fuels, there is an increasing interest in electric vehicles.To maximize their driving range, batteries with high storage capacities are needed. In most electric cars, rechargeable lithium-ion batteries are used because of their high energy density. However, it has to be taken into account that these batteries generate a large amount of heat during the charge and discharge processes. This leads to a decrease in a lifetime and damage to the battery cells when the temperature exceeds the defined operating range. To ensure an efficient performance of the battery cells, reliable thermal management is required. Currently, the cooling is achieved by heat sinks (e.g., cooling plates) bonded to the battery cells with a thermally conductive adhesive (TCA) that directs the heat away from the components. Especially when large amounts of heat have to be dissipated spontaneously due to peak loads, the principle of heat conduction is not sufficient, so attention must be paid to the mechanism of heat storage. An efficient method to store thermal energy is the use of phase change materials (PCM). Through an isothermal phase change, PCM can briefly absorb or release thermal energy at a constant temperature. If the phase change takes place in the transition from solid to liquid, heat is stored during melting and is released to the ambient during the freezing process upon cooling. The presented work displays the great potential of thermally conductive adhesives filled with microencapsulated PCM to limit peak temperatures in battery systems. The encapsulation of the PCM avoids the effects of aging (e.g., migration) and chemical reactions between the PCM and the adhesive matrix components. In this study, microencapsulation has been carried out by in situ polymerization. The microencapsulated PCM was characterized by FT-IR spectroscopy, and the thermal properties were measured by DSC and laser flash method. The mechanical properties, electrical and thermal conductivity, and adhesive toughness of the TCA/PCM composite were also investigated.

Keywords: phase change material, microencapsulation, adhesive bonding, thermal management

Procedia PDF Downloads 72
19353 Regularized Euler Equations for Incompressible Two-Phase Flow Simulations

Authors: Teng Li, Kamran Mohseni

Abstract:

This paper presents an inviscid regularization technique for the incompressible two-phase flow simulations. This technique is known as observable method due to the understanding of observability that any feature smaller than the actual resolution (physical or numerical), i.e., the size of wire in hotwire anemometry or the grid size in numerical simulations, is not able to be captured or observed. Differ from most regularization techniques that applies on the numerical discretization, the observable method is employed at PDE level during the derivation of equations. Difficulties in the simulation and analysis of realistic fluid flow often result from discontinuities (or near-discontinuities) in the calculated fluid properties or state. Accurately capturing these discontinuities is especially crucial when simulating flows involving shocks, turbulence or sharp interfaces. Over the past several years, the properties of this new regularization technique have been investigated that show the capability of simultaneously regularizing shocks and turbulence. The observable method has been performed on the direct numerical simulations of shocks and turbulence where the discontinuities are successfully regularized and flow features are well captured. In the current paper, the observable method will be extended to two-phase interfacial flows. Multiphase flows share the similar features with shocks and turbulence that is the nonlinear irregularity caused by the nonlinear terms in the governing equations, namely, Euler equations. In the direct numerical simulation of two-phase flows, the interfaces are usually treated as the smooth transition of the properties from one fluid phase to the other. However, in high Reynolds number or low viscosity flows, the nonlinear terms will generate smaller scales which will sharpen the interface, causing discontinuities. Many numerical methods for two-phase flows fail at high Reynolds number case while some others depend on the numerical diffusion from spatial discretization. The observable method regularizes this nonlinear mechanism by filtering the convective terms and this process is inviscid. The filtering effect is controlled by an observable scale which is usually about a grid length. Single rising bubble and Rayleigh-Taylor instability are studied, in particular, to examine the performance of the observable method. A pseudo-spectral method is used for spatial discretization which will not introduce numerical diffusion, and a Total Variation Diminishing (TVD) Runge Kutta method is applied for time integration. The observable incompressible Euler equations are solved for these two problems. In rising bubble problem, the terminal velocity and shape of the bubble are particularly examined and compared with experiments and other numerical results. In the Rayleigh-Taylor instability, the shape of the interface are studied for different observable scale and the spike and bubble velocities, as well as positions (under a proper observable scale), are compared with other simulation results. The results indicate that this regularization technique can potentially regularize the sharp interface in the two-phase flow simulations

Keywords: Euler equations, incompressible flow simulation, inviscid regularization technique, two-phase flow

Procedia PDF Downloads 502
19352 Development of a Human Skin Explant Model for Drug Metabolism and Toxicity Studies

Authors: K. K. Balavenkatraman, B. Bertschi, K. Bigot, A. Grevot, A. Doelemeyer, S. D. Chibout, A. Wolf, F. Pognan, N. Manevski, O. Kretz, P. Swart, K. Litherland, J. Ashton-Chess, B. Ling, R. Wettstein, D. J. Schaefer

Abstract:

Skin toxicity is poorly detected during preclinical studies, and drug-induced side effects in humans such as rashes, hyperplasia or more serious events like bullous pemphigus or toxic epidermal necrolysis represent an important hurdle for clinical development. In vitro keratinocyte-based epidermal skin models are suitable for the detection of chemical-induced irritancy, but do not recapitulate the biological complexity of full skin and fail to detect potential serious side-effects. Normal healthy skin explants may represent a valuable complementary tool, having the advantage of retaining the full skin architecture and the resident immune cell diversity. This study investigated several conditions for the maintenance of good morphological structure after several days of culture and the retention of phase II metabolism for 24 hours in skin explants in vitro. Human skin samples were collected with informed consent from patients undergoing plastic surgery and immediately transferred and processed in our laboratory by removing the underlying dermal fat. Punch biopsies of 4 mm diameter were cultured in an air-liquid interface using transwell filters. Different cultural conditions such as the effect of calcium, temperature and cultivation media were tested for a period of 14 days and explants were histologically examined after Hematoxylin and Eosin staining. Our results demonstrated that the use of Williams E Medium at 32°C maintained the physiological integrity of the skin for approximately one week. Upon prolonged incubation, the upper layers of the epidermis become thickened and some dead cells are present. Interestingly, these effects were prevented by addition of EGFR inhibitors such as Afatinib or Erlotinib. Phase II metabolism of the skin such as glucuronidation (4-methyl umbeliferone), sulfation (minoxidil), N-acetyltransferase (p-toluidene), catechol methylation (2,3-dehydroxy naphthalene), and glutathione conjugation (chlorodinitro benzene) were analyzed by using LCMS. Our results demonstrated that the human skin explants possess metabolic activity for a period of at least 24 hours for all the substrates tested. A time course for glucuronidation with 4-methyl umbeliferone was performed and a linear correlation was obtained over a period of 24 hours. Longer-term culture studies will indicate the possible evolution of such metabolic activities. In summary, these results demonstrate that human skin explants maintain a normal structure for several days in vitro and are metabolically active for at least the first 24 hours. Hence, with further characterisation, this model may be suitable for the study of drug-induced toxicity.

Keywords: human skin explant, phase II metabolism, epidermal growth factor receptor, toxicity

Procedia PDF Downloads 281
19351 An Elbow Biomechanical Model and Its Coefficients Adjustment

Authors: Jie Bai, Yongsheng Gao, Shengxin Wang, Jie Zhao

Abstract:

Through the establishment of the elbow biomechanical model, it can provide theoretical guide for rehabilitation therapy on the upper limb of the human body. A biomechanical model of the elbow joint can be built by the connection of muscle force model and elbow dynamics. But there are many undetermined coefficients in the model like the optimal joint angle and optimal muscle force which are usually specified as the experimental parameters of other workers. Because of the individual differences, there is a certain deviation of the final result. To this end, the RMS value of the deviation between the actual angle and calculated angle is considered. A set of coefficients which lead to the minimum RMS value will be chosen to be the optimal parameters. The direct search method and the conjugacy search method are used to get the optimal parameters, thus the model can be more accurate and mode adaptability.

Keywords: elbow biomechanical model, RMS, direct search, conjugacy search

Procedia PDF Downloads 549
19350 Effects of Pre-Task Activities on the Writing Performance of Second Language Learners

Authors: Wajiha Fatima

Abstract:

Based on Rod Ellis’s (2002) the methodology of task-based teaching, this study explored the effects of pre-task activities on the Job Application letter of 102 ESL students (who were female and undergraduate learners). For this purpose, students were divided among three groups (Group A, Group B, and Group C), kept in control and experimental settings as well. Pre-task phase motivates the learners to perform the actual task. Ellis reportedly discussed four pre-task phases: (1) performing a similar task; (2) providing a model; (3) non-task preparation activities and (4) strategic planning. They were taught through above given three pre-task activities. Accordingly, the learners in control setting were supposed to write without any teaching aid while learners in an experimental situation were provided three different pre-task activities in each group. In order to compare the scores of the pre-test and post-test of the three groups, sample paired t-test was utilized. The obtained results of the written job application by the female students revealed that pre-task activities improved their performance in writing. On the other hand, the comparison of the three pre-task activities revealed that 'providing a model' outperformed the other two activities. For this purpose, ANOVA was utilized.

Keywords: pre-task activities, second language learners, task based language teaching, writing

Procedia PDF Downloads 178
19349 Forecasting for Financial Stock Returns Using a Quantile Function Model

Authors: Yuzhi Cai

Abstract:

In this paper, we introduce a newly developed quantile function model that can be used for estimating conditional distributions of financial returns and for obtaining multi-step ahead out-of-sample predictive distributions of financial returns. Since we forecast the whole conditional distributions, any predictive quantity of interest about the future financial returns can be obtained simply as a by-product of the method. We also show an application of the model to the daily closing prices of Dow Jones Industrial Average (DJIA) series over the period from 2 January 2004 - 8 October 2010. We obtained the predictive distributions up to 15 days ahead for the DJIA returns, which were further compared with the actually observed returns and those predicted from an AR-GARCH model. The results show that the new model can capture the main features of financial returns and provide a better fitted model together with improved mean forecasts compared with conventional methods. We hope this talk will help audience to see that this new model has the potential to be very useful in practice.

Keywords: DJIA, financial returns, predictive distribution, quantile function model

Procedia PDF Downloads 367
19348 Phase Transition of Aqueous Ternary (THF + Polyvinylpyrrolidone + H2O) System as Revealed by Terahertz Time-Domain Spectroscopy

Authors: Hyery Kang, Dong-Yeun Koh, Yun-Ho Ahn, Huen Lee

Abstract:

Determination of the behavior of clathrate hydrate with inhibitor in the THz region will provide useful information about hydrate plug control in the upstream of the oil and gas industry. In this study, terahertz time-domain spectroscopy (THz-TDS) revealed the inhibition of the THF clathrate hydrate system with dosage of polyvinylpyrrolidone (PVP) with three different molecular weights. Distinct footprints of phase transition in the THz region (0.4–2.2 THz) were analyzed and absorption coefficients and real part of refractive indices are obtained in the temperature range of 253 K to 288 K. Along with the optical properties, ring breathing and stretching modes for different molecular weights of PVP in THF hydrate are analyzed by Raman spectroscopy.

Keywords: clathrate hydrate, terahertz spectroscopy, tetrahydrofuran, inhibitor

Procedia PDF Downloads 339
19347 Surveying Energy Dissipation in Stepped Spillway Using Finite Element Modeling

Authors: Mehdi Fuladipanah

Abstract:

Stepped spillway includes several steps from the crest to the toe. The steps of stepped spillway could cause to decrease the energy with making energy distribution in the longitude mode and also to reduce the outcome speed. The aim of this study was to stimulate the stepped spillway combined with stilling basin-step using Fluent model and the turbulent superficial flow using RNG, K-ε. The free surface of the flow was monitored by VOF model. The velocity and the depth of the flow were measured by tail water depth by the numerical model and then the dissipated energy was calculated along the spillway. The results indicated that the stilling basin-step complex may cause energy dissipation increment in the stepped spillway. Also, the numerical model was suggested as an effective method to predict the circular and complicated flows in the stepped spillways.

Keywords: stepped spillway, fluent model, VOF model, K-ε model, energy distribution

Procedia PDF Downloads 372