Search results for: waste-water microbial fuel cell
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6685

Search results for: waste-water microbial fuel cell

5185 HLA-G, a Neglected Immunosuppressive Checkpoint for Breast Cancer Immunotherapy

Authors: Xian-Peng Jiang, Catherine C. Baucom, Toby Jiang, Robert L. Elliott

Abstract:

HLA-G binds to the inhibitory receptors of uterine NK cells and plays an important role in protection of fetal cells from maternal NK lysis. HLA-G also mediates tumor escape, but the immunosuppressive role is often neglected. These studies have focused on the examination of HLA-G expression in human breast carcinoma and HLA-G immunosuppressive role in NK cytolysis. We examined HLA-G expression in breast cell lines by real time PCR, ELISA and immunofluorescent staining. We treated the breast cancer cell lines with anti-human HLA-G antibody or progesterone. Then, NK cytolysis was measured by using MTT assay. We find that breast carcinoma cell lines increase the expression of HLA-G mRNA and protein, compared to normal cells. Blocking HLA-G of the breast cancer cells by the antibody increases NK cytolysis. Progesterone upregulates HLA-G mRNA and protein of human breast cancer cell lines. The increased HLA-G expression suppresses NK cytolysis. In summary, human breast carcinoma overexpress HLA-G immunosuppressive molecules. Blocking HLA-G protein by antibody improves NK cytolysis. In contrast, upregulation of HLA-G expression by progesterone impairs NK cytolytic function. Thus, HLA-G is a new immunosuppressive checkpoint and potential cancer immunotherapeutic target.

Keywords: HLA-G, Breast carcinoma, NK cells, Immunosuppressive checkpoint

Procedia PDF Downloads 88
5184 Insights into Archaeological Human Sample Microbiome Using 16S rRNA Gene Sequencing

Authors: Alisa Kazarina, Guntis Gerhards, Elina Petersone-Gordina, Ilva Pole, Viktorija Igumnova, Janis Kimsis, Valentina Capligina, Renate Ranka

Abstract:

Human body is inhabited by a vast number of microorganisms, collectively known as the human microbiome, and there is a tremendous interest in evolutionary changes in human microbial ecology, diversity and function. The field of paleomicrobiology, study of ancient human microbiome, is powered by modern techniques of Next Generation Sequencing (NGS), which allows extracting microbial genomic data directly from archaeological sample of interest. One of the major techniques is 16S rRNA gene sequencing, by which certain 16S rRNA gene hypervariable regions are being amplified and sequenced. However, some limitations of this method exist including the taxonomic precision and efficacy of different regions used. The aim of this study was to evaluate the phylogenetic sensitivity of different 16S rRNA gene hypervariable regions for microbiome studies in the archaeological samples. Towards this aim, archaeological bone samples and corresponding soil samples from each burial environment were collected in Medieval cemeteries in Latvia. The Ion 16S™ Metagenomics Kit targeting different 16S rRNA gene hypervariable regions was used for library construction (Ion Torrent technologies). Sequenced data were analysed by using appropriate bioinformatic techniques; alignment and taxonomic representation was done using Mothur program. Sequences of most abundant genus were further aligned to E. coli 16S rRNA gene reference sequence using MEGA7 in order to identify the hypervariable region of the segment of interest. Our results showed that different hypervariable regions had different discriminatory power depending on the groups of microbes, as well as the nature of samples. On the basis of our results, we suggest that wider range of primers used can provide more accurate recapitulation of microbial communities in archaeological samples. Acknowledgements. This work was supported by the ERAF grant Nr. 1.1.1.1/16/A/101.

Keywords: 16S rRNA gene, ancient human microbiome, archaeology, bioinformatics, genomics, microbiome, molecular biology, next-generation sequencing

Procedia PDF Downloads 190
5183 Supplementation of Yeast Cell Wall on Growth Performance in Broiler Reared under High Ambient Temperature

Authors: Muhammad Shahzad Hussain

Abstract:

Two major problems are facing generally by conventional poultry farming that is disease outbreaks and poor performance, which results due to improper management. To enhance the growth performance and efficiency of feed and reduce disease outbreaks, antibiotic growth promoters (AGPs) which are antibiotics at sub-therapeutic levels, are extensively used in the poultry industry. European Union has banned the use of antibiotics due to their presence in poultry products, development of antibiotic-resistant pathogens, and disturbance of normal gut microbial ecology. These residues cause serious health concerns and produce antibiotic resistance in pathogenic microbes in human beings. These issues strengthen the need for the withdrawal of AGPs from poultry feed. Nowadays, global warming is a major issue, and it is more critical in tropical areas like Pakistan, where heat stress is already a major problem. Heat stress leads to poor production performance, high mortality, immuno-suppression, and concomitant diseases outbreak. The poultry feed industry in Pakistan, like other countries of the world, has been facing shortages and high prices of local as well as imported feed ingredients. Prebiotics are potential replacer for AGP as prebiotics has properties to enhance the production potential and reduce the growth of harmful bacteria as well as stimulate the growth/activity of beneficial bacteria. The most commonly used prebiotics in poultry includes mannan oligosaccharide (MOS). MOS is an essential component of the yeast cell wall (YCW) (Saccharomyces cerevisiae); therefore, the YCW wall possesses prebiotic properties. The use of distillery yeast wall (YCW) has the potential to replace conventional AGPs and to reduce mortality due to heat stress as well as to bind toxins in the feed. The dietary addition of YCW has not only positive effects on production performance in poultry during normal conditions but during stressful conditions. A total of 168-day-old broilers were divided into 6 groups, each of which has 28 birds with 4 replicates (n=7).Yeast cell wall (YCW) supplementation @ 0%, 1%, 1.5%, 2%, 2.5%, 3% from day 0 to 35. Heat stress was exposed from day 21 to 35 at 30±1.1ᵒC with relative humidity 65±5%. Zootechnical parameters like body weight, FCR, Organ development, and histomorphometric parameters were studied. A significant weight gain was observed at group C supplemented @ 1.5% YCW during the fifth week. Significant organ weight gain of Gizzard, spleen, small intestine, and cecum was observed at group C supplemented @ 1.5% YCW. According to morphometric indices Duodenum, Jejunum, and Ileum has significant villus height, while Jejunum and Ileum have also significant villus surface area in the group supplemented with 1.5% YCW. IEL count was only decreased in 1.5% YCW-fed group in jejunum and ileum, not in duodenum, that was less in 2% YCW-supplemented group. Dietary yeast cell wall of saccharomyces cerevisiae partially reduced the effects of high ambient temperature in terms of better growth and modified gut histology and components of mucosal immune response to better withstand heat stress in broilers.

Keywords: antibiotics, AGPs, broilers, MOS, prebiotics, YCW

Procedia PDF Downloads 95
5182 Reduction of the Microbial Load of Biocontaminated Bovine Milk Using Grounding with Copper Wire

Authors: Claudivan Costa de Lima, Angelo da Silva Monteiro

Abstract:

With the aim of evaluating the effects of grounding with copper wire on the reduction of the microbial load of biocontaminated milk samples and on their acidification over time, two complementary experiments were carried out. In the first, the treatments consisted of: i) raw milk sample (control), ii) slow pasteurization, iii) grounding with copper wire and, iv) contact with copper ring. Analyzes of total, thermoresistant and mesophilic coliforms were performed 30 minutes after the application of these treatments. In the second experiment, under the same conditions as the first, measurements of pH and Dornic acidity were performed at 0, 0.5, 2, 4, 8, 12, and 24 h from the installation of the experiment. Pasteurization eliminated almost all groups of bacteria present in the milk samples while grounding only allowed reductions in the population of thermotolerant coliforms and mesophiles, both greater than 95%, maintaining, however, unchanged the amounts of total coliforms. The copper ring, in turn, had no effect on the microbiological parameters studied. The reduction in the population of mesophiles in grounded milk samples, contrary to what happened with pasteurized milk, was not enough to inhibit the acidification process over the experimental period.

Keywords: pasteurization, low frequency electric current, thermotolerant coliforms, mesophiles in bovine milk

Procedia PDF Downloads 107
5181 A Runge Kutta Discontinuous Galerkin Method for Lagrangian Compressible Euler Equations in Two-Dimensions

Authors: Xijun Yu, Zhenzhen Li, Zupeng Jia

Abstract:

This paper presents a new cell-centered Lagrangian scheme for two-dimensional compressible flow. The new scheme uses a semi-Lagrangian form of the Euler equations. The system of equations is discretized by Discontinuous Galerkin (DG) method using the Taylor basis in Eulerian space. The vertex velocities and the numerical fluxes through the cell interfaces are computed consistently by a nodal solver. The mesh moves with the fluid flow. The time marching is implemented by a class of the Runge-Kutta (RK) methods. A WENO reconstruction is used as a limiter for the RKDG method. The scheme is conservative for the mass, momentum and total energy. The scheme maintains second-order accuracy and has free parameters. Results of some numerical tests are presented to demonstrate the accuracy and the robustness of the scheme.

Keywords: cell-centered Lagrangian scheme, compressible Euler equations, RKDG method

Procedia PDF Downloads 546
5180 Combining Bio-Molecular and Isotopic Tools to Determine the Fate of Halogenated Compounds in Polluted Groundwater

Authors: N. Balaban, A. Buernstein, F. Gelman, Z. Ronen

Abstract:

Brominated flame retardants are widespread pollutants, and are known to be toxic, carcinogenic, endocrinic disrupting as well as recalcitrant. The industrial complex Neot Hovav, in the Northern Negev, Israel, is situated above a fractured chalk aquitard, which is polluted by a wide variety of halogenated organic compounds. Two of the abundant pollutants found in the site are Dibromoneopentyl-glycol (DBNPG) and tribromoneopentyl-alcohol (TBNPA). Due to the elusive nature of the groundwater flow, it is difficult to connect between the spatial changes in contaminant concentrations to degradation. In this study, we attempt to determine whether these compounds are biodegraded in the groundwater, and to gain a better understanding concerning the bacterial community in the groundwater. This was achieved through the application of compound-specific isotope analysis (CSIA) of carbon (13^C/12^C) and bromine (81^Br/79^Br), and new-generation MiSeq pyrosequencing. The sampled boreholes were distributed among three main areas of the industrial complex: around the production plant of TBNPA and DBNPG; along the Hovav Wadi (small ephemeral stream) which crosses and drains the industrial complex; and downstream to the industrial area. TBNPA and DBNPG are found in all three areas, with no clear connection to the proximity of the borehole to the production plant. Initial isotopic data of TBNPA from boreholes in the area surrounding the production plant, reveal no changes in the carbon and bromine isotopic values. When observing the microbial groundwater community, the dominant phylum is Proteobacteria. Known anaerobic dehalogenating bacteria such as Dehalococcoides from the Chloroflexi phylum have also been detected. A statistical comparison of the groundwater microbial diversity using a multi-variant ordination of non-metric multidimensional scaling (NMDS) reveals three main clusters in accordance to spatial location in the industrial complex: all the boreholes sampled adjacent to the production plant cluster together and separately from the Wadi Hovav boreholes cluster and the downstream to the industrial area borehole cluster. This work provides the basis for the development and implication of an isotopic fractionation based tool for assessing the biodegradation of brominated organic compounds in contaminated environments, and a novel attempt to characterize the spatial microbial diversity in the contaminated site.

Keywords: biodegradation, brominated flame retardants, groundwater, isotopic fractionation, microbial diversity

Procedia PDF Downloads 236
5179 Preparation and Application of Biocompatible Nanobioactive Glass as Therapeutic Agents for Bone Tissue Engineering

Authors: P. Shrivastava, S. Vijayalakshmi, A. K. Singh, S. Dalai, R. Teotia, P. Sharma, J. Bellare

Abstract:

This paper focuses on the synthesis and application of nanobioactive glass for bone regeneration studies. Nanobioactive glass has been synthesized by sol gel method having a combination of silicon, calcium and phosphorous in the molar ratio of 75:21:4. The prepared particles were analyzed for surface morphology by FEG SEM and FEG TEM. Physiochemical properties were investigated using ICP AES, FTIR spectroscopy and X-ray diffraction (XRD) techniques. To ascertain their use for therapeutic use, biocompatibility evaluation of the particles was done by performing soaking studies in SBF and in vitro cell culture studies on MG63 cell lines. Cell morphology was observed by FE SEM and phase contrast microscopy. Nanobioactive glasses (NBG) thus prepared were of 30-200 nm in size, which makes them suitable for nano-biomedical applications. The spherical shape of the particles imparts high surface to volume ratio, promoting fast growth of hydroxyapatite (HA), which is the mineral component of bone. As evaluated by in vitro cell culture studies the NBG was found to enhance the surface activation which enhances osteoblast adhesion. This is an essential parameter to improve bone tissue integration, thereby making nanobioactive glass therapeutically suitable for correcting bone defects.

Keywords: biocompatibility, bone tissue engineering, hydroxyapatite, nanobioactive glass

Procedia PDF Downloads 456
5178 Microbial Removal of Polycyclic Aromatic Hydrocarbons from Petroleum Refinery Sludge: A Consortial Approach

Authors: Dheepshika Kodieswaran

Abstract:

The persisting problem in the world that continuously impose our planet at risk is the increasing amounts of recalcitrant. One such issue is the disposal of the Petroleum Refinery Sludge (PRS) which constitutes hydrocarbons that are hazardous to terrestrial and aquatic life. The comparatively safe approach to handling these wastes is by microbial degradation, while the other chemical and physical methods are either expensive and/or produce secondary pollutants. The bacterial and algal systems have different pathways for the degradation of hydrocarbons, and their growth rates vary. This study shows how different bacterial and microalgal strains degrade the polyaromatic hydrocarbon PAHs individually and their symbiotic influence on degradation as well. In this system, the metabolites and gaseous exchange help each other in growth. This method using also aids in the accumulation of lipids in microalgal cells and from which bio-oils can also be extracted. The bacterial strains used in this experiment are reported to be indigenous strains isolated from PRS. The target PAH studied were anthracene and pyrene for a period of 28 days. The PAH degradation kinetics best fitted the Gompertz model, and the order of the kinetics, rate constants, and half-life was determined.

Keywords: petroleum refinery sludge, co-culturing, polycyclic hydrocarbons, microalgal-bacterial consortia

Procedia PDF Downloads 105
5177 Plant Microbiota of Coastal Halophyte Salicornia Ramossisima

Authors: Isabel N. Sierra-Garcia, Maria J. Ferreira, Sandro Figuereido, Newton Gomes, Helena Silva, Angela Cunha

Abstract:

Plant-associated microbial communities are considered crucial in the adaptation of halophytes to coastal environments. The plant microbiota can be horizontally acquired from the environment or vertically transmitted from generation to generation via seeds. Recruiting of the microbial communities by the plant is affected by geographical location, soil source, host genotype, and cultivation practice. There is limited knowledge reported on the microbial communities in halophytes the influence of biotic and abiotic factors. In this work, the microbiota associated with the halophyte Salicornia ramosissima was investigated to determine whether the structure of bacterial communities is influenced by host genotype or soil source. For this purpose, two contrasting sites where S. ramosissima is established in the estuarine system of the Ria de Aveiro were investigated. One site corresponds to a natural salt marsh where S. ramosissima plants are present (wild plants), and the other site is a former salt pan that nowadays are subjected to intensive crop production of S. ramosissima (crop plants). Bacterial communities from the rhizosphere, seeds and root endosphere of S. ramossisima from both sites were investigated by sequencing bacterial 16S rRNA gene using the Illumina MiSeq platform. The analysis of the sequences showed that the three plant-associated compartments, rhizosphere, root endosphere, and seed endosphere, harbor distinct microbiomes. However, bacterial richness and diversity were higher in seeds of wild plants, followed by rhizosphere in both sites, while seeds in the crop site had the lowest diversity. Beta diversity measures indicated that bacterial communities in root endosphere and seeds were more similar in both wild and crop plants in contrast to rhizospheres that differed by local, indicating that the recruitment of the similar bacterial communities by the plant genotype is active in regard to the site. Moreover, bacterial communities from the root endosphere and rhizosphere were phylogenetically more similar in both sites, but the phylogenetic composition of seeds in wild and crop sites was distinct. These results indicate that cultivation practices affect the seed microbiome. However, minimal vertical transmission of bacteria from seeds to adult plants is expected. Seeds from the crop site showed higher abundances of Kushneria and Zunongwangia genera. Bacterial members of the classes Alphaprotebacteria and Bacteroidia were the most ubiquitous across sites and compartments and might encompass members of the core microbiome. These findings indicate that bacterial communities associated with S. ramosissima are more influenced by host genotype rather than local abiotic factors or cultivation practices. This study provides a better understanding of the composition of the plant microbiota in S. ramosissima , which is essential to predict the interactions between plant and associated microbial communities and their effects on plant health. This knowledge is useful to the manipulations of these microbial communities to enhance the health and productivity of this commercially important plant.

Keywords: halophytes, plant microbiome, Salicornia ramosissima, agriculture

Procedia PDF Downloads 169
5176 Bcl-2: A Molecule to Detect Oral Cancer and Precancer

Authors: Vandana Singh, Subash Singh

Abstract:

Introduction: Oral squamous cell carcinoma is the most common malignant tumor of the oral cavity. Normally the death of cell and the growth are active processes and depend not only on external factors but also on the expression of genes like Bcl-2, which activate and inhibit apoptosis. The term Bcl-2 is an acronym for B-cell lymphoma/ leukemia -2 genes. Objectives: An attempt was made to evaluate Bcl-2 oncoprotein expression in patients with oral precancer and cancer and to assess possible correlation between Bcl-2 oncoprotein expression and clinicopathological features of oral precancer and cancer. Material and Methods: This is a selective prospective clinical and immunohistochemical study. Clinicopathological examination is correlated with immunohistochemical findings. The immunolocalization of Bcl-2 protein is performed using the labeled streptavidin biotin (LSAB) method. To visualize the reaction, 3, 3-diaminobenzidine (DAB) is used. Results: Bcl-2 expression was positive in 11 [36.66 %, low Bcl-2 expression 3 (10.00 %), moderate Bcl-2 expression 7 (23.33 %), and high Bcl-2 expression 1 (3.33 %)] oral cancer cases and in 14 [87.50 %, low expression 8 (50 %), moderate expression 6 (37.50 %)] precancer cases. Conclusion: On the basis of the results of our study we conclude that positive Bcl-2 expression may be an indicator of poor prognosis in oral cancer and precancer. Relevance: It has been reported that there is deregulation of Bcl-2 expression during progression from oral epithelial dysplasia to squamous cell carcinoma. It can be used for revealing progression of epithelial dysplasia to malignancy and as a prognostic marker in oral precancer and cancer.

Keywords: BcL-2, immunohistochemistry, oral cancer, oral precancer

Procedia PDF Downloads 269
5175 Sensitizing Bamboo Fabric with Antimicrobial Turmeric Dye

Authors: Varinder Kaur, Amanjit Kaur, Simran Kaur, Samriti Vaid

Abstract:

Coating of fabrics with anti-microbial dyes is an adaptable technique of protection from various diseases. Natural dyes, which are known to possess antibacterial properties, can be used for antibacterial finishing of fibers like cotton, wool, bamboo and so many. Dyeing of fabrics with natural dyes normally requires the use of mordants so that dyes can stay on the fabric as well as into interstices of the fabric during multiple washings. In this study, the mordants used are alum and chitosan for ensuring a reasonable color fastness to light and washing. Chitosan is a natural polysaccharide having significant biological and chemical properties such as biodegradability, biocompatibility, bioactivity, microbial activity and polycationicity. The metal ion of alum mordant can act as electron acceptor for electron donor to form coordination bond with the dye molecule, making them insoluble in water. The dyeing of bamboo fabric using a natural dye extracted from turmeric has been studied using conventional dyeing method. Natural dye was extracted using water as solvent by Soxhlet extraction method. The extracted color was characterized by spectroscopic studies like UV/visible and further tested for antimicrobial activity. The effect of mordants on the dyeing outcome in terms of colour depth as well as fastness properties of the dyeing was investigated. It has been found that employing the conventional dyeing technique at 100 oC, the mordanted samples were deeper in depth than their unmordanted counterparts. The results of fastness properties of the dyed fabrics were fair to good. Turmeric extract was found to enhance microbial resistance of bamboo as well as was itself as a good cause of coloration. These textiles dyed with the turmeric as natural dye can be very useful in developing clothing for infants, elderly and infirm people to protect them against common infections. The outcome of this study will provide a new feature to the interface of dyeing and pharmaceutical industry.

Keywords: antimicrobial activity, bamboo fabric, natural dye, turmeric

Procedia PDF Downloads 169
5174 Using Low-Calorie Gas to Generate Heat and Electricity

Authors: Аndrey Marchenko, Oleg Linkov, Alexander Osetrov, Sergiy Kravchenko

Abstract:

The low-calorie of gases include biogas, coal gas, coke oven gas, associated petroleum gas, gases sewage, etc. These gases are usually released into the atmosphere or burned on flares, causing substantial damage to the environment. However, with the right approach, low-calorie gas fuel can become a valuable source of energy. Specified determines the relevance of areas related to the development of low-calorific gas utilization technologies. As an example, in the work considered one of way of utilization of coalmine gas, because Ukraine ranks fourth in the world in terms of coal mine gas emission (4.7% of total global emissions, or 1.2 billion m³ per year). Experts estimate that coal mine gas is actively released in the 70-80 percent of existing mines in Ukraine. The main component of coal mine gas is methane (25-60%) Methane in 21 times has a greater impact on the greenhouse effect than carbon dioxide disposal problem has become increasingly important in the context of the increasing need to address the problems of climate, ecology and environmental protection. So marked causes negative effect of both local and global nature. The efforts of the United Nations and the World Bank led to the adoption of the program 'Zero Routine Flaring by 2030' dedicated to the cessation of these gases burn in flares and disposing them with the ability to generate heat and electricity. This study proposes to use coal gas as a fuel for gas engines to generate heat and electricity. Analyzed the physical-chemical properties of low-calorie gas fuels were allowed to choose a suitable engine, as well as estimate the influence of the composition of the fuel at its techno-economic indicators. Most suitable for low-calorie gas is engine with pre-combustion chamber jet ignition. In Ukraine is accumulated extensive experience in exploitation and production of gas engines with capacity of 1100 kW type GD100 (10GDN 207/2 * 254) fueled by natural gas. By using system pre- combustion chamber jet ignition and quality control in the engines type GD100 introduces the concept of burning depleted burn fuel mixtures, which in turn leads to decrease in the concentration of harmful substances of exhaust gases. The main problems of coal mine gas as a fuel for ICE is low calorific value, the presence of components that adversely affect combustion processes and terms of operation of the ICE, the instability of the composition, weak ignition. In some cases, these problems can be solved by adaptation engine design using coal mine gas as fuel (changing compression ratio, fuel injection quantity increases, change ignition time, increase energy plugs, etc.). It is shown that the use of coal mine gas engines with prechamber has not led to significant changes in the indicator parameters (ηi = 0.43 - 0.45). However, this significantly increases the volumetric fuel consumption, which requires increased fuel injection quantity to ensure constant nominal engine power. Thus, the utilization of low-calorie gas fuels in stationary gas engine type-based GD100 will significantly reduce emissions of harmful substances into the atmosphere when the generate cheap electricity and heat.

Keywords: gas engine, low-calorie gas, methane, pre-combustion chamber, utilization

Procedia PDF Downloads 264
5173 Hybrid Polymer Microfluidic Platform for Studying Endothelial Cell Response to Micro Mechanical Environment

Authors: Mitesh Rathod, Jungho Ahn, Noo Li Jeon, Junghoon Lee

Abstract:

Endothelial cells respond to cues from both biochemical as well as micro mechanical environment. Significant effort has been directed to understand the effects of biochemical signaling, however, relatively little is known about regulation of endothelial cell biology by the micro mechanical environment. Numerous studies have been performed to understand how physical forces regulate endothelial cell behavior. In this regard, past studies have majorly focused on exploring how fluid shear stress governs endothelial cell behavior. Parallel plate flow chambers and rectangular microchannels are routinely employed for applying fluid shear force on endothelial cells. However, these studies fall short in mimicking the in vivo like micro environment from topological aspects. Few studies have only used circular microchannels to replicate in vivo like condition. Seldom efforts have been directed to elucidate the combined effect of topology, substrate rigidity and fluid shear stress on endothelial cell response. In this regard, we demonstrate a facile fabrication process to develop a hybrid polydimethylsiloxane microfluidic platform to study endothelial cell biology. On a single chip microchannels with different cross sections i.e., circular, rectangular and square have been fabricated. In addition, our fabrication approach allows variation in the substrate rigidity along the channel length. Two different variants of polydimethylsiloxane, namely Sylgard 184 and Sylgard 527, were utilized to achieve the variation in rigidity. Moreover, our approach also enables in creating Y bifurcation circular microchannels. Our microfluidic platform thus facilitates for conducting studies pertaining to endothelial cell morphology with respect to change in topology, substrate rigidity and fluid flow on a single chip. The hybrid platform was tested by culturing Human Umbilical Vein Endothelial Cells in circular microchannels with varying substrate rigidity, and exposed to fluid shear stress of 12 dynes/cm² and static conditions. Results indicate the cell area response to flow induced shear stress was governed by the underlying substrate mechanics.

Keywords: hybrid, microfluidic platform, PDMS, shear flow, substrate rigidity

Procedia PDF Downloads 277
5172 IgA/λ Plasma Cell Myeloma with λ Light Chain Amyloidosis: A Case Report

Authors: Kai Pei Huang, Ting Chung Hung, Li Ching Wu

Abstract:

Amyloidosis refers to a variety of conditions wherein amyloid proteins are abnormally deposited in organ or tissues and cause harm. Among the several forms of amyloidosis, the principal types of that in inpatient medical services are the AL amyloidosis (primary) and AA amyloidois (secondary). AL Amyloidois is due to deposition of protein derived from overproduction of immunoglobulin light chain in plasma cell myeloma. Furthermore, it is a systemic disorder that can present with a variety of symptoms, including heavy proteinemia and edema, heptosplenomegaly, otherwise unexplained heart failure. We reported a 78-year-old female presenting dysuria, oliguria and leg edema for several months. Laboratory data showed proteinuria (UPCR:1679.8), leukocytosis (WBC:16.2 x 10^3/uL), results of serum urea nitrogen (39mg/dL), creatinine (0.76 mg/dL), IgG (748 mg/dL.), IgA (635 mg/dL), IgM (63 mg/dL), kappa light chain(18.8 mg/dL), lambda light chain (110.0 mg/dL) and kappa/lambda ratio (0.17). Renal biopsy found amyloid fibrils in glomerular mesangial area, and Congo red stain highlights amyloid deposition in glomeruli. Additional lab studies included serum protein electrophoresis, which shows a major monoclonal peak in β region and minor small peak in gamma region, and the immunotyping studies for serum showed two IgA/λ type. We treated sample with beta-mercaptoethanol which reducing the polymerized immunoglobulin to clarify two IgA/λ are secreted from the same plasma cell clone in bone marrow. Later examination confirmed it existed plasma cell infiltration in bone marrow, and the immunohistochemical staining showed monotypic for λ light chain and are positive for IgA. All findings mentioned above reveal it is a case of plasma cell myeloma with λ Light Chain Amyloidosis.

Keywords: amyloidosis, immunoglobulin light chain, plasma cell myeloma, serum protein electrophoresis

Procedia PDF Downloads 214
5171 Influence of Valve Lift Timing on Producer Gas Combustion and Its Modeling Using Two-Stage Wiebe Function

Authors: M. Sreedhar Babu, Vishal Garg, S. B. Akella, Shibu Clement, N. K. S Rajan

Abstract:

Producer gas is a biomass derived gaseous fuel which is extensively used in internal combustion engines for power generation application. Unlike the conventional hydrocarbon fuels (Gasoline and Natural gas), the combustion properties of producer gas fuel are much different. Therefore, setting of optimal spark time for efficient engine operation is required. Owing to the fluctuating tendency of producer gas composition during gasification process, the heat release patterns (dictating the power output and emissions) obtained are quite different from conventional fuels. It was found that, valve lift timing is yet another factor which influences the burn rate of producer gas fuel, and thus, the heat release rate of the engine. Therefore, the present study was motivated to estimate the influence of valve lift timing analytically (Wiebe model) on the burn rate of producer gas through curve fitting against experimentally obtained mass fraction burn curves of several producer gas compositions. Furthermore, Wiebe models are widely used in zero-dimensional codes for engine parametric studies and are quite popular. This study also addresses the influence of hydrogen and methane concentration of producer gas on combustion trends, which are known to cause dynamics in engine combustion.

Keywords: combustion duration (CD), crank angle (CA), mass fraction burnt (MFB), producer sas (PG), Wiebe Combustion Model (WCM), wide open throttle (WOT)

Procedia PDF Downloads 311
5170 A Serum- And Feeder-Free Culture System for the Robust Generation of Human Stem Cell-Derived CD19+ B Cells and Antibody-Secreting Cells

Authors: Kirsten Wilson, Patrick M. Brauer, Sandra Babic, Diana Golubeva, Jessica Van Eyk, Tinya Wang, Avanti Karkhanis, Tim A. Le Fevre, Andy I. Kokaji, Allen C. Eaves, Sharon A. Louis, , Nooshin Tabatabaei-Zavareh

Abstract:

Long-lived plasma cells are rare, non-proliferative B cells generated from antibody-secreting cells (ASCs) following an immune response to protect the host against pathogen re-exposure. Despite their therapeutic potential, the lack of in vitro protocols in the field makes it challenging to use B cells as a cellular therapeutic tool. As a result, there is a need to establish robust and reproducible methods for the generation of B cells. To address this, we have developed a culture system for generating B cells from hematopoietic stem and/or progenitor cells (HSPCs) derived from human umbilical cord blood (CB) or pluripotent stem cells (PSCs). HSPCs isolated from CB were cultured using the StemSpan™ B Cell Generation Kit and produced CD19+ B cells at a frequency of 23.2 ± 1.5% and 59.6 ± 2.3%, with a yield of 91 ± 11 and 196 ± 37 CD19+ cells per input CD34+ cell on culture days 28 and 35, respectively (n = 50 - 59). CD19+IgM+ cells were detected at a frequency of 31.2 ± 2.6% and were produced at a yield of 113 ± 26 cells per input CD34+ cell on culture day 35 (n = 50 - 59). The B cell receptor loci of CB-derived B cells were sequenced to confirm V(D)J gene rearrangement. ELISpot analysis revealed that ASCs were generated at a frequency of 570 ± 57 per 10,000 day 35 cells, with an average IgM+ ASC yield of 16 ± 2 cells per input CD34+ cell (n = 33 - 42). PSC-derived HSPCs were generated using the STEMdiff™ Hematopoietic - EB reagents and differentiated to CD10+CD19+ B cells with a frequency of 4 ± 0.8% after 28 days of culture (n = 37, 1 embryonic and 3 induced pluripotent stem cell lines tested). Subsequent culture of PSC-derived HSPCs increased CD19+ frequency and generated ASCs from 1 - 2 iPSC lines. This method is the first report of a serum- and feeder-free system for the generation of B cells from CB and PSCs, enabling further B lineage-specific research for potential future clinical applications.

Keywords: stem cells, B cells, immunology, hematopoiesis, PSC, differentiation

Procedia PDF Downloads 58
5169 Differential Expression of Biomarkers in Cancer Stem Cells and Side Populations in Breast Cancer Cell Lines

Authors: Dipali Dhawan

Abstract:

Cancerous epithelial cells are confined to a primary site by the continued expression of adhesion molecules and the intact basal lamina. However, as the cancer progresses some cells are believed to undergo an epithelial-mesenchymal transition (EMT) event, leading to increased motility, invasion and, ultimately, metastasis of the cells from the primary tumour to secondary sites within the body. These disseminated cancer cells need the ability to self-renew, as stem cells do, in order to establish and maintain a heterogeneous metastatic tumour mass. Identification of the specific subpopulation of cancer stem cells amenable to the process of metastasis is highly desirable. In this study, we have isolated and characterized cancer stem cells from luminal and basal breast cancer cell lines (MDA-MB-231, MDA-MB-453, MDA-MB-468, MCF7 and T47D) on the basis of cell surface markers CD44 and CD24; as well as Side Populations (SP) using Hoechst 33342 dye efflux. The isolated populations were analysed for epithelial and mesenchymal markers like E-cadherin, N-cadherin, Sfrp1 and Vimentin by Western blotting and Immunocytochemistry. MDA-MB-231 cell lines contain a major population of CD44+CD24- cells whereas MCF7, T47D and MDA-MB-231 cell lines show a side population. We observed higher expression of N-cadherin in MCF-7 SP cells as compared to MCF-7NSP (Non-side population) cells suggesting that the SP cells are mesenchymal like cells and hence express increased N-cadherin with stem cell-like properties. There was an expression of Sfrp1 in the MCF7- NSP cells as compared to no expression in MCF7-SP cells, which suggests that the Wnt pathway is expressed in the MCF7-SP cells. The mesenchymal marker Vimentin was expressed only in MDA-MB-231 cells. Hence, understanding the breast cancer heterogeneity would enable a better understanding of the disease progression and therapeutic targeting.

Keywords: cancer stem cells, epithelial to mesenchymal transition, biomarkers, breast cancer

Procedia PDF Downloads 526
5168 Additive Manufacturing of Titanium Metamaterials for Tissue Engineering

Authors: Tuba Kizilirmak

Abstract:

Distinct properties of porous metamaterials have been largely processed for biomedicine requiring a three-dimensional (3D) porous structure engaged with fine mechanical features, biodegradation ability, and biocompatibility. Applications of metamaterials are (i) porous orthopedic and dental implants; (ii) in vitro cell culture of metamaterials and bone regeneration of metamaterials in vivo; (iii) macro-, micro, and nano-level porous metamaterials for sensors, diagnosis, and drug delivery. There are some specific properties to design metamaterials for tissue engineering. These are surface to volume ratio, pore size, and interconnection degrees are selected to control cell behavior and bone ingrowth. In this study, additive manufacturing technique selective laser melting will be used to print the scaffolds. Selective Laser Melting prints the 3D components according to designed 3D CAD models and manufactured materials, adding layers progressively by layer. This study aims to design metamaterials with Ti6Al4V material, which gives benefit in respect of mechanical and biological properties. Ti6Al4V scaffolds will support cell attachment by conferring a suitable area for cell adhesion. This study will control the osteoblast cell attachment on Ti6Al4V scaffolds after the determination of optimum stiffness and other mechanical properties which are close to mechanical properties of bone. Before we produce the samples, we will use a modeling technique to simulate the mechanical behavior of samples. These samples include different lattice models with varying amounts of porosity and density.

Keywords: additive manufacturing, titanium lattices, metamaterials, porous metals

Procedia PDF Downloads 194
5167 Photocatalytic Activity of Polypyrrole/ZnO Composites for Degradation of Dye Reactive Red 45 in Wastewater

Authors: Ljerka Kratofil Krehula, Vanja Gilja, Andrea Husak, Sniježana Šuka, Zlata Hrnjak-Murgić

Abstract:

Zinc oxide (ZnO) can be used as photocatalysts for water purification. However, one particular interest is given on the integration of inorganic ZnO nanoclusters with conducting polymers because the resulting nanocomposites may possess unique properties and enhanced photocatalytic activity in comparison to pure ZnO, using UV and also visible light. It is needed to explore the appropriate structure of polypyrrole that can induce activation of ZnO photocatalyst since the synthesis of organic/inorganic hybrid materials can result in a synergistic and complementary feature, increasing ZnO photocatalytic efficiency. In this paper several different composites of polypyrrole/zinc oxide (ZnO) were studied. Composite samples were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), cyclic voltammetry (CV) and scanning electron microscopy (SEM). The photocatalytic efficiency of prepared samples was studied as a decomposition of Reactive Red 45 (RR 45) dye, which was monitored by UV-Vis spectroscopy as a change in absorbance of characteristic wavelength at 542 nm. Results show good photocatalytic efficiency of all nanocomposite samples.

Keywords: photocatalysis, polypyrrole, wastewater, zinc oxide

Procedia PDF Downloads 266
5166 The Response of Soil Biodiversity to Agriculture Practice in Rhizosphere

Authors: Yan Wang, Guowei Chen, Gang Wang

Abstract:

Soil microbial diversity is one of the important parameters to assess the soil fertility and soil health, even stability of the ecosystem. In this paper, we aim to reveal the soil microbial difference in rhizosphere and root zone, even to pick the special biomarkers influenced by the long term tillage practices, which included four treatments of no-tillage, ridge tillage, continuous cropping with corn and crop rotation with corn and soybean. Here, high-throughput sequencing was performed to investigate the difference of bacteria in rhizosphere and root zone. The results showed a very significant difference of species richness between rhizosphere and root zone soil at the same crop rotation system (p < 0.01), and also significant difference of species richness was found between continuous cropping with corn and corn-soybean rotation treatment in the rhizosphere statement, no-tillage and ridge tillage in root zone soils. Implied by further beta diversity analysis, both tillage methods and crop rotation systems influence the soil microbial diversity and community structure in varying degree. The composition and community structure of microbes in rhizosphere and root zone soils were clustered distinctly by the beta diversity (p < 0.05). Linear discriminant analysis coupled with effect size (LEfSe) analysis of total taxa in rhizosphere picked more than 100 bacterial taxa, which were significantly more abundant than that in root zone soils, whereas the number of biomarkers was lower between the continuous cropping with corn and crop rotation treatment, the same pattern was found at no-tillage and ridge tillage treatment. Bacterial communities were greatly influenced by main environmental factors in large scale, which is the result of biological adaptation and acclimation, hence it is beneficial for optimizing agricultural practices.

Keywords: tillage methods, biomarker, biodiversity, rhizosphere

Procedia PDF Downloads 163
5165 A Concept for Flexible Battery Cell Manufacturing from Low to Medium Volumes

Authors: Tim Giesen, Raphael Adamietz, Pablo Mayer, Philipp Stiefel, Patrick Alle, Dirk Schlenker

Abstract:

The competitiveness and success of new electrical energy storages such as battery cells are significantly dependent on a short time-to-market. Producers who decide to supply new battery cells to the market need to be easily adaptable in manufacturing with respect to the early customers’ needs in terms of cell size, materials, delivery time and quantity. In the initial state, the required output rates do not yet allow the producers to have a fully automated manufacturing line nor to supply handmade battery cells. Yet there was no solution for manufacturing battery cells in low to medium volumes in a reproducible way. Thus, in terms of cell format and output quantity, a concept for the flexible assembly of battery cells was developed by the Fraunhofer-Institute for Manufacturing Engineering and Automation. Based on clustered processes, the modular system platform can be modified, enlarged or retrofitted in a short time frame according to the ordered product. The paper shows the analysis of the production steps from a conventional battery cell assembly line. Process solutions were found by using I/O-analysis, functional structures, and morphological boxes. The identified elementary functions were subsequently clustered by functional coherences for automation solutions and thus the single process cluster was generated. The result presented in this paper enables to manufacture different cell products on the same production system using seven process clusters. The paper shows the solution for a batch-wise flexible battery cell production using advanced process control. Further, the performed tests and benefits by using the process clusters as cyber-physical systems for an integrated production and value chain are discussed. The solution lowers the hurdles for SMEs to launch innovative cell products on the global market.

Keywords: automation, battery production, carrier, advanced process control, cyber-physical system

Procedia PDF Downloads 338
5164 Effects of Starvation, Glucose Treatment and Metformin on Resistance in Chronic Myeloid Leukemia Cells

Authors: Nehir Nebioglu

Abstract:

Chemotherapy is widely used for the treatment of cancer. Doxorubicin is an anti-cancer chemotherapy drug that is classified as an anthracycline antibiotic. Antitumor antibiotics consist of natural products produced by species of the soil fungus Streptomyces. These drugs act in multiple phases of the cell cycle and are known cell-cycle specific. Although DOX is a precious clinical antineoplastic agent, resistance is also a problem that limits its utility besides cardiotoxicity problem. The drug resistance of cancer cells results from multiple factors including individual variation, genetic heterogeneity within a tumor, and cellular evolution. The mechanism of resistance is thought to involve, in particular, ABCB1 (MDR1, Pgp) and ABCC1 (MRP1) as well as other transporters. Several studies on DOX-resistant cell lines have shown that resistance can be overcome by an inhibition of ABCB1, ABCC1, and ABCC2. This study attempts to understand the effects of different concentration levels of glucose treatment and starvation on the proliferation of Doxorubicin resistant cancer cells lines. To understand the effect of starvation, K562/Dox and K562 cell lines were treated with 0, 5 nM, 50 nM, 500 nM, 5 uM and 50 uM Dox concentrations in both starvation and normal medium conditions. In addition to this, to interpret the effect of glucose treatment, different concentrations (0, 1 mM, 5 mM, 25 mM) of glucose were applied to Dox-treated (with 0, 5 nM, 50 nM, 500 nM, 5 uM and 50 uM) K562/Dox and K652 cell lines. All results show significant decreasing in the cell count of K562/Dox, when cells were starved. However, while proliferation of K562/Dox lines decrease is associated with the increasingly applied Dox concentration, K562/Dox starved ones remain at the same proliferation level. Thus, the results imply that an amount of K562/Dox lines gain starvation resistance and remain resistant. Furthermore, for K562/Dox, there is no clear effect of glucose treatment in terms of cell proliferation. In the presence of a moderate level of glucose (5 mM), proliferation increases compared to other concentration of glucose for each different Dox application. On the other hand, a significant increase in cell proliferation in moderate level of glucose is only observed in 5 uM Dox concentration. The moderate concentration level of Dox can be examined in further studies. For the high amount of glucose (25 mM), cell proliferation levels are lower than moderate glucose application. The reason could be high amount of glucose may not be absorbable by cells. Also, in the presence of low amount of glucose, proliferation is decreasing in an orderly manner of increase in Dox concentration. This situation can be explained by the glucose depletion -Warburg effect- in the literature.

Keywords: drug resistance, cancer cells, chemotherapy, doxorubicin

Procedia PDF Downloads 176
5163 Response of Grower Turkeys to Diets Containing Moringa oleifera Leaf Meal in a Tropical Environment

Authors: Augustine O. Ani, Ifeyinwa E. Ezemagu, Eunice A. Akuru

Abstract:

A seven-week study was conducted to evaluate the response of grower turkeys to varying dietary levels of Moringa oleifera leaf meal (MOLM) in a humid tropical environment. A total of 90 twelve weeks old male and female grower turkeys were randomly divided into five groups of 18 birds each in a completely randomized design (CRD) and assigned to five caloric (2.57-2.60 Mcal/kg ME) and isonitrogenous (19.95% crude protein) diets containing five levels (0, 15, 20, 25 and 30%) of MOLM, respectively. Each treatment was replicated three times with 6 birds per replicate housed in a deep litter pen of fresh wood shavings measuring 1.50m x 1.50m. Feed and water were provided to the birds' ad libitum. Parameters measured were: final live weight (FLW) daily weight gain (DWG), daily feed intake (DFI), feed conversion ratio (FCR), protein efficiency ratio (PER), packed cell volume (PCV), haemoglobin concentration (Hb), red blood cell (RBC) count, white blood cell (WBC) count, mean cell volume (MCV), mean cell haemoglobin (MCH) and mean cell haemoglobin concentration (MCHC), feed cost / kg weight gain and apparent nutrient retention. Results showed that grower turkeys fed 20% MOLM diet had significantly (p < 0.05) higher FLW and DWG values (4410.30 g and 34.49 g, respectively) and higher DM and NFE retention values (67.28 and 58.12%, respectively) than turkeys fed other MOLM diets. Feed cost per kg gain decreased significantly (p < 0.05) with increasing levels of MOLM in the diets. The PCV, Hb, WBC, MCV, MCH and MCHC values of grower turkeys fed 20% MOLM diet were significantly (p < 0.05) higher than those of grower turkeys fed other diets. It was concluded that a diet containing 20% MOLM is adequate for the normal growth of grower turkeys in the tropics.

Keywords: Diets, grower turkeys, Moringa oleifera leaf meal, response, tropical environment

Procedia PDF Downloads 144
5162 Development of a Feedback Control System for a Lab-Scale Biomass Combustion System Using Programmable Logic Controller

Authors: Samuel O. Alamu, Seong W. Lee, Blaise Kalmia, Marc J. Louise Caballes, Xuejun Qian

Abstract:

The application of combustion technologies for thermal conversion of biomass and solid wastes to energy has been a major solution to the effective handling of wastes over a long period of time. Lab-scale biomass combustion systems have been observed to be economically viable and socially acceptable, but major concerns are the environmental impacts of the process and deviation of temperature distribution within the combustion chamber. Both high and low combustion chamber temperature may affect the overall combustion efficiency and gaseous emissions. Therefore, there is an urgent need to develop a control system which measures the deviations of chamber temperature from set target values, sends these deviations (which generates disturbances in the system) in the form of feedback signal (as input), and control operating conditions for correcting the errors. In this research study, major components of the feedback control system were determined, assembled, and tested. In addition, control algorithms were developed to actuate operating conditions (e.g., air velocity, fuel feeding rate) using ladder logic functions embedded in the Programmable Logic Controller (PLC). The developed control algorithm having chamber temperature as a feedback signal is integrated into the lab-scale swirling fluidized bed combustor (SFBC) to investigate the temperature distribution at different heights of the combustion chamber based on various operating conditions. The air blower rates and the fuel feeding rates obtained from automatic control operations were correlated with manual inputs. There was no observable difference in the correlated results, thus indicating that the written PLC program functions were adequate in designing the experimental study of the lab-scale SFBC. The experimental results were analyzed to study the effect of air velocity operating at 222-273 ft/min and fuel feeding rate of 60-90 rpm on the chamber temperature. The developed temperature-based feedback control system was shown to be adequate in controlling the airflow and the fuel feeding rate for the overall biomass combustion process as it helps to minimize the steady-state error.

Keywords: air flow, biomass combustion, feedback control signal, fuel feeding, ladder logic, programmable logic controller, temperature

Procedia PDF Downloads 129
5161 Analysis of Universal Mobile Telecommunications Service (UMTS) Planning Using High Altitude Platform Station (HAPS)

Authors: Yosika Dian Komala, Uke Kurniawan Usman, Yuyun Siti Rohmah

Abstract:

The enable technology fills up needs of high-speed data service is Universal Mobile Telecommunications Service (UMTS). UMTS has a data rate up to 2Mbps.UMTS terrestrial system has a coverage area about 1-2km. High Altitude Platform Station (HAPS) can be built by a macro cell that is able to serve the wider area. Design method of UMTS using HAPS is planning base on coverage and capacity. The planning method is simulated with 2.8.1 Atoll’s software. Determination of radius of the cell based on the coverage uses free space loss propagation model. While the capacity planning to determine the average cell through put is available with the Offered Bit Quantity (OBQ).

Keywords: UMTS, HAPS, coverage planning, capacity planning, signal level, Ec/Io, overlapping zone, throughput

Procedia PDF Downloads 639
5160 Implementation of IWA-ASM1 Model for Simulating the Wastewater Treatment Plant of Beja by GPS-X 5.1

Authors: Fezzani Boubaker

Abstract:

The modified activated sludge model (ASM1 or Mantis) is a generic structured model and a common platform for dynamic simulation of varieties of aerobic processes for optimization and upgrading of existing plants and for new facilities design. In this study, the modified ASM1 included in the GPS-X software was used to simulate the wastewater treatment plant (WWTP) of Beja treating domestic sewage mixed with baker‘s yeast factory effluent. The results of daily measurements and operating records were used to calibrate the model. A sensitivity and an automatic optimization analysis were conducted to determine the most sensitive and optimal parameters. The results indicated that the ASM1 model could simulate with good accuracy: the COD concentration of effluents from the WWTP of Beja for all months of the year 2012. In addition, it prevents the disruption observed at the output of the plant by injecting the baker‘s yeast factory effluent at high concentrations varied between 20 and 80 g/l.

Keywords: ASM1, activated sludge, baker’s yeast effluent, modelling, simulation, GPS-X 5.1 software

Procedia PDF Downloads 343
5159 Impact of Fermentation Time and Microbial Source on Physicochemical Properties, Total Phenols and Antioxidant Activity of Finger Millet Malt Beverage

Authors: Henry O. Udeha, Kwaku G. Duodub, Afam I. O. Jideanic

Abstract:

Finger millet (FM) [Eleusine coracana] is considered as a potential ‘‘super grain’’ by the United States National Academies as one of the most nutritious among all the major cereals. The regular consumption of FM-based diets has been associated with reduced risk of diabetes, cataract and gastrointestinal tract disorder. Hyperglycaemic, hypocholesterolaemic and anticataractogenic, and other health improvement properties have been reported. This study examined the effect of fermentation time and microbial source on physicochemical properties, phenolic compounds and antioxidant activity of two finger millet (FM) malt flours. Sorghum was used as an external reference. The grains were malted, mashed and fermented using the grain microflora and Lactobacillus fermentum. The phenolic compounds of the resulting beverage were identified and quantified using ultra-performance liquid chromatography (UPLC) and mass spectrometer system (MS). A fermentation-time dependent decrease in pH and viscosities of the beverages, with a corresponding increase in sugar content were noted. The phenolic compounds found in the FM beverages were protocatechuic acid, catechin and epicatechin. Decrease in total phenolics of the beverages was observed with increased fermentation time. The beverages exhibited 2, 2-diphenyl-1-picrylhydrazyl, 2, 2՛-azinobis-3-ethylbenzthiazoline-6-sulfonic acid radical scavenging action and iron reducing activities, which were significantly (p < 0.05) reduced at 96 h fermentation for both microbial sources. The 24 h fermented beverages retained a higher amount of total phenolics and had higher antioxidant activity compared to other fermentation periods. The study demonstrates that FM could be utilised as a functional grain in the production of non-alcoholic beverage with important phenolic compounds for health promotion and wellness.

Keywords: antioxidant activity, eleusine coracana, fermentation, phenolic compounds

Procedia PDF Downloads 108
5158 Nanowire Substrate to Control Differentiation of Mesenchymal Stem Cells

Authors: Ainur Sharip, Jose E. Perez, Nouf Alsharif, Aldo I. M. Bandeas, Enzo D. Fabrizio, Timothy Ravasi, Jasmeen S. Merzaban, Jürgen Kosel

Abstract:

Bone marrow-derived human mesenchymal stem cells (MSCs) are attractive candidates for tissue engineering and regenerative medicine, due to their ability to differentiate into osteoblasts, chondrocytes or adipocytes. Differentiation is influenced by biochemical and biophysical stimuli provided by the microenvironment of the cell. Thus, altering the mechanical characteristics of a cell culture scaffold can directly influence a cell’s microenvironment and lead to stem cell differentiation. Mesenchymal stem cells were cultured on densely packed, vertically aligned magnetic iron nanowires (NWs) and the effect of NWs on the cell cytoskeleton rearrangement and differentiation were studied. An electrochemical deposition method was employed to fabricate NWs into nanoporous alumina templates, followed by a partial release to reveal the NW array. This created a cell growth substrate with free-standing NWs. The Fe NWs possessed a length of 2-3 µm, with each NW having a diameter of 33 nm on average. Mechanical stimuli generated by the physical movement of these iron NWs, in response to a magnetic field, can stimulate osteogenic differentiation. Induction of osteogenesis was estimated using an osteogenic marker, osteopontin, and a reduction of stem cell markers, CD73 and CD105. MSCs were grown on the NWs, and fluorescent microscopy was employed to monitor the expression of markers. A magnetic field with an intensity of 250 mT and a frequency of 0.1 Hz was applied for 12 hours/day over a period of one week and two weeks. The magnetically activated substrate enhanced the osteogenic differentiation of the MSCs compared to the culture conditions without magnetic field. Quantification of the osteopontin signal revealed approximately a seven-fold increase in the expression of this protein after two weeks of culture. Immunostaining staining against CD73 and CD105 revealed the expression of antibodies at the earlier time point (two days) and a considerable reduction after one-week exposure to a magnetic field. Overall, these results demonstrate the application of a magnetic NW substrate in stimulating the osteogenic differentiation of MSCs. This method significantly decreases the time needed to induce osteogenic differentiation compared to commercial biochemical methods, such as osteogenic differentiation kits, that usually require more than two weeks. Contact-free stimulation of MSC differentiation using a magnetic field has potential uses in tissue engineering, regenerative medicine, and bone formation therapies.

Keywords: cell substrate, magnetic nanowire, mesenchymal stem cell, stem cell differentiation

Procedia PDF Downloads 197
5157 Addressing Microbial Contamination in East Hararghe, Oromia, Ethiopia: Improving Water Sanitation Infrastructure and Promoting Safe Water Practices for Enhanced Food Safety

Authors: Tuji Jemal Ahmed, Hussen Beker Yusuf

Abstract:

Food safety is a major concern worldwide, with microbial contamination being one of the leading causes of foodborne illnesses. In Ethiopia, drinking water and untreated groundwater are a primary source of microbial contamination, leading to significant health risks. East Hararghe, Oromia, is one of the regions in Ethiopia that has been affected by this problem. This paper provides an overview of the impact of untreated groundwater on human health in Haramaya Rural District, East Hararghe and highlights the urgent need for sustained efforts to address the water sanitation supply problem. The use of untreated groundwater for drinking and household purposes in Haramaya Rural District, East Hararghe is prevalent, leading to high rates of waterborne illnesses such as diarrhea, typhoid fever, and cholera. The impact of these illnesses on human health is significant, resulting in significant morbidity and mortality, especially among vulnerable populations such as children and the elderly. In addition to the direct health impacts, waterborne illnesses also have indirect impacts on human health, such as reduced productivity and increased healthcare costs. Groundwater sources are susceptible to microbial contamination due to the infiltration of surface water, human and animal waste, and agricultural runoff. In Haramaya Rural District, East Hararghe, poor water management practices, inadequate sanitation facilities, and limited access to clean water sources contribute to the prevalence of untreated groundwater as a primary source of drinking water. These underlying causes of microbial contamination highlight the need for improved water sanitation infrastructure, including better access to safe drinking water sources and the implementation of effective treatment methods. The paper emphasizes the need for regular water quality monitoring, especially for untreated groundwater sources, to ensure safe drinking water for the population. The implementation of effective preventive measures, such as the use of effective disinfectants, proper waste disposal methods, and regular water quality monitoring, is crucial to reducing the risk of contamination and improving public health outcomes in the region. Community education and awareness-raising campaigns can also play a critical role in promoting safe water practices and reducing the risk of contamination. These campaigns can include educating the population on the importance of boiling water before drinking, the use of water filters, and proper sanitation practices. In conclusion, the use of untreated groundwater as a primary source of drinking water in East Hararghe, Oromia, Ethiopia, has significant impacts on human health, leading to widespread waterborne illnesses and posing a significant threat to public health. Sustained efforts are urgently needed to address the root causes of contamination, such as poor sanitation and hygiene practices, improper waste management, and the water sanitation supply problem, including the implementation of effective preventive measures and community-based education programs, ultimately improving public health outcomes in the region. A comprehensive approach that involves community-based water management systems, point-of-use water treatment methods, and awareness-raising campaigns can contribute to reducing the incidence of microbial contamination in the region.

Keywords: food safety, health risks, microbial contamination, untreated groundwater

Procedia PDF Downloads 114
5156 A Precision Medicine Approach to Sickle Cell Disease by Targeting the Adhesion Interactome

Authors: Anthara Vivek, Manisha Shukla, Mahesh Narayan, Prakash Narayan

Abstract:

Sickle cell disease disproportionately affects sub-Saharan Africa and certain tribal populaces in India and has consequently drawn little intertest from Pharma. In sickle cell patients, adhesion of erythrocytes or reticulocytes to one another and the vessel wall results in painful ischemic episodes with few, if any, effective treatments for vaso-occlusive crises. Identification of disease-associated adhesion markers on erythrocytes or reticulocytes might inform the use of more effective therapies against vaso-occlusive crises. Increased expression of one or more of bcam, itga4, cd44, cd47, rap1a, vcam1, or icam4 has been reported in sickle cell subjects. Using the miRNet ontology knowledgebase, peripheral blood interactomes were generated by seeding various combinations of the afore-referenced mRNA. These interactomes yielded an array of miR targets. As examples, targeting hsa-miR-155-5p can potentially neutralize the rap1a-bcam-cd44-itga4-vcam1 erythrocyte/reticulocyte adhesion interactome whereas targeting hsa-miRs-103a-3p or 107 can potentially neutralize adhesion in cells overexpressing icam4-cd47-bcam-itga4-cd36. AM3380 (MIRacle™) is an off-the shelf hsa-miR-155-5p agomiR that can potentially neutralize the rap1a-bcam-cd44-itga4-vcam1 signaling axis. Phlebotomy coupled with transcriptomics represents a potentially feasible and effective precision medicine strategy to mitigate vaso-occlusive crises in sickle cell patients.

Keywords: adhesion, interactome, precision, medicine

Procedia PDF Downloads 78