Search results for: thermal network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8141

Search results for: thermal network

6641 Hysteresis Modeling in Iron-Dominated Magnets Based on a Deep Neural Network Approach

Authors: Maria Amodeo, Pasquale Arpaia, Marco Buzio, Vincenzo Di Capua, Francesco Donnarumma

Abstract:

Different deep neural network architectures have been compared and tested to predict magnetic hysteresis in the context of pulsed electromagnets for experimental physics applications. Modelling quasi-static or dynamic major and especially minor hysteresis loops is one of the most challenging topics for computational magnetism. Recent attempts at mathematical prediction in this context using Preisach models could not attain better than percent-level accuracy. Hence, this work explores neural network approaches and shows that the architecture that best fits the measured magnetic field behaviour, including the effects of hysteresis and eddy currents, is the nonlinear autoregressive exogenous neural network (NARX) model. This architecture aims to achieve a relative RMSE of the order of a few 100 ppm for complex magnetic field cycling, including arbitrary sequences of pseudo-random high field and low field cycles. The NARX-based architecture is compared with the state-of-the-art, showing better performance than the classical operator-based and differential models, and is tested on a reference quadrupole magnetic lens used for CERN particle beams, chosen as a case study. The training and test datasets are a representative example of real-world magnet operation; this makes the good result obtained very promising for future applications in this context.

Keywords: deep neural network, magnetic modelling, measurement and empirical software engineering, NARX

Procedia PDF Downloads 130
6640 A Secure Routing Algorithm for ‎Underwater Wireless Sensor Networks

Authors: Seyed Mahdi Jameii

Abstract:

Underwater wireless sensor networks have been attracting the interest of many ‎researchers lately, and the past three decades have beheld the rapid progress of ‎underwater acoustic communication. One of the major problems in underwater wireless ‎sensor networks is how to transfer data from the moving node to the base stations and ‎choose the optimized route for data transmission. Secure routing in underwater ‎wireless sensor network (UWCNs) is necessary for packet delivery. Some routing ‎protocols are proposed for underwater wireless sensor networks. However, a few ‎researches have been done on secure routing in underwater sensor networks. In this ‎article, a secure routing protocol is provided to resist against wormhole and sybil ‎attacks. The results indicated acceptable performance in terms of increasing the packet ‎delivery ratio with regards to the attacks, increasing network lifetime by creating ‎balance in the network energy consumption, high detection rates against the attacks, ‎and low-end to end delay.‎

Keywords: attacks, routing, security, underwater wireless sensor networks

Procedia PDF Downloads 418
6639 An Efficient Algorithm for Global Alignment of Protein-Protein Interaction Networks

Authors: Duc Dong Do, Ngoc Ha Tran, Thanh Hai Dang, Cao Cuong Dang, Xuan Huan Hoang

Abstract:

Global aligning two protein-protein interaction networks is an essentially important task in bioinformatics/computational biology field of study. It is a challenging and widely studied research topic in recent years. Accurately aligned networks allow us to identify functional modules of proteins and/ororthologous proteins from which unknown functions of a protein can be inferred. We here introduce a novel efficient heuristic global network alignment algorithm called FASTAn, including two phases: the first to construct an initial alignment and the second to improve such alignment by exerting a local optimization repeated procedure. The experimental results demonstrated that FASTAn outperformed the state-of-the-art global network alignment algorithm namely SPINAL in terms of both commonly used objective scores and the run-time.

Keywords: FASTAn, Heuristic algorithm, biological network alignment, protein-protein interaction networks

Procedia PDF Downloads 604
6638 Load Forecasting Using Neural Network Integrated with Economic Dispatch Problem

Authors: Mariyam Arif, Ye Liu, Israr Ul Haq, Ahsan Ashfaq

Abstract:

High cost of fossil fuels and intensifying installations of alternate energy generation sources are intimidating main challenges in power systems. Making accurate load forecasting an important and challenging task for optimal energy planning and management at both distribution and generation side. There are many techniques to forecast load but each technique comes with its own limitation and requires data to accurately predict the forecast load. Artificial Neural Network (ANN) is one such technique to efficiently forecast the load. Comparison between two different ranges of input datasets has been applied to dynamic ANN technique using MATLAB Neural Network Toolbox. It has been observed that selection of input data on training of a network has significant effects on forecasted results. Day-wise input data forecasted the load accurately as compared to year-wise input data. The forecasted load is then distributed among the six generators by using the linear programming to get the optimal point of generation. The algorithm is then verified by comparing the results of each generator with their respective generation limits.

Keywords: artificial neural networks, demand-side management, economic dispatch, linear programming, power generation dispatch

Procedia PDF Downloads 189
6637 Scheduling Tasks in Embedded Systems Based on NoC Architecture

Authors: D. Dorota

Abstract:

This paper presents a method to generate and schedule task in the architecture of embedded systems based on the simulated annealing. This method takes into account the attribute of divisibility of tasks. A proposal represents the process in the form of trees. Despite the fact that the architecture of Network-on-Chip (NoC) is an interesting alternative to a bus architecture based on multi-processors systems, it requires a lot of work that ensures the optimization of communication. This paper proposes an effective approach to generate dedicated NoC topology solving communication problems. Network NoC is generated taking into account the energy consumption and resource issues. Ultimately generated is minimal, dedicated NoC topology. The proposed solution is assumed to be a simple router design and the minimum number of lines.

Keywords: Network-on-Chip, NoC-based embedded systems, scheduling task in embedded systems, simulated annealing

Procedia PDF Downloads 377
6636 Multi-Stream Graph Attention Network for Recommendation with Knowledge Graph

Authors: Zhifei Hu, Feng Xia

Abstract:

In recent years, Graph neural network has been widely used in knowledge graph recommendation. The existing recommendation methods based on graph neural network extract information from knowledge graph through entity and relation, which may not be efficient in the way of information extraction. In order to better propose useful entity information for the current recommendation task in the knowledge graph, we propose an end-to-end Neural network Model based on multi-stream graph attentional Mechanism (MSGAT), which can effectively integrate the knowledge graph into the recommendation system by evaluating the importance of entities from both users and items. Specifically, we use the attention mechanism from the user's perspective to distil the domain nodes information of the predicted item in the knowledge graph, to enhance the user's information on items, and generate the feature representation of the predicted item. Due to user history, click items can reflect the user's interest distribution, we propose a multi-stream attention mechanism, based on the user's preference for entities and relationships, and the similarity between items to be predicted and entities, aggregate user history click item's neighborhood entity information in the knowledge graph and generate the user's feature representation. We evaluate our model on three real recommendation datasets: Movielens-1M (ML-1M), LFM-1B 2015 (LFM-1B), and Amazon-Book (AZ-book). Experimental results show that compared with the most advanced models, our proposed model can better capture the entity information in the knowledge graph, which proves the validity and accuracy of the model.

Keywords: graph attention network, knowledge graph, recommendation, information propagation

Procedia PDF Downloads 117
6635 Thermal-Fluid Characteristics of Heating Element in Rotary Heat Exchanger in Accordance with Fouling Phenomena

Authors: Young Mun Lee, Seon Ho Kim, Seok Min Choi, JeongJu Kim, Seungyeong Choi, Hyung Hee Cho

Abstract:

To decrease sulfur oxide in the flue gas from coal power plant, a flue gas de-sulfurization facility is operated. In the reactor, a chemical reaction occurs with a temperature change of the gas so that sulfur oxide is removed and cleaned air is emitted. In this process, temperature change induces a serious problem which is a cold erosion of stack. To solve this problem, the rotary heat exchanger is managed before the stack. In the heat exchanger, a heating element is equipped to increase a heat transfer area. Heat transfer and pressure loss is a big issue to improve a performance. In this research, thermal-fluid characteristics of the heating element are analyzed by computational fluid dynamics. Fouling simulation is also conducted to calculate a performance of heating element. Numerical analysis is performed on the situation where plugging phenomenon has already occurred and existed in the inlet region of the heating element. As the pressure of the rear part of the plugging decreases suddenly and the flow velocity becomes slower, it is found that the flow is gathered from both sides as it develops in the flow direction, and it is confirmed that the pressure difference due to plugging is increased.

Keywords: heating element, plugging, rotary heat exchanger, thermal fluid characteristics

Procedia PDF Downloads 485
6634 Investigation of Clustering Algorithms Used in Wireless Sensor Networks

Authors: Naim Karasekreter, Ugur Fidan, Fatih Basciftci

Abstract:

Wireless sensor networks are networks in which more than one sensor node is organized among themselves. The working principle is based on the transfer of the sensed data over the other nodes in the network to the central station. Wireless sensor networks concentrate on routing algorithms, energy efficiency and clustering algorithms. In the clustering method, the nodes in the network are divided into clusters using different parameters and the most suitable cluster head is selected from among them. The data to be sent to the center is sent per cluster, and the cluster head is transmitted to the center. With this method, the network traffic is reduced and the energy efficiency of the nodes is increased. In this study, clustering algorithms were examined in terms of clustering performances and cluster head selection characteristics to try to identify weak and strong sides. This work is supported by the Project 17.Kariyer.123 of Afyon Kocatepe University BAP Commission.

Keywords: wireless sensor networks (WSN), clustering algorithm, cluster head, clustering

Procedia PDF Downloads 513
6633 Mechanical Properties of Kenaf Reinforced Composite with Different Fiber Orientation

Authors: Y. C. Ching, K. H. Chong

Abstract:

The increasing of environmental awareness has led to grow interest in the expansion of materials with eco-friendly attributes. In this study, a 3 ply sandwich layer of kenaf fiber reinforced unsaturated polyester with various fiber orientations was developed. The effect of the fiber orientation on mechanical and thermal stability properties of polyester was studied. Unsaturated polyester as a face sheets and kenaf fibers as a core was fabricated with combination of hand lay-up process and cold compression method. Tested result parameters like tensile, flexural, impact strength, melting point, and crystallization point were compared and recorded based on different fiber orientation. The failure mechanism and property changes associated with directional change of fiber to polyester composite were discussed.

Keywords: kenaf fiber, polyester, tensile, thermal stability

Procedia PDF Downloads 359
6632 A Method to Predict the Thermo-Elastic Behavior of Laser-Integrated Machine Tools

Authors: C. Brecher, M. Fey, F. Du Bois-Reymond, S. Neus

Abstract:

Additive manufacturing has emerged into a fast-growing section within the manufacturing technologies. Established machine tool manufacturers, such as DMG MORI, recently presented machine tools combining milling and laser welding. By this, machine tools can realize a higher degree of flexibility and a shorter production time. Still there are challenges that have to be accounted for in terms of maintaining the necessary machining accuracy - especially due to thermal effects arising through the use of high power laser processing units. To study the thermal behavior of laser-integrated machine tools, it is essential to analyze and simulate the thermal behavior of machine components, individual and assembled. This information will help to design a geometrically stable machine tool under the influence of high power laser processes. This paper presents an approach to decrease the loss of machining precision due to thermal impacts. Real effects of laser machining processes are considered and thus enable an optimized design of the machine tool, respective its components, in the early design phase. Core element of this approach is a matched FEM model considering all relevant variables arising, e.g. laser power, angle of laser beam, reflective coefficients and heat transfer coefficient. Hence, a systematic approach to obtain this matched FEM model is essential. Indicating the thermal behavior of structural components as well as predicting the laser beam path, to determine the relevant beam intensity on the structural components, there are the two constituent aspects of the method. To match the model both aspects of the method have to be combined and verified empirically. In this context, an essential machine component of a five axis machine tool, the turn-swivel table, serves as the demonstration object for the verification process. Therefore, a turn-swivel table test bench as well as an experimental set-up to measure the beam propagation were developed and are described in the paper. In addition to the empirical investigation, a simulative approach of the described types of experimental examination is presented. Concluding, it is shown that the method and a good understanding of the two core aspects, the thermo-elastic machine behavior and the laser beam path, as well as their combination helps designers to minimize the loss of precision in the early stages of the design phase.

Keywords: additive manufacturing, laser beam machining, machine tool, thermal effects

Procedia PDF Downloads 265
6631 Multivariate Analysis on Water Quality Attributes Using Master-Slave Neural Network Model

Authors: A. Clementking, C. Jothi Venkateswaran

Abstract:

Mathematical and computational functionalities such as descriptive mining, optimization, and predictions are espoused to resolve natural resource planning. The water quality prediction and its attributes influence determinations are adopted optimization techniques. The water properties are tainted while merging water resource one with another. This work aimed to predict influencing water resource distribution connectivity in accordance to water quality and sediment using an innovative proposed master-slave neural network back-propagation model. The experiment results are arrived through collecting water quality attributes, computation of water quality index, design and development of neural network model to determine water quality and sediment, master–slave back propagation neural network back-propagation model to determine variations on water quality and sediment attributes between the water resources and the recommendation for connectivity. The homogeneous and parallel biochemical reactions are influences water quality and sediment while distributing water from one location to another. Therefore, an innovative master-slave neural network model [M (9:9:2)::S(9:9:2)] designed and developed to predict the attribute variations. The result of training dataset given as an input to master model and its maximum weights are assigned as an input to the slave model to predict the water quality. The developed master-slave model is predicted physicochemical attributes weight variations for 85 % to 90% of water quality as a target values.The sediment level variations also predicated from 0.01 to 0.05% of each water quality percentage. The model produced the significant variations on physiochemical attribute weights. According to the predicated experimental weight variation on training data set, effective recommendations are made to connect different resources.

Keywords: master-slave back propagation neural network model(MSBPNNM), water quality analysis, multivariate analysis, environmental mining

Procedia PDF Downloads 477
6630 Rain Gauges Network Optimization in Southern Peninsular Malaysia

Authors: Mohd Khairul Bazli Mohd Aziz, Fadhilah Yusof, Zulkifli Yusop, Zalina Mohd Daud, Mohammad Afif Kasno

Abstract:

Recent developed rainfall network design techniques have been discussed and compared by many researchers worldwide due to the demand of acquiring higher levels of accuracy from collected data. In many studies, rain-gauge networks are designed to provide good estimation for areal rainfall and for flood modelling and prediction. In a certain study, even using lumped models for flood forecasting, a proper gauge network can significantly improve the results. Therefore existing rainfall network in Johor must be optimized and redesigned in order to meet the required level of accuracy preset by rainfall data users. The well-known geostatistics method (variance-reduction method) that is combined with simulated annealing was used as an algorithm of optimization in this study to obtain the optimal number and locations of the rain gauges. Rain gauge network structure is not only dependent on the station density; station location also plays an important role in determining whether information is acquired accurately. The existing network of 84 rain gauges in Johor is optimized and redesigned by using rainfall, humidity, solar radiation, temperature and wind speed data during monsoon season (November – February) for the period of 1975 – 2008. Three different semivariogram models which are Spherical, Gaussian and Exponential were used and their performances were also compared in this study. Cross validation technique was applied to compute the errors and the result showed that exponential model is the best semivariogram. It was found that the proposed method was satisfied by a network of 64 rain gauges with the minimum estimated variance and 20 of the existing ones were removed and relocated. An existing network may consist of redundant stations that may make little or no contribution to the network performance for providing quality data. Therefore, two different cases were considered in this study. The first case considered the removed stations that were optimally relocated into new locations to investigate their influence in the calculated estimated variance and the second case explored the possibility to relocate all 84 existing stations into new locations to determine the optimal position. The relocations of the stations in both cases have shown that the new optimal locations have managed to reduce the estimated variance and it has proven that locations played an important role in determining the optimal network.

Keywords: geostatistics, simulated annealing, semivariogram, optimization

Procedia PDF Downloads 302
6629 Thermal Performance of Fully Immersed Naturally Cooled Server

Authors: Yaser Al-Anii, Abdulmajeed Almaneea, Jonathan L. Summers, Harvey M. Thompson, Nikil Kapur

Abstract:

The natural convection cooling system of a fully immersed server in a dielectric liquid is studied numerically. In the present case study, the dielectric liquid represents working fluid and it is in contact with server inside capsule. The capsule includes electronic component and fluid which can be modeled as saturated porous media. This medium follow Darcy flow regime and assumed to be in balance between its components. The study focus is on role of spatial parameters on thermal behavior of convective heat transfer. Based on server known unit, which is 1U, two parameters Ly and S are changed to test their effect. Meanwhile, wide-range of modified Rayleigh number, which is 0.5 to 300, are covered to better understand thermal performance. Navier-Stokes equations are used to model physical domain. Furthermore, successive over-relaxation and time marching techniques are used to solve momentum and energy equation. From obtained correlation, the in-between distance S is more effective on Nusselt number than distance to edge Ly by approximately 14%. In addition, as S increases, the average Nusselt number of the upper unit increases sharply, whereas the lower one keeps on the same level.

Keywords: convective cooling of server, Darcy flow, liquid-immersed server, porous media

Procedia PDF Downloads 402
6628 Survey Based Data Security Evaluation in Pakistan Financial Institutions against Malicious Attacks

Authors: Naveed Ghani, Samreen Javed

Abstract:

In today’s heterogeneous network environment, there is a growing demand for distrust clients to jointly execute secure network to prevent from malicious attacks as the defining task of propagating malicious code is to locate new targets to attack. Residual risk is always there no matter what solutions are implemented or whet so ever security methodology or standards being adapted. Security is the first and crucial phase in the field of Computer Science. The main aim of the Computer Security is gathering of information with secure network. No one need wonder what all that malware is trying to do: It's trying to steal money through data theft, bank transfers, stolen passwords, or swiped identities. From there, with the help of our survey we learn about the importance of white listing, antimalware programs, security patches, log files, honey pots, and more used in banks for financial data protection but there’s also a need of implementing the IPV6 tunneling with Crypto data transformation according to the requirements of new technology to prevent the organization from new Malware attacks and crafting of its own messages and sending them to the target. In this paper the writer has given the idea of implementing IPV6 Tunneling Secessions on private data transmission from financial organizations whose secrecy needed to be safeguarded.

Keywords: network worms, malware infection propagating malicious code, virus, security, VPN

Procedia PDF Downloads 358
6627 Effect of Heat Stress on the Physiology of the Cork Oak

Authors: J. Zekri, N. Souilah, W. Abdelaziz, D. Alatou

Abstract:

Our study shall focus on the ability of trees cork oak that showed vis-à-vis sensitivity to climate change, including late spring frosts. The combination of these factors resulted in damage alarmed, therefore forest ecosystems weakened trees that can affect their ability to support other abiotic and biotic stresses, For this we tested its tolerance to thermal variations and cold weather conditions by estimating some stress markers (quantification of proteins, RNA, soluble sugars) that are quantified to evaluate the cold tolerance of seedlings. Sowing of cork oak (Quercus suber L.) is grown in controlled conditions at 25° C ± 2° C in long days 16h. These seedlings are transferred at low temperatures between 5° C and -6° C for a period of 3 hours. Biochemical analyzes were performed in the various organs of the cork oak seedlings. Cool temperatures induced a significant accumulation of proline in different organs of seedlings and the optimum concentrations were observed in the roots with very high concentrations (4 times larger than those of the control). The accumulation of soluble sugars is significantly in stems and roots at 0° C. Protein concentrations are very high in leaves of both growth and high waves in rod at -4° C to -2° C. Tolerance cork oak seems to be at the thermal limit of -2°C. The concentration of these metabolites in the various organs showed the ability oak cork hardening during the winter.

Keywords: climate change, thermal change, semi-aride, biochemical markers, heat stress

Procedia PDF Downloads 249
6626 A Prediction Model for Dynamic Responses of Building from Earthquake Based on Evolutionary Learning

Authors: Kyu Jin Kim, Byung Kwan Oh, Hyo Seon Park

Abstract:

The seismic responses-based structural health monitoring system has been performed to prevent seismic damage. Structural seismic damage of building is caused by the instantaneous stress concentration which is related with dynamic characteristic of earthquake. Meanwhile, seismic response analysis to estimate the dynamic responses of building demands significantly high computational cost. To prevent the failure of structural members from the characteristic of the earthquake and the significantly high computational cost for seismic response analysis, this paper presents an artificial neural network (ANN) based prediction model for dynamic responses of building considering specific time length. Through the measured dynamic responses, input and output node of the ANN are formed by the length of specific time, and adopted for the training. In the model, evolutionary radial basis function neural network (ERBFNN), that radial basis function network (RBFN) is integrated with evolutionary optimization algorithm to find variables in RBF, is implemented. The effectiveness of the proposed model is verified through an analytical study applying responses from dynamic analysis for multi-degree of freedom system to training data in ERBFNN.

Keywords: structural health monitoring, dynamic response, artificial neural network, radial basis function network, genetic algorithm

Procedia PDF Downloads 304
6625 Physico-Chemical Characteristics and Possibilities of Utilization of Elbasan Thermal Waters

Authors: Elvin Çomo, Edlira Tako, Albana Hasimi, Rrapo Ormeni, Olger Gjuzi, Mirela Ndrita

Abstract:

In Albania, only low enthalpy geothermal springs and wells are known, the temperatures of some of them are almost at the upper limits of low enthalpy, reaching over 60°C. These resources can be used to improve the country's energy balance, as well as for profitable economic purposes. The region of Elbasan has the greatest geothermal energy potential in Albania. This bass is one of the most popular and used in our country. This area is a surface with a number of sources, located in the form of a chain, in the sector between Llixha and Hidraj and constitutes a thermo-mineral basin with stable discharge and high temperature. The sources of Elbasan Springs, with the current average flow of thermo mineral water of 12-18 l/s and its temperature 55-65oC, have specific reserves of 39.6 GJ/m2 and potential power to install 2760 kW. For the assessment of physico-chemical parameters and heavy metals, water samples were taken at 5 monitoring stations throughout the year 2022. The levels of basic parameters were analyzed using ISO, EU and APHA 21-th edition standard methods. This study presents the current state of the physico-chemical parameters of this thermal basin, the evaluation of these parameters for curative activities and for industrial processes, as well as the integrated utilization of geothermal energy. Possibilities for using thermomineral waters for heating homes in the area around them or even further, depending on the flow from the source or geothermal well. Sensitization of Albanian investors, medical research and the community for the high economic and curative effectiveness, for the integral use of geothermal energy in this area and the development of the tourist sector. An analysis of the negative environmental impact from the use of thermal water is also provided.

Keywords: geothermal energy, Llixha, physic-chemical parameters, thermal water

Procedia PDF Downloads 138
6624 Integration of Thermal Energy Storage and Electric Heating with Combined Heat and Power Plants

Authors: Erich Ryan, Benjamin McDaniel, Dragoljub Kosanovic

Abstract:

Combined heat and power (CHP) plants are an efficient technology for meeting the heating and electric needs of large campus energy systems, but have come under greater scrutiny as the world pushes for emissions reductions and lower consumption of fossil fuels. The electrification of heating and cooling systems offers a great deal of potential for carbon savings, but these systems can be costly endeavors due to increased electric consumption and peak demand. Thermal energy storage (TES) has been shown to be an effective means of improving the viability of electrified systems, by shifting heating and cooling load to off-peak hours and reducing peak demand charges. In this study, we analyze the integration of an electrified heating and cooling system with thermal energy storage into a campus CHP plant, to investigate the potential of leveraging existing infrastructure and technologies with the climate goals of the 21st century. A TRNSYS model was built to simulate a ground source heat pump (GSHP) system with TES using measured campus heating and cooling loads. The GSHP with TES system is modeled to follow the parameters of industry standards and sized to provide an optimal balance of capital and operating costs. Using known CHP production information, costs and emissions were investigated for a unique large energy user rate structure that operates a CHP plant. The results highlight the cost and emissions benefits of a targeted integration of heat pump technology within the framework of existing CHP systems, along with the performance impacts and value of TES capability within the combined system.

Keywords: thermal energy storage, combined heat and power, heat pumps, electrification

Procedia PDF Downloads 89
6623 Mix Proportioning and Strength Prediction of High Performance Concrete Including Waste Using Artificial Neural Network

Authors: D. G. Badagha, C. D. Modhera, S. A. Vasanwala

Abstract:

There is a great challenge for civil engineering field to contribute in environment prevention by finding out alternatives of cement and natural aggregates. There is a problem of global warming due to cement utilization in concrete, so it is necessary to give sustainable solution to produce concrete containing waste. It is very difficult to produce designated grade of concrete containing different ingredient and water cement ratio including waste to achieve desired fresh and harden properties of concrete as per requirement and specifications. To achieve the desired grade of concrete, a number of trials have to be taken, and then after evaluating the different parameters at long time performance, the concrete can be finalized to use for different purposes. This research work is carried out to solve the problem of time, cost and serviceability in the field of construction. In this research work, artificial neural network introduced to fix proportion of concrete ingredient with 50% waste replacement for M20, M25, M30, M35, M40, M45, M50, M55 and M60 grades of concrete. By using the neural network, mix design of high performance concrete was finalized, and the main basic mechanical properties were predicted at 3 days, 7 days and 28 days. The predicted strength was compared with the actual experimental mix design and concrete cube strength after 3 days, 7 days and 28 days. This experimentally and neural network based mix design can be used practically in field to give cost effective, time saving, feasible and sustainable high performance concrete for different types of structures.

Keywords: artificial neural network, high performance concrete, rebound hammer, strength prediction

Procedia PDF Downloads 155
6622 Detecting Port Maritime Communities in Spain with Complex Network Analysis

Authors: Nicanor Garcia Alvarez, Belarmino Adenso-Diaz, Laura Calzada Infante

Abstract:

In recent years, researchers have shown an interest in modelling maritime traffic as a complex network. In this paper, we propose a bipartite weighted network to model maritime traffic and detect port maritime communities. The bipartite weighted network considers two different types of nodes. The first one represents Spanish ports, while the second one represents the countries with which there is major import/export activity. The flow among both types of nodes is modeled by weighting the volume of product transported. To illustrate the model, the data is segmented by each type of traffic. This will allow fine tuning and the creation of communities for each type of traffic and therefore finding similar ports for a specific type of traffic, which will provide decision-makers with tools to search for alliances or identify their competitors. The traffic with the greatest impact on the Spanish gross domestic product is selected, and the evolution of the communities formed by the most important ports and their differences between 2019 and 2009 will be analyzed. Finally, the set of communities formed by the ports of the Spanish port system will be inspected to determine global similarities between them, analyzing the sum of the membership of the different ports in communities formed for each type of traffic in particular.

Keywords: bipartite networks, competition, infomap, maritime traffic, port communities

Procedia PDF Downloads 149
6621 Domain-Specific Deep Neural Network Model for Classification of Abnormalities on Chest Radiographs

Authors: Nkechinyere Joy Olawuyi, Babajide Samuel Afolabi, Bola Ibitoye

Abstract:

This study collected a preprocessed dataset of chest radiographs and formulated a deep neural network model for detecting abnormalities. It also evaluated the performance of the formulated model and implemented a prototype of the formulated model. This was with the view to developing a deep neural network model to automatically classify abnormalities in chest radiographs. In order to achieve the overall purpose of this research, a large set of chest x-ray images were sourced for and collected from the CheXpert dataset, which is an online repository of annotated chest radiographs compiled by the Machine Learning Research Group, Stanford University. The chest radiographs were preprocessed into a format that can be fed into a deep neural network. The preprocessing techniques used were standardization and normalization. The classification problem was formulated as a multi-label binary classification model, which used convolutional neural network architecture to make a decision on whether an abnormality was present or not in the chest radiographs. The classification model was evaluated using specificity, sensitivity, and Area Under Curve (AUC) score as the parameter. A prototype of the classification model was implemented using Keras Open source deep learning framework in Python Programming Language. The AUC ROC curve of the model was able to classify Atelestasis, Support devices, Pleural effusion, Pneumonia, A normal CXR (no finding), Pneumothorax, and Consolidation. However, Lung opacity and Cardiomegaly had a probability of less than 0.5 and thus were classified as absent. Precision, recall, and F1 score values were 0.78; this implies that the number of False Positive and False Negative is the same, revealing some measure of label imbalance in the dataset. The study concluded that the developed model is sufficient to classify abnormalities present in chest radiographs into present or absent.

Keywords: transfer learning, convolutional neural network, radiograph, classification, multi-label

Procedia PDF Downloads 129
6620 The Role of Bridging Stakeholder in Water Management: Examining Social Networks in Working Groups and Co-Management

Authors: Fariba Ebrahimi, Mehdi Ghorbani

Abstract:

Comprehensive water management considers economic, environmental, technical and social sustainability of water resources for future generations. Integrated water management implies cooperative approach and involves all stakeholders and also introduces issues to managers and decision makers. Solving these issues needs integrated and system approach according to the recognition of actors or key persons in necessary to apply cooperative management of water resources. Therefore, social network analysis can be used to demonstrate the most effective actors for environmental base decisions. The linkage of diverse sets of actors and knowledge systems across management levels and institutional boundaries often poses one of the greatest challenges in adaptive water management. Bridging stakeholder can facilitate interactions among actors in management settings by lowering the transaction costs of collaboration. This research examines how network connections between group members affect in co- management. Cohesive network structures allow groups to more effectively achieve their goals and objectives Strong; centralized leadership is a better predictor of working group success in achieving goals and objectives. Finally, geometric position of each actor was illustrated in the network. The results of the research based on between centrality index have a key and bridging actor in recognition of cooperative management of water resources in Darbandsar village and also will help managers and planners of water in the case of recognition to organization and implementation of sustainable management of water resources and water security.

Keywords: co-management, water management, social network, bridging stakeholder, darbandsar village

Procedia PDF Downloads 308
6619 Visualizing the Commercial Activity of a City by Analyzing the Data Information in Layers

Authors: Taras Agryzkov, Jose L. Oliver, Leandro Tortosa, Jose Vicent

Abstract:

This paper aims to demonstrate how network models can be used to understand and to deal with some aspects of urban complexity. As it is well known, the Theory of Architecture and Urbanism has been using for decades’ intellectual tools based on the ‘sciences of complexity’ as a strategy to propose theoretical approaches about cities and about architecture. In this sense, it is possible to find a vast literature in which for instance network theory is used as an instrument to understand very diverse questions about cities: from their commercial activity to their heritage condition. The contribution of this research consists in adding one step of complexity to this process: instead of working with one single primal graph as it is usually done, we will show how new network models arise from the consideration of two different primal graphs interacting in two layers. When we model an urban network through a mathematical structure like a graph, the city is usually represented by a set of nodes and edges that reproduce its topology, with the data generated or extracted from the city embedded in it. All this information is normally displayed in a single layer. Here, we propose to separate the information in two layers so that we can evaluate the interaction between them. Besides, both layers may be composed of structures that do not have to coincide: from this bi-layer system, groups of interactions emerge, suggesting reflections and in consequence, possible actions.

Keywords: graphs, mathematics, networks, urban studies

Procedia PDF Downloads 180
6618 Forced Heat Transfer Convection in a Porous Channel with an Oriented Confined Jet

Authors: Azzedine Abdedou, Khedidja Bouhadef

Abstract:

The present study is an analysis of the forced convection heat transfer in porous channel with an oriented jet at the inlet with uniform velocity and temperature distributions. The upper wall is insulated when the bottom one is kept at constant temperature higher than that of the fluid at the entrance. The dynamic field is analysed by the Brinkman-Forchheimer extended Darcy model and the thermal field is traduced by the energy one equation model. The numerical solution of the governing equations is obtained by using the finite volume method. The results mainly concern the effect of Reynolds number, jet angle and thermal conductivity ratio on the flow structure and local and average Nusselt numbers evolutions.

Keywords: forced convection, porous media, oriented confined jet, fluid mechanics

Procedia PDF Downloads 383
6617 Preparation of Protective Coating Film on Metal Alloy

Authors: Rana Th. A. Al-rubaye

Abstract:

A novel chromium-free protective coating films based on a zeolite coating was growing onto a FeCrAlloy metal using in –situ hydrothermal method. The zeolite film was obtained using in-situ crystallization process that is capable of coating large surfaces with complex shape and in confined spaces has been developed. The zeolite coating offers an advantage of a high mechanical stability and thermal stability. The physico-chemical properties were investigated using X-ray diffraction (XRD), Electron microscopy (SEM), Energy Dispersive X–ray analysis (EDX) and Thermogravimetric Analysis (TGA). The transition from oxide-on-alloy wires to hydrothermally synthesised uniformly zeolite coated surfaces was followed using SEM and XRD. In addition, the robustness of the prepared coating was confirmed by subjecting these to thermal cycling (ambient to 550°C).

Keywords: fecralloy, zsm-5 zeolite, zeolite coatings, hydrothermal method

Procedia PDF Downloads 395
6616 Security in Resource Constraints Network Light Weight Encryption for Z-MAC

Authors: Mona Almansoori, Ahmed Mustafa, Ahmad Elshamy

Abstract:

Wireless sensor network was formed by a combination of nodes, systematically it transmitting the data to their base stations, this transmission data can be easily compromised if the limited processing power and the data consistency from these nodes are kept in mind; there is always a discussion to address the secure data transfer or transmission in actual time. This will present a mechanism to securely transmit the data over a chain of sensor nodes without compromising the throughput of the network by utilizing available battery resources available in the sensor node. Our methodology takes many different advantages of Z-MAC protocol for its efficiency, and it provides a unique key by sharing the mechanism using neighbor node MAC address. We present a light weighted data integrity layer which is embedded in the Z-MAC protocol to prove that our protocol performs well than Z-MAC when we introduce the different attack scenarios.

Keywords: hybrid MAC protocol, data integrity, lightweight encryption, neighbor based key sharing, sensor node dataprocessing, Z-MAC

Procedia PDF Downloads 144
6615 Synthesis and Characterization of Some New Diamines and Their Thermally Stable Polyimides

Authors: Zill-E-Huma, Humaira Siddiqi

Abstract:

This paper comprises of synthesis of thermally stable, mechanically strong polyimides. The polyimides were considered as most diverse class of polymers having unlimited applications. They were widely used as optical wave guides, in aerospace, for gas separation, as biomaterials and in electronics. Here the focus was to increase thermal stability and mechanical strength of polyimides. For this purpose two monomers were synthesized and were further polymerized via anhydrides to polyimides. The monomer diamines were synthesized by nucleophilic attack of aniline/2-fluoro aniline on hydroxy benzaldehydes. The two diamines synthesized were 3-(bis(4-aminophenyl) methyl) phenol (3OHDA) and 4-(bis(4-amino-3-fluorophenyl) methyl) phenol (2F4OHDA). These diamines were then reacted with dianhydrides to get polyimides. Two neat polyimides of both diamines with pyromellitic dianhydride (PMDA) and one neat polyimide of 4'-(Hexafluoroisopropylidene) diphthalic dianhydride (6FDA) with 3OHDA were synthesized. To compare the properties of synthesized polyimides like thermal stability, rigidity, flexibility, toughness etc. a commercial diamine oxydianiline (ODA) was used. Polyimides from oxydianiline were basically rigid. Nine different polyimide blends were synthesized from 3OHDA and commercial diamines ODA to have a better comparison of properties. TGA and mechanical testing results showed that with the increase in the percentage of 3OHDA in comparison to ODA the flexibility, toughness, strength of polyimide, thermal stability goes on increasing. So, synthesized diamines were responsible for improvement of properties of polyimides.

Keywords: diamines, dianhydrides, oxydianiline, polyimides

Procedia PDF Downloads 303
6614 Quantification and Thermal Behavior of Rice Bran Oil, Sunflower Oil and Their Model Blends

Authors: Harish Kumar Sharma, Garima Sengar

Abstract:

Rice bran oil is considered comparatively nutritionally superior than different fats/oils. Therefore, model blends prepared from pure rice bran oil (RBO) and sunflower oil (SFO) were explored for changes in the different physicochemical parameters. Repeated deep fat frying process was carried out by using dried potato in order to study the thermal behaviour of pure rice bran oil, sunflower oil and their model blends. Pure rice bran oil and sunflower oil had shown good thermal stability during the repeated deep fat frying cycles. Although, the model blends constituting 60% RBO + 40% SFO showed better suitability during repeated deep fat frying than the remaining blended oils. The quantification of pure rice bran oil in the blended oils, physically refined rice bran oil (PRBO): SnF (sunflower oil) was carried by different methods. The study revealed that regression equations based on the oryzanol content, palmitic acid composition and iodine value can be used for the quantification. The rice bran oil can easily be quantified in the blended oils based on the oryzanol content by HPLC even at 1% level. The palmitic acid content in blended oils can also be used as an indicator to quantify rice bran oil at or above 20% level in blended oils whereas the method based on ultrasonic velocity, acoustic impedance and relative association showed initial promise in the quantification.

Keywords: rice bran oil, sunflower oil, frying, quantification

Procedia PDF Downloads 308
6613 Exploring the Psychosocial Brain: A Retrospective Analysis of Personality, Social Networks, and Dementia Outcomes

Authors: Felicia N. Obialo, Aliza Wingo, Thomas Wingo

Abstract:

Psychosocial factors such as personality traits and social networks influence cognitive aging and dementia outcomes both positively and negatively. The inherent complexity of these factors makes defining the underlying mechanisms of their influence difficult; however, exploring their interactions affords promise in the field of cognitive aging. The objective of this study was to elucidate some of these interactions by determining the relationship between social network size and dementia outcomes and by determining whether personality traits mediate this relationship. The longitudinal Alzheimer’s Disease (AD) database provided by Rush University’s Religious Orders Study/Memory and Aging Project was utilized to perform retrospective regression and mediation analyses on 3,591 participants. Participants who were cognitively impaired at baseline were excluded, and analyses were adjusted for age, sex, common chronic diseases, and vascular risk factors. Dementia outcome measures included cognitive trajectory, clinical dementia diagnosis, and postmortem beta-amyloid plaque (AB), and neurofibrillary tangle (NT) accumulation. Personality traits included agreeableness (A), conscientiousness (C), extraversion (E), neuroticism (N), and openness (O). The results show a positive correlation between social network size and cognitive trajectory (p-value = 0.004) and a negative relationship between social network size and odds of dementia diagnosis (p = 0.024/ Odds Ratio (OR) = 0.974). Only neuroticism mediates the positive relationship between social network size and cognitive trajectory (p < 2e-16). Agreeableness, extraversion, and neuroticism all mediate the negative relationship between social network size and dementia diagnosis (p=0.098, p=0.054, and p < 2e-16, respectively). All personality traits are independently associated with dementia diagnosis (A: p = 0.016/ OR = 0.959; C: p = 0.000007/ OR = 0.945; E: p = 0.028/ OR = 0.961; N: p = 0.000019/ OR = 1.036; O: p = 0.027/ OR = 0.972). Only conscientiousness and neuroticism are associated with postmortem AD pathologies; specifically, conscientiousness is negatively associated (AB: p = 0.001, NT: p = 0.025) and neuroticism is positively associated with pathologies (AB: p = 0.002, NT: p = 0.002). These results support the study’s objectives, demonstrating that social network size and personality traits are strongly associated with dementia outcomes, particularly the odds of receiving a clinical diagnosis of dementia. Personality traits interact significantly and beneficially with social network size to influence the cognitive trajectory and future dementia diagnosis. These results reinforce previous literature linking social network size to dementia risk and provide novel insight into the differential roles of individual personality traits in cognitive protection.

Keywords: Alzheimer’s disease, cognitive trajectory, personality traits, social network size

Procedia PDF Downloads 127
6612 Amplifying Sine Unit-Convolutional Neural Network: An Efficient Deep Architecture for Image Classification and Feature Visualizations

Authors: Jamshaid Ul Rahman, Faiza Makhdoom, Dianchen Lu

Abstract:

Activation functions play a decisive role in determining the capacity of Deep Neural Networks (DNNs) as they enable neural networks to capture inherent nonlinearities present in data fed to them. The prior research on activation functions primarily focused on the utility of monotonic or non-oscillatory functions, until Growing Cosine Unit (GCU) broke the taboo for a number of applications. In this paper, a Convolutional Neural Network (CNN) model named as ASU-CNN is proposed which utilizes recently designed activation function ASU across its layers. The effect of this non-monotonic and oscillatory function is inspected through feature map visualizations from different convolutional layers. The optimization of proposed network is offered by Adam with a fine-tuned adjustment of learning rate. The network achieved promising results on both training and testing data for the classification of CIFAR-10. The experimental results affirm the computational feasibility and efficacy of the proposed model for performing tasks related to the field of computer vision.

Keywords: amplifying sine unit, activation function, convolutional neural networks, oscillatory activation, image classification, CIFAR-10

Procedia PDF Downloads 111