Search results for: Structural Equation Model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20494

Search results for: Structural Equation Model

18964 The Effect of Substrate Temperature on the Structural, Optical, and Electrical of Nano-Crystalline Tin Doped-Cadmium Telluride Thin Films for Photovoltaic Applications

Authors: Eman A. Alghamdi, A. M. Aldhafiri

Abstract:

It was found that the induce an isolated dopant close to the middle of the bandgap by occupying the Cd position in the CdTe lattice structure is an efficient factor in reducing the nonradiative recombination rate and increasing the solar efficiency. According to our laboratory results, this work has been carried out to obtain the effect of substrate temperature on the CdTe0.6Sn0.4 prepared by thermal evaporation technique for photovoltaic application. Various substrate temperature (25°C, 100°C, 150°C, 200°C, 250°C and 300°C) was applied. Sn-doped CdTe thin films on a glass substrate at a different substrate temperature were made using CdTe and SnTe powders by the thermal evaporation technique. The structural properties of the prepared samples were determined using Raman, x-Ray Diffraction. Spectroscopic ellipsometry and spectrophotometric measurements were conducted to extract the optical constants as a function of substrate temperature. The structural properties of the grown films show hexagonal and cubic mixed structures and phase change has been reported. Scanning electron microscopy (SEM) reviled that a homogenous with a bigger grain size was obtained at 250°C substrate temperature. The conductivity measurements were recorded as a function of substrate temperatures. The open-circuit voltage was improved by controlling the substrate temperature due to the improvement of the fundamental material issues such as recombination and low carrier concentration. All the result was explained and discussed on the biases of the influences of the Sn dopant and the substrate temperature on the structural, optical and photovoltaic characteristics.

Keywords: CdTe, conductivity, photovoltaic, ellipsometry

Procedia PDF Downloads 125
18963 Bayesian Parameter Inference for Continuous Time Markov Chains with Intractable Likelihood

Authors: Randa Alharbi, Vladislav Vyshemirsky

Abstract:

Systems biology is an important field in science which focuses on studying behaviour of biological systems. Modelling is required to produce detailed description of the elements of a biological system, their function, and their interactions. A well-designed model requires selecting a suitable mechanism which can capture the main features of the system, define the essential components of the system and represent an appropriate law that can define the interactions between its components. Complex biological systems exhibit stochastic behaviour. Thus, using probabilistic models are suitable to describe and analyse biological systems. Continuous-Time Markov Chain (CTMC) is one of the probabilistic models that describe the system as a set of discrete states with continuous time transitions between them. The system is then characterised by a set of probability distributions that describe the transition from one state to another at a given time. The evolution of these probabilities through time can be obtained by chemical master equation which is analytically intractable but it can be simulated. Uncertain parameters of such a model can be inferred using methods of Bayesian inference. Yet, inference in such a complex system is challenging as it requires the evaluation of the likelihood which is intractable in most cases. There are different statistical methods that allow simulating from the model despite intractability of the likelihood. Approximate Bayesian computation is a common approach for tackling inference which relies on simulation of the model to approximate the intractable likelihood. Particle Markov chain Monte Carlo (PMCMC) is another approach which is based on using sequential Monte Carlo to estimate intractable likelihood. However, both methods are computationally expensive. In this paper we discuss the efficiency and possible practical issues for each method, taking into account the computational time for these methods. We demonstrate likelihood-free inference by performing analysing a model of the Repressilator using both methods. Detailed investigation is performed to quantify the difference between these methods in terms of efficiency and computational cost.

Keywords: Approximate Bayesian computation(ABC), Continuous-Time Markov Chains, Sequential Monte Carlo, Particle Markov chain Monte Carlo (PMCMC)

Procedia PDF Downloads 198
18962 Metabolic Predictive Model for PMV Control Based on Deep Learning

Authors: Eunji Choi, Borang Park, Youngjae Choi, Jinwoo Moon

Abstract:

In this study, a predictive model for estimating the metabolism (MET) of human body was developed for the optimal control of indoor thermal environment. Human body images for indoor activities and human body joint coordinated values were collected as data sets, which are used in predictive model. A deep learning algorithm was used in an initial model, and its number of hidden layers and hidden neurons were optimized. Lastly, the model prediction performance was analyzed after the model being trained through collected data. In conclusion, the possibility of MET prediction was confirmed, and the direction of the future study was proposed as developing various data and the predictive model.

Keywords: deep learning, indoor quality, metabolism, predictive model

Procedia PDF Downloads 251
18961 A Study on Improvement of the Electromagnetic Vibration of a Polygon Mirror Scanner Motor

Authors: Yongmin You

Abstract:

Electric machines for office automation device such as printer and scanner have been required the low noise and vibration performance. Many researches about the low noise and vibration of polygon mirror scanner motor have been also progressed. The noise and vibration of polygon mirror scanner motor can be classified by aerodynamic, structural and electromagnetic. Electromagnetic noise and vibration can be occurred by high cogging torque and nonsinusoidal back EMF. To improve the cogging torque and back EMF characteristic, we apply unequal air-gap. To analyze characteristic of a polygon mirror scanner motor, two dimensional finite element method is used. To minimize the cogging torque of a polygon mirror motor, Kriging based on latin hypercube sampling (LHS) is utilized. Compared to the initial model, the torque ripple of the optimized unequal air-gap model was reduced by 23.4 % while maintaining the back EMF and average torque. To verify the optimal design results, the experiment was performed. We measured the vibration in motors at 23,600 rpm which is the rated velocity. The radial and axial gravitational acceleration of the optimal model were declined more than seven times and three times, respectively. From these results, a shape optimized unequal polygon mirror scanner motor has shown the usefulness of an improvement in the torque ripple and electromagnetic vibration characteristic.

Keywords: polygon mirror scanner motor, optimal design, finite element method, vibration

Procedia PDF Downloads 337
18960 Evaluation of Flange Bending Capacity near Member End Using a Finite Element Analysis Approach

Authors: Alicia Kamischke, Souhail Elhouar, Yasser Khodair

Abstract:

The American Institute of Steel Construction (AISC) Specification (360-10) provides equations for calculating the capacity of a W-shaped steel member to resist concentrated forces applied to its flange. In the case of flange local bending, the capacity equations were primarily formulated for an interior point along the member, which is defined to be at a distance larger than ten flange thicknesses away from the member’s end. When a concentrated load is applied within ten flange thicknesses from the member’s end, AISC requires a fifty percent reduction to be applied to the flange bending capacity. This reduction, however, is not supported by any research. In this study, finite element modeling is used to investigate the actual reduction in capacity near the end of such a steel member. The results indicate that the AISC equation for flange local bending is quite conservative for forces applied at less than ten flange thicknesses from the member’s end and a new equation is suggested for the evaluation of available flange local bending capacity within that distance.

Keywords: flange local bending, concentrated forces, column, flange capacity

Procedia PDF Downloads 680
18959 Dynamics of Marital Status and Information Search through Consumer Generated Media: An Exploratory Study

Authors: Shivkumar Krishnamurti, Ruchi Agarwal

Abstract:

The study examines the influence of marital status on consumers of products and services using blogs as a source of information. A pre-designed questionnaire was used to collect the primary data from the respondents (experiences). Data were collected from one hundred and eighty seven respondents residing in and around the Emirates of Sharjah and Dubai of the United Arab Emirates. The collected data was analyzed with the help of statistical tools such as averages, percentages, factor analysis, student’s t-test and structural equation modeling technique. Objectives of the study are to know the reasons how married and unmarried or single consumers of products and services are motivated to use blogs as a source of information, to know whether the consumers of products and services irrespective of their marital status share their views and experiences with other bloggers and to know the respondents’ future intentions towards blogging. The study revealed the following: Majority of the respondents have the motivation to blog because they are willing to receive comments on what they post about services, convenience of blogs to search for information about services and products, by blogging respondents share information on the symptoms of a disease/ disorder that may be experienced by someone, helps to share information about ready to cook mix products and are keen to spend more time blogging in the future.

Keywords: blog, consumer, information, marital status

Procedia PDF Downloads 382
18958 Statistical Assessment of Models for Determination of Soil–Water Characteristic Curves of Sand Soils

Authors: S. J. Matlan, M. Mukhlisin, M. R. Taha

Abstract:

Characterization of the engineering behavior of unsaturated soil is dependent on the soil-water characteristic curve (SWCC), a graphical representation of the relationship between water content or degree of saturation and soil suction. A reasonable description of the SWCC is thus important for the accurate prediction of unsaturated soil parameters. The measurement procedures for determining the SWCC, however, are difficult, expensive, and time-consuming. During the past few decades, researchers have laid a major focus on developing empirical equations for predicting the SWCC, with a large number of empirical models suggested. One of the most crucial questions is how precisely existing equations can represent the SWCC. As different models have different ranges of capability, it is essential to evaluate the precision of the SWCC models used for each particular soil type for better SWCC estimation. It is expected that better estimation of SWCC would be achieved via a thorough statistical analysis of its distribution within a particular soil class. With this in view, a statistical analysis was conducted in order to evaluate the reliability of the SWCC prediction models against laboratory measurement. Optimization techniques were used to obtain the best-fit of the model parameters in four forms of SWCC equation, using laboratory data for relatively coarse-textured (i.e., sandy) soil. The four most prominent SWCCs were evaluated and computed for each sample. The result shows that the Brooks and Corey model is the most consistent in describing the SWCC for sand soil type. The Brooks and Corey model prediction also exhibit compatibility with samples ranging from low to high soil water content in which subjected to the samples that evaluated in this study.

Keywords: soil-water characteristic curve (SWCC), statistical analysis, unsaturated soil, geotechnical engineering

Procedia PDF Downloads 332
18957 Model Averaging in a Multiplicative Heteroscedastic Model

Authors: Alan Wan

Abstract:

In recent years, the body of literature on frequentist model averaging in statistics has grown significantly. Most of this work focuses on models with different mean structures but leaves out the variance consideration. In this paper, we consider a regression model with multiplicative heteroscedasticity and develop a model averaging method that combines maximum likelihood estimators of unknown parameters in both the mean and variance functions of the model. Our weight choice criterion is based on a minimisation of a plug-in estimator of the model average estimator's squared prediction risk. We prove that the new estimator possesses an asymptotic optimality property. Our investigation of finite-sample performance by simulations demonstrates that the new estimator frequently exhibits very favourable properties compared to some existing heteroscedasticity-robust model average estimators. The model averaging method hedges against the selection of very bad models and serves as a remedy to variance function misspecification, which often discourages practitioners from modeling heteroscedasticity altogether. The proposed model average estimator is applied to the analysis of two real data sets.

Keywords: heteroscedasticity-robust, model averaging, multiplicative heteroscedasticity, plug-in, squared prediction risk

Procedia PDF Downloads 374
18956 Structural, Optical and Electrical Properties of MnxZnO1-X Nanocrystals Synthesized by Sol-Gel Method

Authors: K. C. Gayithri, S. K. Naveen Kumar

Abstract:

ZnO is one of the most important semiconductor materials, non toxic, biocompatible, antibacterial properties for research and it is used in many biomedical applications. MnxZn1-xO nano thin films were prepared by a spin coating sol-gel method on silicon substrate. The structural, optical, electrical properties of Mn Doped ZnO are studied by using X-rd, FESEM, UV-Visible spectrophotometer. The X-rd reveals that the sample shows hexagonal wurtzits structure. Surface morphology and thickness of the sample are characterized by field emission scanning electron microscopy. Absorption and transmission spectra are studied by UV-Visible spectrophotometer. The electrical properties are measured by TCR meter.

Keywords: transition metals, Mn doped ZnO, Sol-gel, x-ray diffraction

Procedia PDF Downloads 390
18955 Reliability Prediction of Tires Using Linear Mixed-Effects Model

Authors: Myung Hwan Na, Ho- Chun Song, EunHee Hong

Abstract:

We widely use normal linear mixed-effects model to analysis data in repeated measurement. In case of detecting heteroscedasticity and the non-normality of the population distribution at the same time, normal linear mixed-effects model can give improper result of analysis. To achieve more robust estimation, we use heavy tailed linear mixed-effects model which gives more exact and reliable analysis conclusion than standard normal linear mixed-effects model.

Keywords: reliability, tires, field data, linear mixed-effects model

Procedia PDF Downloads 561
18954 Adding Business Value in Enterprise Applications through Quality Matrices Using Agile

Authors: Afshan Saad, Muhammad Saad, Shah Muhammad Emaduddin

Abstract:

Nowadays the business condition is so quick paced that enhancing ourselves consistently has turned into a huge factor for the presence of an undertaking. We can check this for structural building and significantly more so in the quick-paced universe of data innovation and programming designing. The lithe philosophies, similar to Scrum, have a devoted advance in the process that objectives the enhancement of the improvement procedure and programming items. Pivotal to process enhancement is to pick up data that grants you to assess the condition of the procedure and its items. From the status data, you can design activities for the upgrade and furthermore assess the accomplishment of those activities. This investigation builds a model that measures the product nature of the improvement procedure. The product quality is dependent on the useful and auxiliary nature of the product items, besides the nature of the advancement procedure is likewise vital to enhance programming quality. Utilitarian quality covers the adherence to client prerequisites, while the auxiliary quality tends to the structure of the product item's source code with reference to its practicality. The procedure quality is identified with the consistency and expectedness of the improvement procedure. The product quality model is connected in a business setting by social occasion the information for the product measurements in the model. To assess the product quality model, we investigate the information and present it to the general population engaged with the light-footed programming improvement process. The outcomes from the application and the client input recommend that the model empowers a reasonable evaluation of the product quality and that it very well may be utilized to help the persistent enhancement of the advancement procedure and programming items.

Keywords: Agile SDLC Tools, Agile Software development, business value, enterprise applications, IBM, IBM Rational Team Concert, RTC, software quality, software metrics

Procedia PDF Downloads 167
18953 Computational Analysis of Thermal Degradation in Wind Turbine Spars' Equipotential Bonding Subjected to Lightning Strikes

Authors: Antonio A. M. Laudani, Igor O. Golosnoy, Ole T. Thomsen

Abstract:

Rotor blades of large, modern wind turbines are highly susceptible to downward lightning strikes, as well as to triggering upward lightning; consequently, it is necessary to equip them with an effective lightning protection system (LPS) in order to avoid any damage. The performance of existing LPSs is affected by carbon fibre reinforced polymer (CFRP) structures, which lead to lightning-induced damage in the blades, e.g. via electrical sparks. A solution to prevent internal arcing would be to electrically bond the LPS and the composite structures such that to obtain the same electric potential. Nevertheless, elevated temperatures are achieved at the joint interfaces because of high contact resistance, which melts and vaporises some of the epoxy resin matrix around the bonding. The produced high-pressure gasses open up the bonding and can ignite thermal sparks. The objective of this paper is to predict the current density distribution and the temperature field in the adhesive joint cross-section, in order to check whether the resin pyrolysis temperature is achieved and any damage is expected. The finite element method has been employed to solve both the current and heat transfer problems, which are considered weakly coupled. The mathematical model for electric current includes Maxwell-Ampere equation for induced electric field solved together with current conservation, while the thermal field is found from heat diffusion equation. In this way, the current sub-model calculates Joule heat release for a chosen bonding configuration, whereas the thermal analysis allows to determining threshold values of voltage and current density not to be exceeded in order to maintain the temperature across the joint below the pyrolysis temperature, therefore preventing the occurrence of outgassing. In addition, it provides an indication of the minimal number of bonding points. It is worth to mention that the numerical procedures presented in this study can be tailored and applied to any type of joints other than adhesive ones for wind turbine blades. For instance, they can be applied for lightning protection of aerospace bolted joints. Furthermore, they can even be customized to predict the electromagnetic response under lightning strikes of other wind turbine systems, such as nacelle and hub components.

Keywords: carbon fibre reinforced polymer, equipotential bonding, finite element method, FEM, lightning protection system, LPS, wind turbine blades

Procedia PDF Downloads 160
18952 A Modular and Reusable Bond Graph Model of Epithelial Transport in the Proximal Convoluted Tubule

Authors: Leyla Noroozbabaee, David Nickerson

Abstract:

We introduce a modular, consistent, reusable bond graph model of the renal nephron’s proximal convoluted tubule (PCT), which can reproduce biological behaviour. In this work, we focus on ion and volume transport in the proximal convoluted tubule of the renal nephron. Modelling complex systems requires complex modelling problems to be broken down into manageable pieces. This can be enabled by developing models of subsystems that are subsequently coupled hierarchically. Because they are based on a graph structure. In the current work, we define two modular subsystems: the resistive module representing the membrane and the capacitive module representing solution compartments. Each module is analyzed based on thermodynamic processes, and all the subsystems are reintegrated into circuit theory in network thermodynamics. The epithelial transport system we introduce in the current study consists of five transport membranes and four solution compartments. Coupled dissipations in the system occur in the membrane subsystems and coupled free-energy increasing, or decreasing processes appear in solution compartment subsystems. These structural subsystems also consist of elementary thermodynamic processes: dissipations, free-energy change, and power conversions. We provide free and open access to the Python implementation to ensure our model is accessible, enabling the reader to explore the model through setting their simulations and reproducibility tests.

Keywords: Bond Graph, Epithelial Transport, Water Transport, Mathematical Modeling

Procedia PDF Downloads 82
18951 The Effect of Media Effect, Conformity, and Personality on Customers’ Purchase Intention under the Influence of COVID-19 Pandemic

Authors: Tsai-Yun Liao, Fang-Yi Hsu

Abstract:

Consumer behavior and consumption patterns have changed in reacting to the threat of COVID-19 pandemic situations. In order to explore the factors affecting customers’ purchase intention under the influence of the COVID-19 pandemic, this research uses structural equation modeling to explore the effect of media effect, conformity, and personality on customers’ purchase intention. Four essential objectives are investigated: how does media affect the conformity and perceived value of customers; the effect of media effect, conformity, and personality on customers’ purchase intention; the moderating effect of personality; and the mediating effect of perceived value toward purchase intention. By convenience sampling method, 428 questionnaires were collected, and the total number of valid samples was 406. Data analysis and results indicate that: (1) The media effect positively affects conformity. (2) The media effect positively affects perceived value. (3) Both conformity and perceived value positively affect purchase intention. (4) Consumer’s personality of openness to experience moderates the relationship between conformity and purchase intention. (5) Media effect affects purchase intention through the mediating effect of perceived value. This study contributes to the research by providing the factors affecting customers’ purchase intention and to the enterprises by maintaining incumbent customers and attracting potential customers.

Keywords: COVID-19, media effect, conformity, personality, purchase intention

Procedia PDF Downloads 140
18950 The Analysis of Own Signals of PM Electrical Machines – Example of Eccentricity

Authors: Marcin Baranski

Abstract:

This article presents a vibration diagnostic method designed for permanent magnets (PM) traction motors. Those machines are commonly used in traction drives of electrical vehicles. Specific structural properties of machines excited by permanent magnets are used in this method - electromotive force (EMF) generated due to vibrations. This work presents: field-circuit model, results of static tests, results of calculations and simulations.

Keywords: electrical vehicle, permanent magnet, traction drive, vibrations, electrical machine, eccentricity

Procedia PDF Downloads 621
18949 Investigation of the Turbulent Cavitating Flows from the Viewpoint of the Lift Coefficient

Authors: Ping-Ben Liu, Chien-Chou Tseng

Abstract:

The objective of this study is to investigate the relationship between the lift coefficient and dynamic behaviors of cavitating flow around a two-dimensional Clark Y hydrofoil at 8° angle of attack, cavitation number of 0.8, and Reynolds number of 7.10⁵. The flow field is investigated numerically by using a vapor transfer equation and a modified turbulence model which applies the filter and local density correction. The results including time-averaged lift/drag coefficient and shedding frequency agree well with experimental observations, which confirmed the reliability of this simulation. According to the variation of lift coefficient, the cycle which consists of growth and shedding of cavitation can be divided into three stages, and the lift coefficient at each stage behaves similarly due to the formation and shedding of the cavity around the trailing edge.

Keywords: Computational Fluid Dynamics, cavitation, turbulence, lift coefficient

Procedia PDF Downloads 344
18948 The Mediating Effects of Student Satisfaction on the Relationship Between Organisational Image, Service Quality and Students’ Loyalty in Higher Education Institutions in Kano State, Nigeria

Authors: Ado Ismail Sabo

Abstract:

Statement of the Problem: The global trend in tertiary education institutions today is changing and moving towards engagement, promotion and marketing. The reason is to upscale reputation and impact positioning. More prominently, existing rivalry today seeks to draw-in the best and brightest students. A university or college is no longer just an institution of higher learning, but one adapting additional business nomenclature. Therefore, huge financial resources are invested by educational institutions to polish their image and improve their global and national ranking. In Nigeria, which boasts of a vast population of over 180 million people, some of whose patronage can bolster its education sector; standard of education continues to decline. Today, some Nigerian tertiary education institutions are shadows of their pasts, in terms of academic excellence. Quality has been relinquished because of the unquenchable quest by government officials, some civil servants, school heads and educators to amass wealth. It is very difficult to gain student satisfaction and their loyalty. Some of the student’s loyalties factor towards public higher educational institutions might be confusing. It is difficult to understand the extent to which students are satisfy on many needs. Some students might feel satisfy with the academic lecturers only, whereas others may want everything, and others will never satisfy. Due to these problems, this research aims to uncover the crucial factors influencing student loyalty and to examine if students’ satisfaction might impact mediate the relationship between service quality, organisational image and students’ loyalty towards public higher education institutions in Kano State, Nigeria. The significance of the current study is underscored by the paucity of similar research in the subject area and public tertiary education in a developing country like Nigeria as shown in existing literature. Methodology: The current study was undertaken by quantitative research methodology. Sample of 600 valid responses were obtained within the study population comprising six selected public higher education institutions in Kano State, Nigeria. These include: North West University Kano, Bayero University Kano, School of Management Studies Kano, School of Technology Kano, Sa’adatu Rimi College Kano and Federal College of Education (FCE) Kano. Four main hypotheses were formulated and tested using structural equation modeling techniques with Analysis of Moment Structure (AMOS Version 22.0). Results: Analysis of the data provided support for the main issue of this study, and the following findings are established: “Student Satisfaction mediates the relationship between Service Quality and Student Loyalty”, “Student Satisfaction mediates the relationship between Organizational Image and Student Loyalty” respectively. The findings of this study contributed to the theoretical implication which proposed a structural model that examined the relationships among overall Organizational image, service quality, student satisfaction and student loyalty. Conclusion: In addition, the findings offered a better insight to the managerial (higher institution of learning service providers) by focusing on portraying the image of service quality with student satisfaction in improving the quality of student loyalty.

Keywords: student loyalty, service quality, student satisfaction, organizational image

Procedia PDF Downloads 64
18947 Flipped Learning in the Delivery of Structural Analysis

Authors: Ali Amin

Abstract:

This paper describes a flipped learning initiative which was trialed in the delivery of the course: structural analysis and modelling. A short series of interactive videos were developed, which introduced the key concepts of each topic. The purpose of the videos was to introduce concepts and give the students more time to develop their thoughts prior to the lecture. This allowed more time for face to face engagement during the lecture. As part of the initial study, videos were developed for half the topics covered. The videos included a short summary of the key concepts ( < 10 mins each) as well as fully worked-out examples (~30mins each). Qualitative feedback was attained from the students. On a scale from strongly disagree to strongly agree, students were rate statements such as 'The pre-class videos assisted your learning experience', 'I felt I could appreciate the content of the lecture more by watching the videos prior to class'. As a result of the pre-class engagement, the students formed more specific and targeted questions during class, and this generated greater comprehension of the material. The students also scored, on average, higher marks in questions pertaining to topics which had videos assigned to them.

Keywords: flipped learning, structural analysis, pre-class videos, engineering education

Procedia PDF Downloads 89
18946 Atomistic Study of Structural and Phases Transition of TmAs Semiconductor, Using the FPLMTO Method

Authors: Rekab Djabri Hamza, Daoud Salah

Abstract:

We report first-principles calculations of structural and magnetic properties of TmAs compound in zinc blende(B3) and CsCl(B2), structures employing the density functional theory (DFT) within the local density approximation (LDA). We use the full potential linear muffin-tin orbitals (FP-LMTO) as implemented in the LMTART-MINDLAB code (Calculation). Results are given for lattice parameters (a), bulk modulus (B), and its first derivatives(B’) in the different structures NaCl (B1) and CsCl (B2). The most important result in this work is the prediction of the possibility of transition; from cubic rocksalt (NaCl)→ CsCl (B2) (32.96GPa) for TmAs. These results use the LDA approximation.

Keywords: LDA, phase transition, properties, DFT

Procedia PDF Downloads 110
18945 Structural Investigation of Na2O–B2O3–SiO2 Glasses Doped with NdF3

Authors: M. S. Gaafar, S. Y. Marzouk

Abstract:

Sodium borosilicate glasses doped with different content of NdF3 mol % have been prepared by rapid quenching method. Ultrasonic velocities (both longitudinal and shear) measurements have been carried out at room temperature and at ultrasonic frequency of 4 MHz. Elastic moduli, Debye temperature, softening temperature and Poisson's ratio have been obtained as a function of NdF3 modifier content. Results showed that the elastic moduli, Debye temperature, softening temperature and Poisson's ratio have very slight change with the change of NdF3 mol % content. Based on FTIR spectroscopy and theoretical (Bond compression) model, quantitative analysis has been carried out in order to obtain more information about the structure of these glasses. The study indicated that the structure of these glasses is mainly composed of SiO4 units with four bridging oxygens (Q4), and with three bridging and one nonbridging oxygens (Q3).

Keywords: borosilicate glasses, ultrasonic velocity, elastic moduli, FTIR spectroscopy, bond compression model

Procedia PDF Downloads 410
18944 Circular Bio-economy of Copper and Gold from Electronic Wastes

Authors: Sadia Ilyas, Hyunjung Kim, Rajiv R. Srivastava

Abstract:

Current work has attempted to establish the linkages between circular bio-economy and recycling of copper and gold from urban mine by applying microbial activities instead of the smelter and chemical technologies. Thereafter, based on the potential of microbial approaches and research hypothesis, the structural model has been tested for a significance level of 99%, which is supported by the corresponding standardization co-efficient values. A prediction model applied to determine the recycling impact on circular bio-economy indicates to re-circulate 51,833 tons of copper and 58 tons of gold by 2030 for the production of virgin metals/raw-materials, while recycling rate of the accumulated e-waste remains to be 20%. This restoration volume of copper and gold through the microbial activities corresponds to mitigate 174 million kg CO₂ emissions and 24 million m³ water consumption if compared with the primary production activities. The study potentially opens a new window for environmentally-friendly biotechnological recycling of e-waste urban mine under the umbrella concept of circular bio-economy.

Keywords: urban mining, biobleaching, circular bio-economy, environmental impact

Procedia PDF Downloads 152
18943 Towards a Measurement-Based E-Government Portals Maturity Model

Authors: Abdoullah Fath-Allah, Laila Cheikhi, Rafa E. Al-Qutaish, Ali Idri

Abstract:

The e-government emerging concept transforms the way in which the citizens are dealing with their governments. Thus, the citizens can execute the intended services online anytime and anywhere. This results in great benefits for both the governments (reduces the number of officers) and the citizens (more flexibility and time saving). Therefore, building a maturity model to assess the e-government portals becomes desired to help in the improvement process of such portals. This paper aims at proposing an e-government maturity model based on the measurement of the best practices’ presence. The main benefit of such maturity model is to provide a way to rank an e-government portal based on the used best practices, and also giving a set of recommendations to go to the higher stage in the maturity model.

Keywords: best practices, e-government portal, maturity model, quality model

Procedia PDF Downloads 328
18942 Nelder-Mead Parametric Optimization of Elastic Metamaterials with Artificial Neural Network Surrogate Model

Authors: Jiaqi Dong, Qing-Hua Qin, Yi Xiao

Abstract:

Some of the most fundamental challenges of elastic metamaterials (EMMs) optimization can be attributed to the high consumption of computational power resulted from finite element analysis (FEA) simulations that render the optimization process inefficient. Furthermore, due to the inherent mesh dependence of FEA, minuscule geometry features, which often emerge during the later stages of optimization, induce very fine elements, resulting in enormously high time consumption, particularly when repetitive solutions are needed for computing the objective function. In this study, a surrogate modelling algorithm is developed to reduce computational time in structural optimization of EMMs. The surrogate model is constructed based on a multilayer feedforward artificial neural network (ANN) architecture, trained with prepopulated eigenfrequency data prepopulated from FEA simulation and optimized through regime selection with genetic algorithm (GA) to improve its accuracy in predicting the location and width of the primary elastic band gap. With the optimized ANN surrogate at the core, a Nelder-Mead (NM) algorithm is established and its performance inspected in comparison to the FEA solution. The ANNNM model shows remarkable accuracy in predicting the band gap width and a reduction of time consumption by 47%.

Keywords: artificial neural network, machine learning, mechanical metamaterials, Nelder-Mead optimization

Procedia PDF Downloads 124
18941 Evaluation of a Staffing to Workload Tool in a Multispecialty Clinic Setting

Authors: Kristin Thooft

Abstract:

— Increasing pressure to manage healthcare costs has resulted in shifting care towards ambulatory settings and is driving a focus on cost transparency. There are few nurse staffing to workload models developed for ambulatory settings, less for multi-specialty clinics. Of the existing models, few have been evaluated against outcomes to understand any impact. This evaluation took place after the AWARD model for nurse staffing to workload was implemented in a multi-specialty clinic at a regional healthcare system in the Midwest. The multi-specialty clinic houses 26 medical and surgical specialty practices. The AWARD model was implemented in two specialty practices in October 2020. Donabedian’s Structure-Process-Outcome (SPO) model was used to evaluate outcomes based on changes to the structure and processes of care provided. The AWARD model defined and quantified the processes, recommended changes in the structure of day-to-day nurse staffing. Cost of care per patient visit, total visits, a total nurse performed visits used as structural and process measures, influencing the outcomes of cost of care and access to care. Independent t-tests were used to compare the difference in variables pre-and post-implementation. The SPO model was useful as an evaluation tool, providing a simple framework that is understood by a diverse care team. No statistically significant changes in the cost of care, total visits, or nurse visits were observed, but there were differences. Cost of care increased and access to care decreased. Two weeks into the post-implementation period, the multi-specialty clinic paused all non-critical patient visits due to a second surge of the COVID-19 pandemic. Clinic nursing staff was re-allocated to support the inpatient areas. This negatively impacted the ability of the Nurse Manager to utilize the AWARD model to plan daily staffing fully. The SPO framework could be used for the ongoing assessment of nurse staffing performance. Additional variables could be measured, giving a complete picture of the impact of nurse staffing. Going forward, there must be a continued focus on the outcomes of care and the value of nursing

Keywords: ambulatory, clinic, evaluation, outcomes, staffing, staffing model, staffing to workload

Procedia PDF Downloads 172
18940 Development of Equivalent Inelastic Springs to Model C-Devices

Authors: Oday Al-Mamoori, J. Enrique Martinez-Rueda

Abstract:

'C' shape yielding devices (C-devices) are effective tools for introducing supplemental sources of energy dissipation by hysteresis. Studies have shown that C-devices made of mild steel can be successfully applied as integral parts of seismic retrofitting schemes. However, explicit modelling of these devices can become cumbersome, expensive and time consuming. The device under study in this article has been previously used in non-invasive dissipative bracing for seismic retrofitting. The device is cut from a mild steel plate and has an overall shape that resembles that of a rectangular portal frame with circular interior corner transitions to avoid stress concentration and to control the extension of the dissipative region of the device. A number of inelastic finite element (FE) analyses using either inelastic 2D plane stress elements or inelastic fibre frame elements are reported and used to calibrate a 1D equivalent inelastic spring model that effectively reproduces the cyclic response of the device. The more elaborate FE model accounts for the frictional forces developed between the steel plate and the bolts used to connect the C-device to structural members. FE results also allow the visualization of the inelastic regions of the device where energy dissipation is expected to occur. FE analysis results are in a good agreement with experimental observations.

Keywords: C-device, equivalent nonlinear spring, FE analyses, reversed cyclic tests

Procedia PDF Downloads 132
18939 An Ancient Rule for Constructing Dodecagonal Quasi-Periodic Formations

Authors: Rima A. Ajlouni

Abstract:

The discovery of quasi-periodic structures in material science is revealing an exciting new class of symmetries, which has never been explored before. Due to their unique structural and visual properties, these symmetries are drawing interest from many scientific and design disciplines. Especially, in art and architecture, these symmetries can provide a rich source of geometry for exploring new patterns, forms, systems, and structures. However, the structural systems of these complicated symmetries are still posing a perplexing challenge. While much of their local order has been explored, the global governing system is still unresolved. Understanding their unique global long-range order is essential to their generation and application. The recent discovery of dodecagonal quasi-periodic patterns in historical Islamic architecture is generating a renewed interest into understanding the mathematical principles of traditional Islamic geometry. Astonishingly, many centuries before its description in the modern science, ancient artists, by using the most primitive tools (a compass and a straight edge), were able to construct patterns with quasi-periodic formations. These ancient patterns can be found all over the ancient Islamic world, many of which exhibit formations with 5, 8, 10 and 12 quasi-periodic symmetries. Based on the examination of these historical patterns and derived from the generating principles of Islamic geometry, a global multi-level structural model is presented that is able to describe the global long-range order of dodecagonal quasi-periodic formations in Islamic Architecture. Furthermore, this method is used to construct new quasi-periodic tiling systems as well as generating their deflation and inflation rules. This method can be used as a general guiding principle for constructing infinite patches of dodecagon-based quasi-periodic formations, without the need for local strategies (tiling, matching, grid, substitution, etc.) or complicated mathematics; providing an easy tool for scientists, mathematicians, teachers, designers and artists, to generate and study a wide range of dodecagonal quasi-periodic formations.

Keywords: dodecagonal, Islamic architecture, long-range order, quasi-periodi

Procedia PDF Downloads 400
18938 Evaluating Evaporation and Seepage Losses in Lakes Using Sentinel Images and the Water Balance Equation

Authors: Abdelrahman Elsehsah

Abstract:

The main objective of this study is to assess changes in the water capacity of Aswan High Dam Lake (AHDL) caused by evaporation and seepage losses. To achieve this objective, a comprehensive methodology was employed. The methodology involves acquiring Sentinel-3 imagery and extracting the surface area of the lake using remote sensing techniques. Using water areas calculated from sentinel images, collected field data, and the lake’s water balance equation, monthly evaporation and seepage losses were estimated for the years 2021 and 2022. Based on the water balance method results, the average monthly evaporation losses for the year 2021 were estimated to be around 1.41 billion cubic meters (Bm3), which closely matches the estimates provided by the Ministry of Water Resources and Irrigation (MWRI) annual reports (approximately 1.37 Bm3 in the same year). This means that the water balance method slightly overestimated the monthly evaporation losses by about 2.92%. Similarly, the average monthly seepage losses for the year 2022 were estimated to be around 0.005 Bm3, while the MWRI reports indicated approximately 0.0046 Bm3. By another means, the water balance method overestimated the monthly seepage losses by about 8.70%. Furthermore, the study found that the average monthly evaporation rate within AHDL was 210.88 mm/month, which closely aligns with the computed value of approximately 204.9 mm/month by AHDA. These findings indicated that the applied water balance method, utilizing remote sensing and field data, is a reliable tool for estimating monthly evaporation and seepage losses as well as monthly evaporation rates in AHDL.

Keywords: Aswan high dam lake, remote sensing, water balance equation, seepage loss, evaporation loss

Procedia PDF Downloads 25
18937 Estimation Model for Concrete Slump Recovery by Using Superplasticizer

Authors: Chaiyakrit Raoupatham, Ram Hari Dhakal, Chalermchai Wanichlamlert

Abstract:

This paper is aimed to introduce the solution of concrete slump recovery using chemical admixture type-F (superplasticizer, naphthalene base) to the practice, in order to solve unusable concrete problem due to concrete loss its slump, especially for those tropical countries that have faster slump loss rate. In the other hand, randomly adding superplasticizer into concrete can cause concrete to segregate. Therefore, this paper also develops the estimation model used to calculate amount of second dose of superplasticizer need for concrete slump recovery. Fresh properties of ordinary Portland cement concrete with volumetric ratio of paste to void between aggregate (paste content) of 1.1-1.3 with water-cement ratio zone of 0.30 to 0.67 and initial superplasticizer (naphthalene base) of 0.25%- 1.6% were tested for initial slump and slump loss for every 30 minutes for one and half hour by slump cone test. Those concretes with slump loss range from 10% to 90% were re-dosed and successfully recovered back to its initial slump. Slump after re-dosed was tested by slump cone test. From the result, it has been concluded that, slump loss was slower for those mix with high initial dose of superplasticizer due to addition of superplasticizer will disturb cement hydration. The required second dose of superplasticizer was affected by two major parameter, which were water-cement ratio and paste content, where lower water-cement ratio and paste content cause an increase in require second dose of superplasticizer. The amount of second dose of superplasticizer is higher as the solid content within the system is increase, solid can be either from cement particles or aggregate. The data was analyzed to form an equation use to estimate the amount of second dosage requirement of superplasticizer to recovery slump to its original.

Keywords: estimation model, second superplasticizer dosage, slump loss, slump recovery

Procedia PDF Downloads 197
18936 Application of the Discrete Rationalized Haar Transform to Distributed Parameter System

Authors: Joon-Hoon Park

Abstract:

In this paper the rationalized Haar transform is applied for distributed parameter system identification and estimation. A distributed parameter system is a dynamical and mathematical model described by a partial differential equation. And system identification concerns the problem of determining mathematical models from observed data. The Haar function has some disadvantages of calculation because it contains irrational numbers, for these reasons the rationalized Haar function that has only rational numbers. The algorithm adopted in this paper is based on the transform and operational matrix of the rationalized Haar function. This approach provides more convenient and efficient computational results.

Keywords: distributed parameter system, rationalized Haar transform, operational matrix, system identification

Procedia PDF Downloads 503
18935 Energy Dynamics of Solar Thermionic Power Conversion with Emitter of Graphene

Authors: Olukunle C. Olawole, Dilip K. De, Moses Emetere, Omoje Maxwell

Abstract:

Graphene can stand very high temperature up to 4500 K in vacuum and has potential for application in thermionic energy converter. In this paper, we discuss the application of energy dynamics principles and the modified Richardson-Dushman Equation, to estimate the efficiency of solar power conversion to electrical power by a solar thermionic energy converter (STEC) containing emitter made of graphene. We present detailed simulation of power output for different solar insolation, diameter of parabolic concentrator, area of the graphene emitter (same as that of the collector), temperature of the collector, physical dimensions of the emitter-collector etc. After discussing possible methods of reduction or elimination of space charge problem using magnetic field and gate, we finally discuss relative advantages of using emitters made of graphene, carbon nanotube and metals respectively in a STEC.

Keywords: graphene, high temperature, modified Richardson-Dushman equation, solar thermionic energy converter

Procedia PDF Downloads 303